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An Overview

Making discoveries in VO: how and where?
Exploration of parameter spaces: a generic VO science case
— Discovery of rare types of objects (QSOs, BDs, peculiar objects...)
Clustering analysis: general issues

— Automated and objective object classification

— Star-galaxy separation

<> Especially in synoptic sky surveys

— Scalability of clustering algorithms
Statistics for data exploration

— The VOStat package

— Correlation searches and multivariate statistics

Visualization!

Some useful websites and resources

How and Where are Discoveries Made?

* Conceptual Discoveries: e.g., Relativity, QM, Strings/Branes,
Inflation ... Theoretical, may be inspired by observations

* Phenomenological Discoveries: e.g., Dark Matter, QSOs, GRBs,
CMBR, Extrasolar Planets, Obscured Universe ...

Empirical, inspire theories, can be motivated by them

New Technical I:> Observational <:> Theory
IT/VO

Capabilities Discoveries (VO)

Phenomenological Discoveries:

* Pushing along some parameter space axis <mmm VO useful

* Making new connections (e.g., multi-A) <= VO critical!

* Finding rare instances of new phenomena 4= VO very useful

Understanding of complex astrophysical phenomena requires
complex, information-rich data (and simulations?)

VO Science: Some General Features

Data fusion tends to reveal new knowledge, connections

Massive data sets naturally lead to statistical approaches

— Data mining algorithms are often just algorithmic expressions of
proper statistics

— Large data sets can enable discovery of rare (new?) instances
Almost always the problem is reduced to data exploration in
some parameter space of source attributes

— Data mining in image domain is possible - but in most cases one
ends up with some kind of image segmentation (e.g., object
detection) and parametrization, so the problem reduces to the
catalog domain

Good visualization has to be a key part of the data mining
process - it connects the data with our intuition, understanding

— Effective hyper-dimensional visualization is a huge problem




Exploration of Parameter Spaces

* In most surveys, image/pixel data are reduced to catalogs,
using some kind of a processing pipeline, which detects
sources and measures their attributes/parameters on the basis
of position, flux, and light distribution

— Nowadays typically we measure up to a few hundred parameters
per source per survey

— Typically we detect ~ 108 - 10° sources per survey
— Data federation from different surveys increases these numbers
» Data are then vectors in parameter spaces of hundreds of
dimensions

* They generally do not populate this space uniformly, but
define clusters and correlations

» Their description and analysis leads to scientific discoveries,
and is also useful for quality control purposes

Parameter Spaces: Clustering Analysis

A Generic Machine-Assisted Discovery Problem:

. .
How many different types of Data Mapping and a Search for Outliers

objects are there?

*  Which ones are identifiable with A "
known, physically distinct types A
(e.g., stars, galaxies, quasars at
different redshifts, etc.)?

* Are there rare and/or previously
unknown classes, seen as outliers
or distinct classes?

» Are there intermediate or transition
types?

» Are there gaps (negative clusters)?

* Anomalies possibly indicative of
problems with the data?

An Example: Discoveries of High-Redshift
Quasars and Type-2 Quasars in DPOSS
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log Prob. Den. w

An Improved Star-QSO Classifier

(Nichol, Connolly, et al. 2001)

Evaluate the probability density functions for known stars and known
QSOs in the SDSS ugriz 4-D color space, using a multi-Gaussian mixture
model; use it to evaluate likelihood that a given object is a star or a QSO.
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log Prob. Den. w/ stars centers
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log Prob. Den. w/ quasars centers

Clustering and Classification

 This is a generic problem for VO analysis in the catalog domain
* Many (many!) statistical and machine-learning methods exist
= Make friends among the statisticians and computer scientists!

* Generally, this is a very non-trivial task, especially with noisy,
missing, or heterogeneous data

» The goal is to associate a probability for each data pomt belonging
to any given cluster or class

* In other words, one seeks an
optimal (in some statistical
sense) multi-component
probability density distribution
which describes the data - and
its functional form may be
unknown or undefined




