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Gas Flows x Knudsen number (λ /a)

hydrodynamic regime (Kn < 0, 01): NS equations
“slip flow” - moderate gas rarefaction (0, 01 < Kn < 0, 1):
NS + velocity slip (temperature jump) boundary conditions
transition regime (0, 1 < Kn < 10): Boltzmann equation
free-molecular regime :analytical solutions
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Modeling

// Molecular Models // DSMC, Boltzmann

Flow

// Continuum Models // Navier-Stokes, Burnett
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RGD and Applications

Aerospace Sciences
Recently: MEMS and NEMS
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Motivation: RGD x recent applications

MEMS
(Micro) Eletro-Mechanical Systems: devices with
charactheristic length 1µm < L < 1mm which combines
eletrical and mechanical components (size + cost)

Computers (design of comp. - 50nm) and printers (pumps)
acelerometers for airbags (lower size and cost)
micro mirrors for high optical definition
Medical Equip: pressure sensors for catheters, drug
delivery
Clinical exams

MEMS
Flow Physics: Surface effects and other physical (nonfamiliar)
effects
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Microengine

Source: MEMS Handbook, Gad El Hak
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Deterministic Approach

The Boltzmann Equation
Other applications: Remote Sensing, Nuclear Engineering,
Radiotherapy
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Research in Brasil: different approaches

Garcia, R. D. M. (IEAv-CTA)
Kraemer, G (UFPR)
Santos, W. (INPE)
Sharipov, F. (UFPR)
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Geometry

CCIS 2010



Geometry
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Discrete Ordinates

Reference: Lewis and Miller Jr., 1993.
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LBE - rigid spheres

the non-linear Boltzmann

v · ∇r f (r, v) = J(f ′, f ) (1)

f (r, v) is the gas atom space and velocity distribution function;
(f ′ and f are associated with, respectively, before and after
collisions distributions); J is the collision operator.

f (r, v) = f0(v)[1 + h(r, v)] (2)

h is a perturbation to the absolute Maxwellian f0(v); k is the
Boltzmann constant, T0 is a reference temperature, m0 is the
mass and n0 is the equilibrium density of the gas.

c = v(m/2kT0)
1/2, (4)
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LBE - rigid spheres

Linearized Boltzmann Equation (LBE)

cx
∂

∂τ
h(τ, c) + εh(τ, c) =

επ−3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(τ, c′)F (c′ : c)dc′xdc′ydc′z , (5)

dimensionless variable τ = x/l , arbitrary mean-free path l ,

ε = σ2
0n0π

1/2l , (6)

σ0 is the collision diameter of the gas particles (in the
rigid-sphere approximation).
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Kernel

Rigid Spheres

F (c′ : c) =
1

2π

∞∑
n=0

N∑
m=0

(
2n + 1

2
)(2− δ0,m)Pm

n (µ′)Pm
n (µ)

× fn(c′, c) cos m(φ′ − φ)
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The temperature-jump problem (half-space)

Boundary Conditions

h(0, cx , cy , cz) = (1− α)h(0,−cx , cy , cz)

+
2α
π

Z ∞

−∞

Z ∞

−∞

Z ∞

0
e−c′2

h(0,−c′x , c
′
y , c

′
z)c

′
x dc′x dc′y dc′z , (18)

for cx > 0

lim
τ→∞

d
dτ

T (τ) = K, (19)

where K is constant.

α ∈ (0, 1] is the accommodation coefficient (Maxwell law) .
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Quantities of Interest

In terms of the perturbation distribution h

perturbation of density

N(τ) = π−3/2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2

h(τ, c)dcxdcydcz , (13)

perturbation of temperature

T (τ) =
2
3
π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2

(
c2 − 3/2

)
× h(τ, c)dcxdcydcz (14)
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Challenges

• Multidimensional Geometries
• Accuracy, Computational Time
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In this talk

Our work: Spectral (Analytical) Methods, Accuracy,
Computational Time
Analytical × Computational Aspects
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Main Computational Steps

• Main basic problem: several times (inverse problems,
azimuthal dependence, multidimensional)
• Definition of a Quadrature Scheme for the Integral Term
• Eigenvalue System
• Linear System

