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Gas Flows x Knudsen number () /a)

@ hydrodynamic regime (Kn < 0,01): NS equations

@ “slip flow” - moderate gas rarefaction (0,01 < Kn < 0,1):
NS + velocity slip (temperature jump) boundary conditions

@ transition regime (0,1 < Kn < 10): Boltzmann equation
@ free-molecular regime :analytical solutions
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Modeling

—)| Molecular Models I i DSMC, Boltzmann
o

*% Continuum Models |7 *ﬁ Navier-Stokes, Burnett
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RGD and Applications

@ Aerospace Sciences
@ Recently: MEMS and NEMS
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Motivation: RGD x recent applications

(Micro) Eletro-Mechanical Systems: devices with
charactheristic length 1um < L < 1mm which combines
eletrical and mechanical components (size + cost)

@ Computers (design of comp. - 50nm) and printers (pumps)
@ acelerometers for airbags (lower size and cost)
@ micro mirrors for high optical definition

@ Medical Equip: pressure sensors for catheters, drug
delivery

@ Clinical exams

Flow Physics: Surface effects and other physical (nonfamiliar)
effects




Microengine

Starting
air In Compressor  Inlet
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COLORFIGURE 116 Schematic of the MIT Microengine, showing the air path through the compressor, combes
tor, and turbine. Forward and aft thrust bearings located on the centerline hold the rotor in axial equilibrium, v
a journal bearing around the rotor periphery holds the rotor in radial equilibrium

Source: MEMS Handbook, Gad El Hak
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Deterministic Approach

@ The Boltzmann Equation

@ Other applications: Remote Sensing, Nuclear Engineering,
Radiotherapy
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Research in Brasil: different approaches

@ Garcia, R. D. M. (IEAv-CTA)
@ Kraemer, G (UFPR)

@ Santos, W. (INPE)

@ Sharipov, F. (UFPR)
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Discrete Ordinates

Reference: Lewis and Miller Jr., 1993.
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LBE - rigid spheres

the non-linear Boltzmann
V-V, f(r,v) = J(f,f) (1)

f(r,v) is the gas atom space and velocity distribution function;
(f and f are associated with, respectively, before and after
collisions distributions); J is the collision operator.

f(r,v) = fo(v)[1 + h(r,v)] (2)

his a perturbation to the absolute Maxwellian f(v); k is the
Boltzmann constant, Ty is a reference temperature, my is the
mass and g is the equilibrium density of the gas.

¢ = v(m/2kTy)"/?, (4)



LBE - rigid spheres

Linearized Boltzmann Equation (LBE)

Cx éh(r, c) +ceh(r,c) =
en3/2 / / / 7 ¢)F(¢' : ¢)dc,dc,dc,, (5)

dimensionless variable 7 = x//, arbitrary mean-free path /,

€= Ugn(ﬂr”z/, (6)

op is the collision diameter of the gas particles (in the
rigid-sphere approximation).
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Kernel

Rigid Spheres

© N
F(c':c) 21—#2:2:(2”7L1 2 — do,m) P (1) PR (1)

n=0 m=0

x fa(c’, c)cos m(¢' — ¢)

y
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The temperature-jump problem (half-space)

Boundary Conditions

h(O, Cx, Cy, Cz) = (1 — a)h(O, —C)(7 Cy7 Cz)

2a [ [0 [0 2 I AN AR AN A
o — e h(O,—cx,cy,cz)cxdcxdcydcz, (18)
T J—coJ—00J0O

forcx > 0

im 97(r) = K, (19)

T—00 ar

where K is constant.

a € (0, 1] is the accommodation coefficient (Maxwell law) .