Clustering analysis or automated classification is a key task Simple Clustering Analysis:

for VO science. There are many good tools out there, but Gaussian Mixture Modeling
most need to be developed further for our needs (mainly Data points are distributed in some N-dimensional parameter space,

the scalability issues). x,j=1 .N
s s

* There are k clusters, w; ,
i=1, ..., k, where the
number of clusters, £,

n—F
53 Inference _LP(E,IE,) Joint DE, Bayes Net Structure Learning
c—*Engine Learn

p

I

L Predict Dec Tree, Sigmoid Perceptron, Sigmoid N.Net, be eith . b

2| Classifier [>cytaqony, | GaUSS/Joint BC, Gauss Naive BC, N.Neigh, Bayes may be cither given by

c—* Category | Net Based BC, Cascade Correlation the scientist, or derived

from the data themselves

%3 Density Prob- | Joint DE, Naive DE, Gauss/Joint DE, Gauss Naive

2_3 Estimator | ability | DE, Bayes Net Structure Learning, GMMs o Each cluster can be

2 Linear Regression, Polynomial Regression modeled as an V-variate

5 Predict 1 ' . . . . -

g real no. | Perceptron, Neural Net, N.Neigh, Kernel, LWR, Gaussian with mean u,; and covariance matrix S; (NB: in the real

S RBFs, Robust Regression, Cascade Correlation, life, things are seldom Gaussian...)

Regression Trees, GMDH, Multilinear Interp, MARS + Each data point has an association probability of belonging to
(from Moore 2002) each of the clusters, P;
An E 1 Original S A Popular Technique:
n Lxamplc e K-Means

(from Moore et al.) e e

Start with k random cluster centers
Assume a data model (e.g., Gaussian)
— In principle, it can be some other
type of a distribution
Iterate until it converges
— There are many techniques;
Expectation Maximization (EM)
is very popular; multi-resolution
kd-trees are great (Moore, Nichol,
Connolly, et al.)
Repeat for a different k if needed
¢ Determine the optimal k :
— Monte-Carlo Cross-Validation
— Akaike Information Criterion (AIC)
— Bayesian Information Criterion (BIC)

GMM result




In VO data sets: D, >>1,Ds>>1
Data Complexity = Multidimensionality = Discoveries
But the bad news is ...
The computational cost of clustering analysis:

K-means: KxNxIxD
Expectation Maximisation: K x N x I x D?
Monte Carlo Cross-Validation: M x K, 2 x N x I x D2

N = no. of data vectors, D = no. of data dimensions
K = no. of clusters chosen, K, ,, = max no. of clusters tried
I = no. of iterations, M = no. of Monte Carlo trials/partitions

=) Terascale (Petascale?) computing and/or better algorithms

Some dimensionality reduction methods do exist (e.g., PCA, class
prototypes, hierarchical methods, etc.), but more work is needed

Probably the best (fastest) GMM techniques to date:
Multi-resolution kd-tree (mrkd) implementation of the EM
method by Moore, Nichol, Connolly, et al. (PICA group)
(see, e.g., astro-ph/0012333, 0007404, 0008187)

Voronoi Foam Model Random data realization mrkd (EM+AIC) restored

Examples of Challenges for Clustering Analysis from
“Standard” Astronomical Clustering/LSS Analysis:

Clusterlng ona clustered background Clustering with a nontrivial topology

DPOSS Clusters (Gal et al.) LSS Numerical Simulation (VIRGO)

Then: Selection effects, missing data, non-Gaussianity...

Exploration of Parameter Spaces in the
Catalog Domain (Source Attributes)

* Clustering Analysis (supervised and unsupervised):
— How many different types of objects are there?
— Are there any rare or new types, outliers?

* Multivariate Correlation Search:

— Are there significant, nontrivial correlations present
in the data?

Clusters vs. Correlations: ‘
Astrophysics = Correlations /

Correlations = reduction of
the statistical dimensionality




Correlation Searches in Attribute Space

Galaxy Parameter Space

Most galaxy properties are
connected by bivariate (D =2)
scaling relations ina D = 3
parameter space of
independent observables or
physical properties (e.g.,
measures of “size”, “density”,
and “temperature”).
Projections onto the individual
coordinate planes produce
correlations with a large
intrinsic scatter = loss of
information.
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However, some properties do not participate in these correlations,
retaining a high D no correlations = no physical insight.

