

Computational Simulation of MHD dynamos

Erico L. Rempel Institute of Aeronautical Technology (IEFM/ITA)

> Michael R. E. Proctor University of Cambridge (DAMTP)

Abraham C.-L. Chian National Institute for Space Research (DGE/INPE)

OUTLINE

- Motivation: the intermittent solar-cycle
- Description of the problem: the ABC dynamo
- Dynamical systems approach:
 - Transition to intermittent dynamos: Blowout bifurcation
 - Coherence/incoherence intermittency
 - Characterizing spatial complexity: the spectral entropy
- Concluding remarks

Dynamo process: a weak (seed) magnetic field is amplified due to the conversion of kinetic energy into magnetic energy

Dynamos can be classified as large-scale (or **mean-field**) dynamos, or small-scale (or **fluctuation**) dynamos, according to weather the magnetic fields grow in spatial scales larger or smaller than the energy carrying scale of the fluid motion

THE SOLAR DYNAMO

•Differential rotation in the tachocline converts weak Bp into Bt;

Bt rises due to buoyancy and is is shredded in the convective layer, where Bp is strenghtened;
Bp is carried back to the tachocline;

•If Bt is trong enough, it can go through the convective layer without being shredded, reaching the photosphere, where it is seen as a pair of sunspots

FLUCTUATION X MEAN-FIELD DYNAMO

Chromosphere, Hinode's Solar Optical Telescope

Sunspot, Hinode's Solar Optical Telescope

Images credit: Hinode JAXA/NASA

Intermittency is characterized by time series with random switching between phases of "laminar" and "bursty" behaviors

INTERMITTENT DYNAMO?

Reconstruction of grand minima from historical record of sunspots (Eddy, Sci Am. 1977) and from proxy data (filtered ¹⁴C measured from tree-rings of very old trees, Voss et al., JGR 1996); Historical data from Wittmann, A&A 1978 and minima by Krivsky, Sol. Phys. 1984.

Source: Voss et al., J. Geophys. Res. 101 (1996) 637

THE SOLAR CYCLE AS AN INTERMITTENT CHAOTIC EVENT

ODE Low-D models:

- Covas, Ashwin & Tavakol, Phys. Rev. E 56, 6451 (1997)
- Wilmot-Smith et al., MNRAS 363, 1167 (2005)

PDE Mean-Field models:

- Covas & Tavakol, Phys. Rev. E 60, 5435 (1999) multiple-intermittency hypothesis
- Ossendrijver, A&A 359, 364 (2000)
- Ossendrijver & Covas, Int. J. Bifurcation Chaos 13, 2327 (2003) crisis
- Moss & Brooke, MNRAS 315, 521 (2000)
- Charbonneau, ApJ, 616, L183 (2004)
- Brandenburg & Spiegel, Astron. Nachr. 329, 351 (2008)
- Spiegel, Space Sci. Rev. 144, 25 (2009) review

NUMERICAL SIMULATION OF A NONLINEAR DYNAMO

We consider a compressible gas $(\nabla \cdot \mathbf{u} \neq 0)$ with constant sound speed c_s , constant dynamical viscosity μ , constant magnetic diffusivity η , and constant magnetic permeability μ_0

Compressible, resistive MHD equations:

$$\partial_{t} \ln \rho + \mathbf{u} \cdot \nabla \ln \rho + \nabla \cdot \mathbf{u} = 0$$
 (Continuity eq.)

$$\partial_{t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -c_{s}^{2} \nabla \ln \rho + (\mathbf{J} \times \mathbf{B}) / \rho + \mu / \rho (\nabla^{2} \mathbf{u} + \nabla \nabla \cdot \mathbf{u} / 3) + \mathbf{f}$$
 (Momentum eq.)

$$\partial_{t} \mathbf{A} = \mathbf{u} \times \mathbf{B} - \eta \mu_{0} \mathbf{J}$$
 (Induction eq.)
where $\mathbf{J} = \nabla \times \mathbf{B} / \mu_{0}$ is the current density, $\mathbf{B} = \nabla \times \mathbf{A}$, and $c_{s}^{2} = p / \rho$.

PENCIL CODE¹ in a box with sides $\mathbf{L} = 2\pi$ and periodic boundary conditions. **Initial condition**: $\ln \rho = \mathbf{u} = 0$, and **A** is a set of normally distributed, uncorrelated random numbers with standard deviation of 10^{-3} .