Quantities of Interest

In terms of the perturbation distribution h

@ perturbation of density

N(r) = 732 / / / e % h(r,c)dcdeydez, (13)

@ perturbation of temperature

T(r) —3/2/ / / (2 -3/2)

x h(r,c)dcxdcydc, (14)
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Challenges

o Multidimensional Geometries
e Accuracy, Computational Time
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In this talk

@ Our work: Spectral (Analytical) Methods, Accuracy,
Computational Time

@ Analytical x Computational Aspects
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Main Computational Steps

e Main basic problem: several times (inverse problems,
azimuthal dependence, multidimensional)

e Definition of a Quadrature Scheme for the Integral Term
e Eigenvalue System

e Linear System

e Kinetic Models

e Discrete Ordinates Version x Order of the System
e Closed Form Solutions: Post Processing Results
e Nonlinear Aspects




Strong Evaporation Problem

Evaporagho
Interface . u,
Py R Pa
E—
5 &,
e
Po® P.

Steady-state limit of the following (Ytrehus, 1976): e a liquid (or solid) is
initially in equilibrium with its pure vapor which occupies the half-space x > 0
at uniform temperature and pressure To and po, respectively.

o At time t = 0 the pressure level in the vapor changes discontinuously to the
value p.. and it is kept at this value.

e Evaporation (condensation) begins, through the phase boundary, according
to whether the pressure level p, is below (above) the saturation pressure py.
e Far from the phase boundary — uniform equilibrium flow with constant
parameters 9o, Voo and Too

o Half-space problem x Knudsen layer
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The density o(x), mass velocity v(x) and temperature T(x) in Eq. (2),
are defined as

o) = [ fxede @)
obvix) = [ " ef(x, e)de 4
o)RTO) = [ e - vOPA(x. £)de. (5)

we assume that far downstream the gas relaxes to an equilibrium
distribution characterized by steady drift velocity v, density 0., and
temperature T,

_ 2
1el©) = Jm o) = e {-E L
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Linearization

we linearize f(x, &) and ¢(x, £) around f,(§) (absolute
Maxwellian)

f(x,€) = Fo(€)[1 + h(x, €)], )

to obtain the one-dimensional linearized equation written in
terms of the perturbation function h.

7 =nx(2RTy) /2, ¢ = €(2RT) "2, u = voo(2RT,) "1/,

are the dimensionless variables. We note that u is the
normalized downstream drift velocity.
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Linearized Model Equation

caﬁh(f, c)+h(r,c) = a1/ / e (@-UK(c ¢ u)h(r, c)dc,
T —00
(8)

where

K(c',c:u) = 1+2(c’u)(cu)+2{(c’u)21/2}{(cu)21/2}J
9)

is the scattering kernel.

)
(c+u)z_h=Lh




Boundary Conditions

x = 0in Eq. (7), to find (for & > 0)

f(0,8) — 1 (£)

h(0,€) = (11)

fo(€)
where f(0, &) is the Maxwellian distribution, given by Eq. (2), evaluated at x = 0
0 (€ —w)? }
f(0,¢) = ex| {— . 12
0.0 = 529~ 27, (12)
We then linearize (0, &) around £ (€) to obtain the dimensionless boundary condition
(for ¢ > 0)
h(0, ¢) = Ago + 2(c — u)(up — u) + [(c U2 - 1/2] ATy, (13)
_ —1/2 _ 00 — Px _TO_Too
Up = Vo(ZRToo) 9 AQO = —— and ATO = ———. (14 a, b, C)
Q0 Too

On the other hand, when x — oo, f(x, &) approaches f- (&) and, looking back Eq. (7),
we then find the condition

_lim _h(r,¢) = 0. (15)J




Quantities of Interest

In terms of the perturbation distribution h
@ density perturbation
No(r) = n—1/2 / e nir o)de,  (16)
@ velocity perturbation

Av(r) = ”_;/2 / - e (¢ wh(r,c)dc  (17)

@ temperature perturbation

AT(r) =712 / T (o [2(c — u)? — 1]h(r, c)dc. (18)

— 00
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A Reformulation

G(r,c) = e~ (= h(r, ¢) (19)