• Kinetic Models
• Discrete Ordinates Version × Order of the System
• Closed Form Solutions: Post Processing Results
• Nonlinear Aspects
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Strong Evaporation Problem

Steady-state limit of the following (Ytrehus, 1976): • a liquid (or solid) is
initially in equilibrium with its pure vapor which occupies the half-space x ≥ 0
at uniform temperature and pressure T0 and p0, respectively.
• At time t = 0 the pressure level in the vapor changes discontinuously to the
value p∞ and it is kept at this value.
• Evaporation (condensation) begins, through the phase boundary, according
to whether the pressure level p∞ is below (above) the saturation pressure p0.
• Far from the phase boundary – uniform equilibrium flow with constant
parameters %∞, v∞ and T∞
• Half-space problem × Knudsen layer
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Definitions

The density %(x), mass velocity v(x) and temperature T (x) in Eq. (2),
are defined as

%(x) =

∫ ∞
−∞

f (x , ξ)dξ, (3)

%(x)v(x) =

∫ ∞
−∞

ξf (x , ξ)dξ (4)

%(x)RT (x) =

∫ ∞
−∞

[ξ − v(x)]2f (x , ξ)dξ. (5)

we assume that far downstream the gas relaxes to an equilibrium
distribution characterized by steady drift velocity v∞, density %∞ and
temperature T∞,

f∞(ξ) = lim
x→∞

φ(x , ξ) =
%∞√

2πRT∞
exp

{
− (ξ − v∞)2

2RT∞

}
. (6)
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Linearization

we linearize f (x , ξ) and φ(x , ξ) around f∞(ξ) (absolute
Maxwellian)

f (x , ξ) = f∞(ξ)[1 + h(x , ξ)], (7)

to obtain the one-dimensional linearized equation written in
terms of the perturbation function h.

τ = ηx(2RT∞)−1/2, c = ξ(2RT∞)−1/2, u = v∞(2RT∞)−1/2,

are the dimensionless variables. We note that u is the
normalized downstream drift velocity.

CCIS 2010



Linearized Model Equation

c
∂

∂τ
h(τ, c)+h(τ, c) = π−1/2

∫ ∞

−∞
e−(c′−u)2

K (c′, c : u)h(τ, c′)dc′,

(8)

where

K (c′, c : u) = 1+2(c′−u)(c−u)+2{(c′−u)2−1/2}{(c−u)2−1/2},
(9)

is the scattering kernel.

OBS

(c + u)
∂

∂τ
h = Lh
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Boundary Conditions
x = 0 in Eq. (7), to find (for ξ > 0)

h(0, ξ) =
f (0, ξ)− f∞(ξ)

f∞(ξ)
, (11)

where f (0, ξ) is the Maxwellian distribution, given by Eq. (2), evaluated at x = 0

f (0, ξ) =
%0p

2πRT0
exp


−

(ξ − v0)
2

2RT0

ff
. (12)

We then linearize f (0, ξ) around f∞(ξ) to obtain the dimensionless boundary condition
(for c > 0)

h(0, c) = ∆%0 + 2(c − u)(u0 − u) +
h
(c − u)2 − 1/2

i
∆T0, (13)

u0 = v0(2RT∞)−1/2, ∆%0 =
%0 − ρ∞

%∞
and ∆T0 =

T0 − T∞
T∞

. (14 a, b, c)

On the other hand, when x →∞, f (x , ξ) approaches f∞(ξ) and, looking back Eq. (7),
we then find the condition

lim
τ→∞

h(τ, c) = 0. (15)
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Quantities of Interest

In terms of the perturbation distribution h

density perturbation

∆%(τ) = π−1/2
∫ ∞

−∞
e−(c−u)2

h(τ, c)dc, (16)

velocity perturbation

∆v(τ) =
π−1/2

u

∫ ∞

−∞
e−(c−u)2

(c − u)h(τ, c)dc (17)

temperature perturbation

∆T (τ) = π−1/2
∫ ∞

−∞
e−(c−u)2

[2(c − u)2 − 1]h(τ, c)dc. (18)
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A Reformulation

G(τ, c) = e−(c−u)2
h(τ, c) (19)

G Problem

c
∂

∂τ
G(τ, c) + G(τ, c) = π−1/2e−(c−u)2

Z ∞

−∞
K (c′, c : u)G(τ, c′)dc′, (20)

