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OUTLINEOUTLINE

Motivation: the intermittent solar-cycleMotivation: the intermittent solar-cycle

Description of the problem: the ABC dynamoDescription of the problem: the ABC dynamo

Dynamical systems approach:Dynamical systems approach:

– Transition to intermittent dynamos: Blowout bifurcationTransition to intermittent dynamos: Blowout bifurcation

– Coherence/incoherence intermittencyCoherence/incoherence intermittency

– Characterizing spatial complexity: the spectral entropyCharacterizing spatial complexity: the spectral entropy

Concluding remarksConcluding remarks
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DYNAMODYNAMO

Dynamo process:Dynamo process: a weak (seed) magnetic  a weak (seed) magnetic 
field is amplified due to the conversion of field is amplified due to the conversion of 
kinetic energy into magnetic energykinetic energy into magnetic energy

Dynamos can be classified as large-scale (or Dynamos can be classified as large-scale (or mean-fieldmean-field) ) 
dynamos, or small-scale (or dynamos, or small-scale (or fluctuationfluctuation) dynamos, ) dynamos, 
according to weather the magnetic fields grow in according to weather the magnetic fields grow in 
spatial scales larger or smaller than the energy carrying spatial scales larger or smaller than the energy carrying 
scale of the fluid motionscale of the fluid motion

Source: Baker, JASTP 62, 1669 (2000)
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THE SOLAR DYNAMOTHE SOLAR DYNAMO

Image credit: NASA

•Differential rotation in the Differential rotation in the 
tachocline converts weak Bp tachocline converts weak Bp 
into Bt;into Bt;
•Bt rises due to buoyancy and is Bt rises due to buoyancy and is 
is shredded in the convectiveis shredded in the convective
layer, where Bp is strenghtened;layer, where Bp is strenghtened;
•Bp is carried back to the Bp is carried back to the 
tachocline;tachocline;
•If Bt is trong enough, it can go If Bt is trong enough, it can go 
through the convective layer through the convective layer 
without being shredded, reachingwithout being shredded, reaching
the photosphere, where it is seen the photosphere, where it is seen 
as a pair of sunspotsas a pair of sunspots
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FLUCTUATION X MEAN-FIELD DYNAMOFLUCTUATION X MEAN-FIELD DYNAMO

Images credit: Hinode JAXA/NASA

Chromosphere,
Hinode's Solar Optical 

Telescope

Sunspot,
Hinode's Solar Optical 

Telescope
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INTERMITTENT DYNAMO?INTERMITTENT DYNAMO?

Image source: Solanki et al., Rep. Prog. Phys. 69 (2006) 563

Intermittency is characterized by Intermittency is characterized by 
time series with random switching between time series with random switching between 
phases of “ laminar”  and “ bursty”  behaviorsphases of “ laminar”  and “ bursty”  behaviors



7

INTERMITTENT DYNAMO?INTERMITTENT DYNAMO?

Source: Voss et al., J. Geophys. Res. 101 (1996) 637

Reconstruction of grand minima from historical record of sunspots Reconstruction of grand minima from historical record of sunspots 
(Eddy, Sci Am. 1977) and from proxy data (filtered (Eddy, Sci Am. 1977) and from proxy data (filtered 1414C measured C measured 

from tree-rings of very old trees, Voss et al., JGR 1996); Historical data from tree-rings of very old trees, Voss et al., JGR 1996); Historical data 
from Wittmann, A&A 1978 and minima by Krivsky, Sol. Phys. 1984.from Wittmann, A&A 1978 and minima by Krivsky, Sol. Phys. 1984.
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THE SOLAR CYCLE AS AN INTERMITTENT CHAOTIC EVENTTHE SOLAR CYCLE AS AN INTERMITTENT CHAOTIC EVENT

ODE Low-D models:ODE Low-D models:
Covas, Ashwin &¨Tavakol, Phys. Rev. E 56, 6451 (1997)Covas, Ashwin &¨Tavakol, Phys. Rev. E 56, 6451 (1997)
Wilmot-Smith et al., MNRAS 363, 1167 (2005)Wilmot-Smith et al., MNRAS 363, 1167 (2005)