G Problem

caﬁa(r, ¢) + G(r,c) = n~ /2~ (c—v)? / K(c',c: u)G(r,c)dc’,  (20)
T —o0

Boundary Conditions

G(0,0) = { Aco +2(c - U)o — u) + [(e— u)2 —1/2] ATo} =9, 6> 0 (21)J

_lim_G(r,c) =0. (22)J

New definitions for Density, Temperature and Velocity Perturbations



A Discrete Ordinates Solution

G(r,¢) = d(v,c)e” /", (26)
If we substitute Eq. (26) into Eq. (20) we obtain

oo
(1 — c/v)b(v,¢) = n—1/2e—(c-u? / K(¢, ¢ : u)d(v, ¢')dc. 27)
normalization conditions: we integrate Eq. (27), over all c, to find
oo
/ cd(v, c)dc = 0. (28)
—o0
we can multiply Eq. (27) by (¢ — u) and integrate the resultant equation over all ¢ to find
oo
/ (v, c)dc = 0. (29)
we rewrite Eq. (27), as
oo
(1 = ¢/v)d(v,c) = =~ /2e~ =0 g(c : u)/ (v, ¢')dc, (30)
with
Q(c:u) =142 +2(c? + 12 —1/2)(v? — 1/2) — 4cl. (31)

we note that the exponential term, in Eq. (30)can be expressed as

e—(e=0? — = (+4)[senh(20u) + cosh(2cu)] (32)
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P(c:u)=n""%e , (34)
A(c: u) = [1 + 202 +2(c? + 17 — 1/2)(u? — 1/2)]cosh(2cu) — 4culsenh(2cu) (35)

and

B(c: u) = [1 + 2% +2(c® + u? — 1/2)(u? — 1/2)]senh(2cu) — 4cucosh(2cu). (36)
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oo
(1 —c¢/v)®(v,c) =¢(c: u)A(c: u)+ B(c: u)]/ [®(v, ') + d(v,—c')]dc’. (37)
0
Then we introduce a (half-range) quadrature scheme [0, co), to approximate the
integral term of the above equation, such that

N

(1 = ¢/v)o(v,0) = (c: U)A(c: u) + B(c: u)] Y wk [®(v, &) + S(v, —c)] . (38)
k=1

Here cx and wy are, respectively, the N nodes and weights of the (arbitrary) quadrature
scheme. If we now evaluate Eq. (38) in ¢ = +cj, fori = 1,..., N, and note that
¥(c : u) and A(c : u) are even functions,

W(c: u)=(—c: u), A(c:u)=A(—c:u), (39 a, b)
and B(c : u) is an odd function,
B(c:u)=—-B(—c: u), (40)
we obtain the discrete-ordinates version of the Eq. (37) as
N
(17 6i/v)®(v, £¢;) = (6 : U)[A(C = u) £ B(c; : u)] > wi [O(v, ¢) + D(v, —ck)].-

k=1
(41)
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We express now Eq. (41) in a matrix form, as
(I—=M/v)o, (v) = V[A+BJWo (v) + d_(v)] (42)

and
(I1+M/v) ®_(v) = W[A — B]|W[®, (v) + ®_(v)], (43)

where | is the N x N identity matrix, M, W, A, B and W are N x N matrices defined by

M =diag {ci,...,cn}, (44)
W = diag {¢(cy : U),...,p(cy : u)}, (49)
A = diag {A(c; : v),...,A(cy : U)}, (46)
B = diag {B(c; : u),...,B(cy : U)} (47)
and
Wi = [w], (48)

fori,j=1,...,N.
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Eigenvalue Problem

Continuing, here, & (v) are N x 1 vectors, such that

dL(v)=[ O, Ec) - S(nEay) |7, (49)
where T denote the transpose operation.
e now add and subtract Egs. (42) and (43) to find the equations
U- 1MV = 2WAWU and V- 1MU = 2WBWU, (50 a, b)
14 14
with
U=0d, (v)+d_(v) and V=0, (v)—o_(v). (51 a, b)

®_ (v) and ®_(v) are the vectors defined in Eq. (49). Substituting Eq. (50b) into
Eq. (50a) we find a quadratic eigenvalue problem

[IX% + 2M~TwBWA + 2M—2WAW — M—2]U = 0, (52)J

where the eigenvalues are given by

A=v1 )