Boundary Conditions

G(0, c) =
n

∆%0 + 2(c − u)(u0 − u) +
h
(c − u)2 − 1/2

i
∆T0

o
e−(c−u)2

, c > 0 (21)

lim
τ→∞

G(τ, c) = 0. (22)

New definitions for Density, Temperature and Velocity Perturbations
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A Discrete Ordinates Solution

G(τ, c) = Φ(ν, c)e−τ/ν . (26)

If we substitute Eq. (26) into Eq. (20) we obtain

(1− c/ν)Φ(ν, c) = π−1/2e−(c−u)2
Z ∞

−∞
K (c′, c : u)Φ(ν, c′)dc′. (27)

normalization conditions: we integrate Eq. (27), over all c, to findZ ∞

−∞
cΦ(ν, c)dc = 0. (28)

we can multiply Eq. (27) by (c− u) and integrate the resultant equation over all c to findZ ∞

−∞
c2Φ(ν, c)dc = 0. (29)

we rewrite Eq. (27), as

(1− c/ν)Φ(ν, c) = π−1/2e−(c−u)2
Q(c : u)

Z ∞

−∞
Φ(ν, c′)dc′, (30)

with
Q(c : u) = 1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)− 4cu3. (31)

we note that the exponential term, in Eq. (30)can be expressed as

e−(c−u)2
= e−(c2+u2)[senh(2cu) + cosh(2cu)] (32)
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(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) + B(c : u)]

Z ∞

−∞
Φ(ν, c′)dc′, (33)

where
ψ(c : u) = π−1/2e−(c2+u2), (34)

A(c : u) = [1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)]cosh(2cu)− 4cu3senh(2cu) (35)

and

B(c : u) = [1 + 2u2 + 2(c2 + u2 − 1/2)(u2 − 1/2)]senh(2cu)− 4cu3cosh(2cu). (36)
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(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) + B(c : u)]

Z ∞

0
[Φ(ν, c′) + Φ(ν,−c′)]dc′. (37)

Then we introduce a (half-range) quadrature scheme [0,∞), to approximate the
integral term of the above equation, such that

(1− c/ν)Φ(ν, c) = ψ(c : u)[A(c : u) + B(c : u)]
NX

k=1

wk [Φ(ν, ck ) + Φ(ν,−ck )] . (38)

Here ck and wk are, respectively, the N nodes and weights of the (arbitrary) quadrature
scheme. If we now evaluate Eq. (38) in c = ±ci , for i = 1, . . . ,N, and note that
ψ(c : u) and A(c : u) are even functions,

ψ(c : u) = ψ(−c : u), A(c : u) = A(−c : u), (39 a, b)

and B(c : u) is an odd function,

B(c : u) = −B(−c : u), (40)

we obtain the discrete-ordinates version of the Eq. (37) as

(1∓ ci/ν)Φ(ν,±ci ) = ψ(ci : u)[A(ci : u)± B(ci : u)]
NX

k=1

wk [Φ(ν, ck ) + Φ(ν,−ck )] .

(41)
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Matrix Form

We express now Eq. (41) in a matrix form, as

(I−M/ν)Φ+(ν) = Ψ[A + B]WΦ+(ν) + Φ−(ν)] (42)

and
(I + M/ν)Φ−(ν) = Ψ[A− B]W[Φ+(ν) + Φ−(ν)], (43)

where I is the N × N identity matrix, M, Ψ, A, B and W are N × N matrices defined by

M = diag {c1, . . . , cN} , (44)

Ψ = diag {ψ(c1 : u), . . . , ψ(cN : u)} , (45)

A = diag {A(c1 : u), . . . ,A(cN : u)} , (46)

B = diag {B(c1 : u), . . . ,B(cN : u)} (47)

and
Wij = [wj ], (48)

for i, j = 1, . . . ,N.