Useful vs. “Useless” Parameters:

Clusters (classes) and correlations may exist/separate in some
parameter subspaces, but not in others - the trick is to find which
ones ...
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Principal Component Analysis

An essential dimensionality reduction tool
Solving the eigen-problem of the data hyperellipsoid
in the parameter space of measured attributes

P3

g, p ;= observables
. (@ ='1, ... D)

3 §, = eigenvectors, or
principal axes of the
data hyperellipsoid

g, e;= eigenvalues, or
amplitudes of &

(j=1,..Dy)
pZ tat

P




Correlation Vector Diagrams:
Projections of the data and observable axes onto
the planes defined by the eigenvectors

€y, The natural coordinate system
P given by the data themselves
0, Ei=ajp +app,+..
Ny P2 p.,=b,E,+b,E,+...
> &,

cos 0,, = correlation coef. of p ;and p,

An Example, Using VOStat

Here is a data file, with 6 observed and 5 derived quantities (columns)
for a few hundred elliptical galaxies (rows, data vectors):

# Ellipticals from the Djorgovski et al. survey
#

logRe M_e mu_e sigma Mg2 M/L  logM rhoM rho_ L f_eff ell GalID
#

3.863 -22.35 19.70 2.479 0.336 8.98 11.36 -0.847 -1.546 -0.205 .06 1016
3.442 -20.64 19.01 2.310 0.316 8.78 10.61 -0.344 -0.970 0.806 .29 1052
3.943 -22.46 19.78 2.468 ©0.325 8.90 11.42 -1.030 -1.742 -0.354 .23 1060
3.282 -19.65 19.38 2.299 0.246 9.07 10.42 -0.045 -0.883 1.137 .17 1172
3.509 -20.53 19.53 2.315 0.297 8.93 10.68 -0.467 -1.214 0.667 .24 1199
3.457 -20.55 19.29 2.322 0.297 8.90 10.64 -0.349 -1.050 0.764 .22 1199
3.463 -20.75 18.55 2.412 0.305 8.78 10.83 -0.181 -0.988 0.662 .54 1209
3.066 -18.60 19.16 2.207 0.301 9.01 10.02 0.204 -0.655 1.661 .29 1339
3.132 -18.66 19.36 2.158 0.282 8.93 9.99 -0.027 -0.831 1.578 .34 1351
3.141 -18.99 19.43 2.273 0.310 9.18 10.23 0.185 -0.726 1.445 .09 1374
3.477 -19.41 20.78 2.125 0.257 9.08 10.27 -0.784 -1.565 0.921 .01 1379
3.526 -21.02 19.22 2.396 0.313 8.95 10.8 -0.339 -1.069 @.552 .18 1395
3.257 -20.29 18.71 2.491 0.334 9.21 10.78 ©.389 -0.552 0.995 .09 1399
3.265 -20.06 18.57 2.213 0.279 8.59 10.23 -0.184 -0.670 1.257 .37 1403
3.180 -20.16 18.42 2.353 0.317 8.89 10.43 0.266 -0.376 1.287 .12 1404
3.552 -20.97 19.42 2.438 0.327 9.09 10.97 -0.307 -1.167 0.458 .16 1407

Pairwise Plots for Independent Observables
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Their Correlation Matrix:

logRe Me mue sigma Mg2 ell

logRe 1.00 -0.90 0.73 0.53 0.41 0.03

Me -0.90 1.00 -0.38 -0.74 -0.54 0.03
mue 0.73 -0.38 1.00 -0.01 0.04 -0.13
sigma 0.53 -0.74 -0.01 1.00 0.78 -0.01
Mg2 0.41 -0.54 0.04 0.79 1.00 0.00
ell 0.03 0.03 -0.13 -0.01 0.00 1.00

You can learn a lot just from the inspection of this matrix,
and comparison with the pairwise (bivariate) plots ...




Now Let’s Do the Principal Component
Analysis (PCA):

Principal Component Analysis(m) for logRe M _e mu_e sigma Mg2 :

Importance of components:

PCl PC2 PC3 PCA4 PCS
Standard deviation 1.4 0.8 0.090 4e-02 2e-02
Proportion of Variance 0.8 0.2 0.003 6e-04 2e-04
Cumulative Proportion 0.8 1.0 0.999 le-00 1le+00

5 independent observables, but only 2 significant dimensions:
the first 2 components account for all of the sample variance!
The data sit on a plane in a 5-dim. parameter space: this is the
Fundamental Plane of elliptical galaxies. Any one variable can
be expressed as a combination of any 2 others, within errors.

PCA Results in More Detail

(This from a slightly different data set ...)