Quadratic Eigenvalue Problem

Standard eigenvalue problem
0 | u u
[—G —F][AU}:)‘[AU]’ )

F=2M'WBW and G=2M2wAW-M 2 (54 a, b)

where

e Conservative problem:
the number of degenerate eigenvalues depends on the value of u (the downstream drift
velocity)

@ for u = 0, we find four degenerated eigenvalues, N — 2 positive and too N — 2
negative eigenvalues;

@ for u? < 3/2, we find three degenerated eigenvalues, N — 2 positive and N — 1
negative eigenvalues;

@ for u? = 3/2, we find four degenerated eigenvalues, N — 3 positive and N — 1
negative eigenvalues;

@ for u? > 3/2, we find three degenerated eigenvalues, N — 3 positive and N
negative eigenvalues.
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General Solution

general discrete ordinates solution of Eq. (20) in the form

2N—4
G(T, :I:C,') = AT Gy (:i:C,‘)—i—A; Gg(:l:C,‘)-}—Aék G3(:|:C,‘)+AZ G4(7’7 :I:C,')-i- Z AI'(D(I/]', :I:C,‘)eiT/”/
j=1
(58)
for u = 0 and v = 3/2, and

2N-3
G(7, £6) = A; Gi(£6) + A3 Go(£6) + A3 Ga(£6) + D, Ad(yj, £¢)e” /" (59)
j=1

for 0 < u? < 3/2 and u? > 3/2, where the introduced exact solutions are given by

Gi(c)=e Y, Gye)=(c—uwe W, Gy(c) = (c - ue W
(60 a, b, c)
and (only for u = 0 and u? = 3/2)
2

Gu(r,¢) = ( — ¢)Q(c : u)e—(c=¥) (61)
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N—-2

G(r, £c) = > Ad(y), +6)e~ /i (62)
Jj=1
and for u? > 3/2
N-3
G(r, £6) = > Ad(v, £c)e /", (63)

j=1
where, here, v; are the positive separations constants. In addition, the
discrete-ordinates version of the interface boundary condition, Eq. (21), is

G(0, ¢) = { Ao +2(c — u)(up — u) + [(e — ) — 1/2] ATo}e~(@0", (64

fori=1,...,N.
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N—2
DAy, c)—Deoe™ = —[(¢i—u)P—1/2]AToe™ (@ ° = 2(c;—u)(up—u)e~ (@Y
=

(65)

fori=1,...,N.

If we substitute Eq. (63) into Eq. (64), we obtain for 1> > 3/2 the rectangular linear
system N x N — 1

N-3
> A0 (), 6)—Aeoe ™I —[(6—u)?—1/2]AToe™ (0~ = 2(g—u)(up—u)e~ (G,
j=1

(66)
fori=1,...,N.

o Existence condition
¢ Once we solve Egs. (65) we find the coefficients A; and the quantities Agp and ATy
defined in Egs. (14b) and (14c).
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Quantities of Interest

Thus, we substitute Eq. (62) into Egs. (23) to (25) and we use the normalization
conditions given by Egs. (28) and (29) to express the final form of the density

perturbation
N-2 N
Do(r) =m 12" ATy wild(v, ¢) + P(v), —ci)], (67)
j=1 k=1

velocity and temperature perturbations, respectively,

Av(r) = —Ao(r) and AT(r) = (2u2—1)Ao(r). (68 a, b)
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Nonlinear Aspects

BGK model

€ 1(x,€) = lo(x, ) — x,)], (1)

where f(x, ) is the distribution function, ¢ is the molecular
velocity in the x direction, 7 is an appropriate collision
frequency, ¢(x,¢) is a local Maxwell distribution,

o o(x) [E-v0P
(x,§) = \/WT(X)GXP{ T2RT(x) } 7 (2)

and R is the specific gas constant.
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PP procedure

@ “post-processing (PP)” procedure. we consider the
proposed nonlinear model, given by Eq. (1) to(5), with
boundary conditions defined in Egs. (6) and (12), rewritten
in terms of the dimensionless variables given in Egs. (10).