Forcing function **f** - **ABC flow** (Arnold-Beltrami-Childress):

$$\mathbf{f}(\mathbf{x}) = A_f / \sqrt{3} (\sin k_f z + \cos k_f y, \sin k_f x + \cos k_f z, \sin k_f y + \cos k_f x)$$

Beltrami flow: $\nabla \times \mathbf{u} \propto \mathbf{u}$, provides maximum Helicity (H²= $\langle \mathbf{u} \cdot \nabla \times \mathbf{u} \rangle^2 = \langle |\mathbf{u}|^2 \rangle \langle |\nabla \times \mathbf{u}|^2 \rangle$), and Lagrangean chaos.

We use $A_f = 0.1$ and a resolution of 64^3 grid points. We choose $k_f = 5$ in order to be able to see the emergence of a large scale magnetic field, with spatial scales larger than the energy injection scale.

PENCIL CODE¹ is useful for weakly compressible, non-conservative simulations of driven MHD turbulence, with or without shear.

It uses 6th order explicit (for better parallelization) centered finite differences squeme in space:

$$f'_{i} = (-f_{i-3} + 9f_{i-2} - 45f_{i-1} + 45f_{i+1} - 9f_{i+2} + f_{i+3})/(60\delta x),$$

$$f_i'' = (2f_{i-3} - 27f_{i-2} + 270f_{i-1} - 490f_i + 270f_{i+1} - 27f_{i+2} + 2f_{i+3})/(180\delta x^2),$$

and a third order Runge-Kutta scheme for time integration.

MPI parallelization is implemented.

HYDRODYNAMIC SIMULATIONS

LINE INTEGRAL CONVOLUTION PLOTS

v = 0.02Re = L U / v = 12.38 L = $2\pi/k_f$

v = 0.005 Re ~ 100 (Box scale Re ~ 500)

HYDRODYNAMIC SIMULATIONS

Compressible flow

BIFURCATION DIAGRAMS, MHD SIMULATIONS

Bifurcation diagram, time-averaged Kinetic (black) and magnetic (red) energies

TRANSIENT "DYNAMO"

INTERMITTENT TIME SERIES

a) On-off intermittent dynamo b) ?

BLOWOUT BIFURCATION

- There is an invariant manifold in the phase space (e.g., the B=0 hydrodynamic state)
- There is a chaotic attractor on this manifold (e.g., chaotic velocity field)
- For Rm < Rm_c the chaotic attractor on the manifold is transversely stable (e.g., "almost all" perturbations in B decay to B=0)
- For Rm > Rm_c t the chaotic attractor loses its average stability to transverse perturbations

ON-OFF INTERMITTENCY

Bx at $\eta = 0.053$, on-off intermittent dynamo

COHERENCE-INCOHERENCE INTERMITTENCY

TIME SERIES

Source: Rempel et al., MNRAS, 400, 509-517 (2009)

21

SINUSOIDAL MEAN-FIELD

This page intentionally left blank

POWER SPECTRUM AND INVERSE CASCADE

Spectral entropy $S(t) = -\sum_{k} p_{k,t} \ln p_{k,t}$

 $p_{k,t} \ln p_k = 0$ if $p_k = 0$

Relative weight of mode k $p_{k,t} = |b_k(t)|^2 / \sum_j |b_j(t)|^2$

 $p_{k,t} \in [0,1]$ and $\sum_{k} p_{k,t} = 1$

Min(S) = 0 (ordered state with $p_{k,t}$ = 1 for some *k*) Max(S) = In (*N*) ~ 3.42 (random state with $p_{k,t}$ = 1/*N* for any *k*)

LAMINAR x TURBULENT MEAN-FIELD DYNAMO

26

NUMERICAL RESOLUTION

ON-OFF INTERMITTENCY

COHERENCE-INCOHERENCE INTERMITTENCY

Main results:

Measure of spatial complexity in an intermittent dynamo;
Characterization of coherent/incoherent intermittency;
"Bifurcation diagram" for ABC-flow dynamo with inverse-cascade.

Open questions:

How general is the coherent/incoherent intermittency mechanism?
Is it present in turbulence with rotation and shear?
What are the causes?