PDE Mean-Field models:PDE Mean-Field models:
Covas & Tavakol, Phys. Rev. E 60, 5435 (1999) - multiple-intermittency Covas & Tavakol, Phys. Rev. E 60, 5435 (1999) - multiple-intermittency 

hypothesishypothesis
Ossendrijver, A&A 359, 364 (2000)Ossendrijver, A&A 359, 364 (2000)
Ossendrijver & Covas, Int. J. Bifurcation Chaos 13, 2327 (2003) crisisOssendrijver & Covas, Int. J. Bifurcation Chaos 13, 2327 (2003) crisis
Moss & Brooke, MNRAS 315, 521 (2000)Moss & Brooke, MNRAS 315, 521 (2000)
Charbonneau, ApJ, 616, L183 (2004)Charbonneau, ApJ, 616, L183 (2004)
Brandenburg & Spiegel, Astron. Nachr. 329, 351 (2008)Brandenburg & Spiegel, Astron. Nachr. 329, 351 (2008)
Spiegel, Space Sci. Rev. 144, 25 (2009) - reviewSpiegel, Space Sci. Rev. 144, 25 (2009) - review
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NUMERICAL SIMULATION OF A NONLINEAR DYNAMONUMERICAL SIMULATION OF A NONLINEAR DYNAMO

We consider a compressible gas (u ≠ 0) with constant sound speed cs, 

constant dynamical viscosity , constant magnetic diffusivity 
and constant magnetic permeability

0

Compressible, resistive MHD equations:
 

tlnuln+ u = 0 (Continuity eq.)

t uuu = -cs
ln+ (J B) / u + u/ 3) + f (Momentum eq.)

t A = u 

J Induction eq.

where J = 
is the current density, B =  and cs

 = p/. 
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NUMERICAL SIMULATION OF A NONLINEAR DYNAMONUMERICAL SIMULATION OF A NONLINEAR DYNAMO

PENCIL CODE1 in a box with sides L = 2and periodic boundary conditions. 
Initial condition: ln= u = 0, and A is a set of normally distributed, uncorrelated 
random numbers with standard deviation of 10-3. 

Forcing function f  - ABC flow (Arnold-Beltrami-Childress):  

f(x)  = Af/(sin kfz + cos kfy, sin kfx + cos kfz, sin kfy + cos kfx)

Beltrami flow:u u, provides maximum Helicity (H2= <uu>2 = <|u|2><|u|2>), 
and Lagrangean chaos.

We use Af = 0.1 and a resolution of 643 grid points. We choose kf = 5 in order to be able 

to see the emergence of a large scale magnetic field, with spatial scales larger than the 
energy injection scale. 

1http://www.nordita.org/software/pencil-code
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THE PENCIL CODETHE PENCIL CODE

PENCIL CODE1  is useful for weakly compressible, non-conservative simulations
of driven MHD turbulence, with or without shear.

It uses 6th order explicit (for better parallelization) centered finite differences squeme in space:

and a third order Runge-Kutta scheme for time integration.

MPI parallelization is implemented.

1http://www.nordita.org/software/pencil-code
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HYDRODYNAMIC SIMULATIONSHYDRODYNAMIC SIMULATIONS

 = 0.02
Re = L U /  = 12.38
L = 2/kf

 = 0.005
Re ~ 100
(Box scale Re ~ 500)

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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LINE INTEGRAL CONVOLUTION PLOTSLINE INTEGRAL CONVOLUTION PLOTS

 = 0.02
Re = L U /  = 12.38
L = 2/kf

 = 0.005
Re ~ 100
(Box scale Re ~ 500)
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HYDRODYNAMIC SIMULATIONSHYDRODYNAMIC SIMULATIONS

Compressible flow

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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BIFURCATION DIAGRAMS, MHD SIMULATIONSBIFURCATION DIAGRAMS, MHD SIMULATIONS

Bifurcation diagram, time-averagedBifurcation diagram, time-averaged
Kinetic (black) and magnetic (red) energiesKinetic (black) and magnetic (red) energies

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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TRANSIENT “DYNAMO”TRANSIENT “DYNAMO”

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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INTERMITTENT TIME SERIESINTERMITTENT TIME SERIES

a) On-off intermittent dynamoa) On-off intermittent dynamo
b) ?b) ?