Eigenvalues As Percentages Cumul. Percentages
3.1359 62.7189 62.7189
1.3574 27.1482 89.8671
0.3883 7.7670 97.6341
0.1110 2.2199 99.8540
0.0073 0.1460 100.0000

Eigenvectors and projections of parameter axes:
VBLE. EV-1 EV-2 EV-3 EV-4 EV-5

logRe -0.5119 0.3443 0.1649 0.1563 @.7535
M_e 0.5291 -0.0310 -0.5158 -0.3689 0.5630
<mu>e -0.2764 0.6991 -0.4679 -0.3181 -0.3388
sigma -0.4614 -0.4399 0.1187 -0.7610 0.0194
Mg2 -0.4108 -0.4453 -0.6883 ©0.3989 -0.0077

Now Project the Observable Axes Onto the
Plane Defined by the Principal Eigenvectors:
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Compare with the
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mediocre mediocre “ bestit i
correlation 7 correlation R est-fit line
’/
/.
7
’ "} AZ residual
X

. ... but the residuals
poor correlation!

Y AZ correlate with the
3rd variable!

‘ / => The data are
on a plane in

the XYZ space




VOStat: Interactive Statistics Package
for VO Applications

http://vostat.org

VOStat -
S'qﬂdlc;:l ‘Analysis for the Virtual Qbsérvctow' :

m| ) = g Q

Test List Help ViewFile MewData VO Plot

UPLOAD FILE/URL SELECT CATEGORY
File Type: <ASCIl <VOTABLE Descriptive Statistical Exploratory
Statistics Tests Tools

Type in a URL:
|http://astrostatistics.psu.edu/VOStatBetal /Sample.

Multivariate Multivariate ~ Curve
Analysis Classification Fitting

OR Choose a file: Non Two and
| Browse... Celg:?;ed Parametric k-sample
Methods Tests
Regression

Load Table or Filel

Automated Classification Techniques

* Implementation of clustering algorithms in a machine-
learning (ML) or Al setting
— Examples: star-galaxy separation, automated galaxy
morphology classification, stellar or galaxy spectral types,
etc., etc.
* Supervised classifiers: a set of learning examples is
provided; the number of possible classes is known
— Examples: Artificial Neural Nets (ANN), Decision Trees
(DT), Support Vector Machines (SVM)...
» Unsupervised classifiers: the program decides how
many classes are needed to account for the diversity of
the data, and classifies on the basis of the data

A Relatively Simple Classification Problem:
Star-Galaxy Separation

» Important, since for most astronomical studies you want either stars
(~ quasars), or galaxies; the depth to which a reliable classification
can be done is the effective limiting depth of your catalog - not the
detection depth

— There is generally more to measure for a non-PSF object

* You’d like to have an automated and objective process, with some
estimate of the accuracy as a f(mag)

— Generally classification fails at the faint end

* Most methods use some measures of light concentration vs.
magnitude (perhaps more than one), and/or some measure of the
PSF fit quality (e.g., x?)

» For more advanced approaches, use some machine learning
method, e.g., neural nets or decision trees

Typical Parameter Space for S/G Classif.
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A set of such parameters can be fed into an automated classifier
(ANN, DT, ...) which can be trained with a “ground truth” sample




Star/Galaxy Classification Parameter
Spaces: Normalized By The Stellar Locus
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Then a set of such parameters can be fed into an automated classifier
(ANN, DT, ...) which can be trained with a “ground truth” sample

1

Automated Star-Galaxy Classification:
Artificial Neural Nets (ANN)

Input First Second Third (output)
Vector Layer Layer Layer
Output:
Input:

. Star, p(s
various - P(s)
image
shape

parameters. & Galaxy. p(s)

Other, p(o)

FIG. 6. Schematic illustration of a network with an input vector of length
five, four nodes in the first layer, two nodes in the second layer, and three
in the output layer. As a shorthand, such a network can be written as

(5:4.2.3). (Odewahn et al. 1992)

Automated Star-Galaxy Classification:
Decision Trees (DTs)

log(Area) <= A,

false

true

(mag < m) and (ir] <1i)

star

FiG. 2. A portion of a much larger actual decision tree generated by the
O-Btree algorithm for performing star/galaxy classification. The interval ap-
pearing above each node indicates the range in value of the attribute speci-
fied in the node above that an object must meet for it to pass along that
branch. The dark branches lead to actual classifications. The number in
P within each leaf indicates the number of training examples clas-
sified correctly at that node.

star galaxy

FIG. 1. In this sample decision tree, one starts at the top node(root), follow-
ing the appropriate path to a final leaf (class) based upon the truth of the

assertion at each node. (Weir et al. 1995)

Automated Star-Galaxy Classification:
Unsupervised Classifiers

No training data set - the program decides on the number of classes
present in the data, and partitions the data set accordingly.

An example:
AutoClass
(Cheeseman et al.)
Uses Bayesian
approach in
machine
learning (ML).