CCIS 2010



Eigenvalue Problem

Continuing, here, Φ±(ν) are N × 1 vectors, such that

Φ±(ν) =
ˆ

Φ(ν,±c1) · · · Φ(ν,±cN)
˜T
, (49)

where T denote the transpose operation.
e now add and subtract Eqs. (42) and (43) to find the equations

U−
1
ν

MV = 2ΨAWU and V−
1
ν

MU = 2ΨBWU, (50 a, b)

with
U = Φ+(ν) + Φ−(ν) and V = Φ+(ν)−Φ−(ν). (51 a, b)

Φ+(ν) and Φ−(ν) are the vectors defined in Eq. (49). Substituting Eq. (50b) into
Eq. (50a) we find a quadratic eigenvalue problem

[Iλ2 + 2M−1ΨBWλ+ 2M−2ΨAW−M−2]U = 0, (52)

where the eigenvalues are given by

λ = ν−1
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Quadratic Eigenvalue Problem

Standard eigenvalue problem»
0 I

−G −F

– »
U

λU

–
= λ

»
U

λU

–
, (53)

where
F = 2M−1ΨBW and G = 2M−2ΨAW−M−2. (54 a, b)

• Conservative problem:
the number of degenerate eigenvalues depends on the value of u (the downstream drift
velocity)

for u = 0, we find four degenerated eigenvalues, N − 2 positive and too N − 2
negative eigenvalues;

for u2 < 3/2, we find three degenerated eigenvalues, N − 2 positive and N − 1
negative eigenvalues;

for u2 = 3/2, we find four degenerated eigenvalues, N − 3 positive and N − 1
negative eigenvalues;

for u2 > 3/2, we find three degenerated eigenvalues, N − 3 positive and N
negative eigenvalues.
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General Solution

general discrete ordinates solution of Eq. (20) in the form

G(τ,±ci ) = A∗1 G1(±ci )+A∗2 G2(±ci )+A∗3 G3(±ci )+A∗4 G4(τ,±ci )+

2N−4X
j=1

AjΦ(νj ,±ci )e
−τ/νj

(58)
for u = 0 and u2 = 3/2, and

G(τ,±ci ) = A∗1 G1(±ci ) + A∗2 G2(±ci ) + A∗3 G3(±ci ) +

2N−3X
j=1

AjΦ(νj ,±ci )e
−τ/νj (59)

for 0 < u2 < 3/2 and u2 > 3/2, where the introduced exact solutions are given by

G1(c) = e−(c−u)2
, G2(c) = (c − u)e−(c−u)2

, G3(c) = (c − u)2e−(c−u)2

(60 a, b, c)
and (only for u = 0 and u2 = 3/2)

G4(τ, c) = (τ − c)Q(c : u)e−(c−u)2
. (61)
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the next step is to determine the arbitrary constants present in the solution (Eq. (58) or
(59)). We use the boundary conditions for doing that. We then substitute the general
solution, Eqs. (58) and (59), into Eq. (22) to obtain, for u2 < 3/2,

G(τ,±ci ) =

N−2X
j=1

AjΦ(νj ,±ci )e
−τ/νj (62)

and for u2 ≥ 3/2

G(τ,±ci ) =

N−3X
j=1

AjΦ(νj ,±ci )e
−τ/νj , (63)

where, here, νj are the positive separations constants. In addition, the
discrete-ordinates version of the interface boundary condition, Eq. (21), is

G(0, ci ) =
n

∆%0 + 2(ci − u)(u0 − u) +
h
(ci − u)2 − 1/2

i
∆T0

o
e−(ci−u)2

, (64)

for i = 1, . . . ,N.
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In this way, if we substitute Eq. (62) into Eq. (64), we obtain for u2 < 3/2 the square
linear system N × N

N−2X
j=1

AjΦ(νj , ci )−∆%0e−(ci−u)2
−[(ci−u)2−1/2]∆T0e−(ci−u)2

= 2(ci−u)(u0−u)e−(ci−u)2
,

(65)

for i = 1, . . . ,N.

If we substitute Eq. (63) into Eq. (64), we obtain for u2 ≥ 3/2 the rectangular linear
system N × N − 1

N−3X
j=1

AjΦ(νj , ci )−∆%0e−(ci−u)2
−[(ci−u)2−1/2]∆T0e−(ci−u)2

= 2(ci−u)(u0−u)e−(ci−u)2
,

(66)
for i = 1, . . . ,N.