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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BLOWOUT BIFURCATIONBLOWOUT BIFURCATION

There is an invariant manifold in the phase space There is an invariant manifold in the phase space 
(e.g., the (e.g., the B=0B=0 hydrodynamic state) hydrodynamic state)

There is a chaotic attractor on this manifold (e.g., There is a chaotic attractor on this manifold (e.g., 
chaotic velocity field)chaotic velocity field)

For Rm < RmFor Rm < Rmcc the chaotic attractor on the manifold  the chaotic attractor on the manifold 
is transversely stable (e.g., “ almost all”  is transversely stable (e.g., “ almost all”  
perturbations in perturbations in BB decay to  decay to B=0B=0))

For Rm > RmFor Rm > Rmcc t the chaotic attractor loses its  t the chaotic attractor loses its 
average stability to transverse perturbationsaverage stability to transverse perturbations

Source: Sweet et al., Phys. Plasmas 8 (2001) 1944
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ON-OFF INTERMITTENCYON-OFF INTERMITTENCY

Bx at Bx at   = 0.053, on-off intermittent dynamo= 0.053, on-off intermittent dynamo
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COHERENCE-INCOHERENCE INTERMITTENCYCOHERENCE-INCOHERENCE INTERMITTENCY

Bx at Bx at   = 0.05, = 0.05, 
intermittent dynamointermittent dynamo

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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TIME SERIESTIME SERIES

  = 0.01, Re ~ 75.4 (~ 377 box scale), = 0.01, Re ~ 75.4 (~ 377 box scale), 
Rm ~ 37.7 (~ 188.5 box scale)Rm ~ 37.7 (~ 188.5 box scale)

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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SINUSOIDAL MEAN-FIELDSINUSOIDAL MEAN-FIELD

  = 0.01, sinusoidal Bx= 0.01, sinusoidal Bx

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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SHOW MOVIESSHOW MOVIES

This page intentionally left blank
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POWER SPECTRUM AND INVERSE CASCADEPOWER SPECTRUM AND INVERSE CASCADE

  = 0.01, magnetic (red) and kinetic (black) = 0.01, magnetic (red) and kinetic (black) 
energy spectraenergy spectra

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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MEASURING SPATIAL COMPLEXITYMEASURING SPATIAL COMPLEXITY

Spectral entropySpectral entropy
SS((tt) = - ) = - ∑∑kk  ppk,t k,t ln ln ppk,tk,t

ppk,t k,t ln ln ppk k = 0 if = 0 if ppkk = 0 = 0

Relative weight of mode Relative weight of mode kk
ppk,tk,t  = |b= |b

kk
((tt)|)|22 /  / ∑∑jj  ||bbjj

((tt)|)|22

ppk,tk,t  ∈∈ [0,1] and  [0,1] and ∑∑kk  ppk,t k,t  = 1 = 1

Min(S) = 0 (ordered state with Min(S) = 0 (ordered state with ppk,t k,t = 1 for some = 1 for some kk))

Max(S) = ln (Max(S) = ln (NN) ~ 3.42 (random state with ) ~ 3.42 (random state with ppk,t k,t = 1/= 1/NN for any  for any kk))
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LAMINAR x TURBULENT MEAN-FIELD DYNAMOLAMINAR x TURBULENT MEAN-FIELD DYNAMO
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NUMERICAL RESOLUTIONNUMERICAL RESOLUTION

646433 (red) and 128 (red) and 12833 (black)  (black) 

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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ON-OFF INTERMITTENCYON-OFF INTERMITTENCY

Magnetic energy (red) and entropy (black) Magnetic energy (red) and entropy (black) 
time seriestime series

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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COHERENCE-INCOHERENCE INTERMITTENCYCOHERENCE-INCOHERENCE INTERMITTENCY

Magnetic energy (red) and entropy (black) Magnetic energy (red) and entropy (black) 
time seriestime series

Source: Rempel et al., MNRAS, 400, 509-517 (2009)
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CONCLUSIONSCONCLUSIONS

Main results:
Measure of spatial complexity in an intermittent dynamo;
Characterization of coherent/incoherent intermittency;
“ Bifurcation diagram”  for ABC-flow dynamo with inverse-cascade.

Open questions:
How general is the coherent/incoherent intermittency mechanism?
Is it present in turbulence with rotation and shear?
What are the causes?
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