@ We then use the quantities evaluated by the ADO method,
Egs. (67) and (68), into Eq. (2), which defines the
Maxwellian distribution.

@ Continuing, we substitute this distribution in the right-hand
side of Eq. (1), which is then solved for a known
distribution ¢(x, ).

@ The solution defines the original f distribution, which is
then used to evaluated again Egs. (3) to (5) — the
macroscopic quantities for the gas.



Computational Procedures

o first step is to define the quadrature scheme (N quadrature
points ¢, and the weights wy)

@ the solution of an eigenvalue problem, Eq. (53), to obtain
the separation constants v; and the elementary solutions
¢:|:(l/j);

@ the solution of a linear system, given by Eq. (65);

@ the evaluation of the density, velocity and temperature
perturbations, Egs. (67) and (68). Still, from the solution of
Eq. (65) we are able to get the quantities Agg and ATy,
Egs. (14b) and (14c).

@ The quantities listed above are then used, in what we
called “post-processing” procedure, in Egs. (1) to (5).

@ New definitions for quadrature schemes



Numerical Results

@ FORTRAN program, using, in general, N = 80 quadrature
points.

@ The computational time required for generating all
quantities of interest for one value of u is less than one
second in a Pentium IV (2.66GHz, 1.5GB RAM).

@ If we increase N up to N = 200, all digits listed in the
tables are preserved (plus or minus one in the last digit):
6-7 (L) and 5 (PP).

@ Checking with results available in the literature, for the

linearized problem, for oo, /00 and T,/ Tyo. We obtained
agreement with all digits (4) listed in that reference.



Ratios

ninf/n@
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In general

e Strong Evaporation Problem: Profiles x Ratios
¢ Unified solutions for kinetic model equations: concise,
accurate and fast
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General analysis
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General analysis
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- |b: accommodation coeficient of
 fthe tangential momentum = 0 5

¢:accommodation coeffcient of
the tangential momentum = 0.8

temperature jump coefficient
o
1

LRSS LARAN LESA) AR RARS RASRS AL RAALY
00 01 02 03 04 05 06 07 08 09 10

accommodation coefficiant ofthe energy

Figure 2: Temperature jump coefficient, N = 40
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Main results

@ Unified “analytical” solutions
@ Concise, accurate, fast
@ Mixtures: parameter analysis
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Multidimensional Problems

@ RGD: initial results

@ NE: codes: iterative procedures, negative fluxes
(corrections)

CCIS 2010



] ] ]
58 59 60
mi A 51l A sal A 55

&n
1]
-
5
-
> 2

46 48 50 52 54
n n
4 42 43 44 45
& A H A ME A N A BH A ON
3 i3 35 37 39
Yieu: —1 n n n
26 27 28 29 30
Y @ AVTH A YH A 2H A BH A 5N
16 18 20 22 24
Yie = ] n
1 12 13 14 15
A 2 A1 A 6 A B A 10
1 3 5 7 9
. . »
X

/ Xjuriz i Xis

0 @ Known boundary flux
“m .
H Calculated flux at cell interface

A Calculated flux at cell center

CCIS 2010



Wacuum
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Nodal Schemes

e Closed Form Solutions

e Decoupled Problems (Lower order linear systems)
e Very Fast Solution

¢ No iterations
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Tabela: Scalar flux ¢(x), x=0.5

os Tsai & Loyalka TWOTRAN-II This work
N=5,7,9,11,15 N=4,8,16 N=24,6,8,12,16
0.359604 0.337412 0.313
0.358422 0.337707 0.335
0.50 0.357414 0.339794 0.337
0.356678 0.338
0.355885 0.340
0.341
0.258802 0.239483 0.221
0.259150 0.241676 0.231
0.10 0.259131 0.244032 0.232
0.259030 0.233
0.258906 0.234
0.235
0.250097 0.231102 0.213
0.250569 0.233421 0.222
0.05 0.250636 0.235787 0.223
0.250591 0.224
0.250529 0.225
0.226
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Concluding Comments

@ Several Applications
Computationally efficient codes
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