. . - & Star

- . - . Star+fuzz
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- This application
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. Gal2 (Sp?) (Weir et al. 1995)




Star-Galaxy Classification:
The Next Generation

Multiple imaging data sets Dataset

dependent

Individually constraints
derived

classifications l
C,C;,... ~

Optimal
Classification

Optimally combined imagery

Clas31ﬁcat10n
(&)

Context

dependent
constraints

One key
external
constraint

is the o
“seeing”

quality for

multiple
imaging
passes

(quantifiable
e.g., as the ‘e
PSF FWHM)

Mediocre seeing

How to Incorporate the External or A
Priori (Contextual) Knowledge?

Examples: seeing and transparency for a given night; direction
on the sky, in Galactic coordinates; continuity in the
star/galaxy fraction along the scan; etc.

Still an open problem in the machine learning

In principle, it should lead to an improved classification

The problem occurs both in a “single pass” classification, and
in combining of multiple passes

In machine learning approaches, must somehow convert the
external or a priori knowledge into classifier inputs - but the
nature of this information is qualitatively different from the
usual input (individual measurement vectors)

Two Approaches Using ANN:

1. Include the external
knowledge among the

input parameters

Object dependent parameters: { —
coordinates, | —»
seeing, etc.

Dataset dependent

Image

Parameters { —

Py v PR}

External

2. A two-step classification:

Image

—
Parameters { —>
—>

{p11 Ty pn}

Output S

Output S
NN — (stellarity

index)

NN 1

External { —_

parameters

NN2 |, Output S,




Classification Bias and Accuracy Combining Multiple Classifications

Good seeing Metaclassifier, or a committee of machines with a chairman?

A !
P(S) N\ /1
1 — .
Pre—i> 1 {pts —3 NN1—>S1—> z::;alut
i Stars Measured ou'p
! attributes and {ed ] Joint
i ! lassif.
Bad seeing / classifications ° ¢
_ o : , from individual . MC —> (S)
Galaxies / 1 Stellarlty (independent)
— +—» index S passes {p}, —3 NN, LS, —»
0 (pure galaxy) Classification 1 (pure star) (€}, .
boundary
Assuming a classification boundary divider (stars/galaxies) derived from Note: individual classifiers ¥ :
good quality data, and applying it to poorer quality data, would lead to a may be optimized or trained Design?
purer, but biased sample, as some stars will be misclassified as galaxies. differently Weighting algorithm?
Shifting the boundary (e.g., on the basis of external knowledge) would Tral_nlng data set?
diminish the bias, but also degrade the purity. Validation data set?

Visualization: An Essential Need TopCat Examples

Visualization is the bridge from the 5:“ S ——— EEEBOCE = EEICE @t TOPCAT
data (and data mining results) to the | e —
human intuition and understanding
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data mining and exploration process

Many good packages exist, but they
generally do not scale well to huge |-
numbers of data points, and to a high |*" |
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Some popular and useful VO options include:

— TopCat: http://www.star.bristol.ac.uk/~mbt/topcat/
— VisiVO: http://visivo.cineca.it/ (see also astro-ph/0707.2474)
— Mirage: http://cm.bell-labs.com/who/tkh/mirage/

— PartiView: http://virdir.ncsa.uiuc.edu/partiview/
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Dealing With Hyper-Dimensionality

A key problem is visualization of hyper-dimensional (D >> 3)
data sets, without a loss of information

We are biologically and evolutionary geared to perceive visual
signals in 2-D and 3-D; yet, interesting structures and
information may be present in the data in highly-dimensional
structures which cannot be projected to 2-D or 3-D spaces

— We may need to deploy machine intelligence to help us discover,

analyze and understand such structures

This is closely related to the problem of dimensionality
reduction in data mining

Unfortunately, essentially all R&D on visualization now seems
to be oriented towards 3-D, driven by the commercial apps.

This suggests a potentially very important research program

Parallel Coordinates

* One technique to visualize
hyper-dimensional data sets

* Each dimension corresponds
to an axis, and the N axes are
organized as uniformly
spaced vertical lines

* A data element in N-dim.
space manifests itself as a
connected set of points, one
on each axis. Points lying on
a common line or plane
create readily perceived
structures in the image

* Not the greatest method - but it may help in some situations

MPG

Some Useful Websites

In addition to those already cited, start with:
http://lwww.astro.caltech.edu/~georgel/dposs/kdd-links.html
Links on surveys, VO, statistics, etc., at:
http://lwww.astro.caltech.edu/~georgelayl22/

... and follow the links from there