• Existence condition
• Once we solve Eqs. (65) we find the coefficients Aj and the quantities ∆%0 and ∆T0
defined in Eqs. (14b) and (14c).
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Quantities of Interest

Thus, we substitute Eq. (62) into Eqs. (23) to (25) and we use the normalization
conditions given by Eqs. (28) and (29) to express the final form of the density
perturbation

∆%(τ) = π−1/2
N−2∑
j=1

Aje−τ/νj

N∑
k=1

wk [Φ(νj , ck ) + Φ(νj ,−ck )], (67)

velocity and temperature perturbations, respectively,

∆v(τ) = −∆%(τ) and ∆T (τ) = (2u2−1)∆%(τ). (68 a, b)
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Nonlinear Aspects

BGK model

ξ
∂

∂x
f (x , ξ) = η[φ(x , ξ)− f (x , ξ)], (1)

where f (x , ξ) is the distribution function, ξ is the molecular
velocity in the x direction, η is an appropriate collision
frequency, φ(x , ξ) is a local Maxwell distribution,

φ(x , ξ) =
%(x)√

2πRT (x)
exp

{
− [ξ − v(x)]2

2RT (x)

}
, (2)

and R is the specific gas constant.
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PP procedure

“post-processing (PP)” procedure. we consider the
proposed nonlinear model, given by Eq. (1) to(5), with
boundary conditions defined in Eqs. (6) and (12), rewritten
in terms of the dimensionless variables given in Eqs. (10).
We then use the quantities evaluated by the ADO method,
Eqs. (67) and (68), into Eq. (2), which defines the
Maxwellian distribution.
Continuing, we substitute this distribution in the right-hand
side of Eq. (1), which is then solved for a known
distribution φ(x , ξ).
The solution defines the original f distribution, which is
then used to evaluated again Eqs. (3) to (5) – the
macroscopic quantities for the gas.
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Computational Procedures

first step is to define the quadrature scheme (N quadrature
points ck and the weights wk )
the solution of an eigenvalue problem, Eq. (53), to obtain
the separation constants νj and the elementary solutions
Φ±(νj);
the solution of a linear system, given by Eq. (65);
the evaluation of the density, velocity and temperature
perturbations, Eqs. (67) and (68). Still, from the solution of
Eq. (65) we are able to get the quantities ∆%0 and ∆T0,
Eqs. (14b) and (14c).
The quantities listed above are then used, in what we
called “post-processing” procedure, in Eqs. (1) to (5).
New definitions for quadrature schemes
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Numerical Results

FORTRAN program, using, in general, N = 80 quadrature
points.
The computational time required for generating all
quantities of interest for one value of u is less than one
second in a Pentium IV (2.66GHz, 1.5GB RAM).
If we increase N up to N = 200, all digits listed in the
tables are preserved (plus or minus one in the last digit):
6-7 (L) and 5 (PP).
Checking with results available in the literature, for the
linearized problem, for %∞/%0 and T∞/T0. We obtained
agreement with all digits (4) listed in that reference.
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Ratios
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In general

• Strong Evaporation Problem: Profiles × Ratios
• Unified solutions for kinetic model equations: concise,
accurate and fast
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General analysis
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General analysis
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General analysis
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Main results

Unified “analytical” solutions
Concise, accurate, fast
Mixtures: parameter analysis

CCIS 2010



Multidimensional Problems

RGD: initial results
NE: codes: iterative procedures, negative fluxes
(corrections)
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Geometry
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Geometry
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Nodal Schemes

• Closed Form Solutions
• Decoupled Problems (Lower order linear systems)
• Very Fast Solution
• No iterations
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Tabela: Scalar flux φ(x), x=0.5

σs Tsai & Loyalka TWOTRAN-II This work
N = 5, 7, 9, 11, 15 N = 4, 8, 16 N = 2,4, 6, 8, 12, 16

0.359604 0.337412 0.313
0.358422 0.337707 0.335

0.50 0.357414 0.339794 0.337
0.356678 0.338
0.355885 0.340

0.341
0.258802 0.239483 0.221
0.259150 0.241676 0.231

0.10 0.259131 0.244032 0.232
0.259030 0.233
0.258906 0.234

0.235
0.250097 0.231102 0.213
0.250569 0.233421 0.222

0.05 0.250636 0.235787 0.223
0.250591 0.224
0.250529 0.225

0.226
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Concluding Comments

Several Applications
Computationally efficient codes
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