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An Overview

• Making discoveries in VO:  how and where?

• Exploration of parameter spaces: a generic VO science case

– Discovery of rare types of objects (QSOs, BDs, peculiar objects…)

• Clustering analysis: general issues

– Automated and objective object classification

– Star-galaxy separation

! Especially in synoptic sky surveys

– Scalability of clustering algorithms

• Statistics for data exploration

– The VOStat package

– Correlation searches and multivariate statistics

• Visualization!

• Some useful websites and resources

How and Where are Discoveries Made?
• Conceptual Discoveries:  e.g., Relativity, QM, Strings/Branes,

Inflation … Theoretical, may be inspired by observations

• Phenomenological Discoveries:  e.g., Dark Matter, QSOs, GRBs,

CMBR, Extrasolar Planets, Obscured Universe …

    Empirical, inspire theories, can be motivated by them

New Technical
Capabilities

Observational
Discoveries

Theory

IT/VO (VO)

Phenomenological Discoveries:

•  Pushing along some parameter space axis           VO useful

•  Making new connections  (e.g., multi-!)             VO critical!

•  Finding rare instances of new phenomena           VO very useful

Understanding of complex astrophysical phenomena requires

complex, information-rich data (and simulations?)

VO Science: Some General Features

• Data fusion tends to reveal new knowledge, connections

• Massive data sets naturally lead to statistical approaches

– Data mining algorithms are often just algorithmic expressions of

proper statistics

– Large data sets can enable discovery of rare (new?) instances

• Almost always the problem is reduced to data exploration in

some parameter space of source attributes

– Data mining in image domain is possible - but in most cases one

ends up with some kind of image segmentation (e.g., object

detection) and parametrization, so the problem reduces to the

catalog domain

• Good visualization has to be a key part of the data mining

process - it connects the data with our intuition, understanding

– Effective hyper-dimensional visualization is a huge problem



Exploration of Parameter Spaces

• In most surveys, image/pixel data are reduced to catalogs,

using some kind of a processing pipeline, which detects

sources and measures their attributes/parameters on the basis

of position, flux, and light distribution

– Nowadays typically we measure up to a few hundred parameters
per source per survey

– Typically we detect ~ 108 - 109 sources per survey

– Data federation from different surveys increases these numbers

• Data are then vectors in parameter spaces of hundreds of

dimensions

• They generally do not populate this space uniformly, but

define clusters and correlations

• Their description and analysis leads to scientific discoveries,

and is also useful for quality control purposes

Parameter Spaces: Clustering Analysis

• How many different types of

objects are there?

• Which ones are identifiable with

known, physically distinct types

(e.g., stars, galaxies, quasars at

different redshifts, etc.)?

• Are there rare and/or previously

unknown classes, seen as outliers

or distinct classes?

• Are there intermediate or transition

types?

• Are there gaps (negative clusters)?

• Anomalies possibly indicative of

problems with the data?

An Example: Discoveries of High-Redshift

Quasars and Type-2 Quasars in DPOSS

High-z QSO

Type-2 QSO

But Sometimes You Find a Surprise…



Spectra of Peculiar

Lo-BAL (Fe) QSOs

Discovered in DPOSS

(also FIRST, SDSS):

No longer a mystery,

but a rare subspecies

More Peculiar Objects From SDSS

DQ White Dwarf Highly peculiar CV

(Fan et al.)

An Improved Star-QSO Classifier

Stars QSOs

Evaluate the probability density functions for known stars and known

QSOs in the SDSS ugriz 4-D color space, using a multi-Gaussian mixture

model; use it to evaluate likelihood that a given object is a star or a QSO.

(Nichol, Connolly, et al. 2001)

Clustering and Classification
• This is a generic problem for VO analysis in the catalog domain

• Many (many!) statistical and machine-learning methods exist

"   Make friends among the statisticians and computer scientists!

• Generally, this is a very non-trivial task, especially with noisy,

missing, or heterogeneous data

• The goal is to associate a probability for each data point belonging

to any given cluster or class

• In other words, one seeks an

optimal (in some statistical

sense) multi-component

probability density distribution

which describes the data - and

its functional form may be

unknown or undefined



Clustering analysis or automated classification is a key task

for VO science.  There are many good tools out there, but

most need to be developed further for our needs (mainly

the scalability issues).

In
p
u
ts

Classifier
Predict

category

In
p
u
ts Density

Estimator

Prob-
ability

In
p
u
ts

Regressor
Predict
real no.

Dec Tree, Sigmoid Perceptron, Sigmoid N.Net,
Gauss/Joint BC, Gauss Naïve BC, N.Neigh, Bayes
Net Based BC, Cascade Correlation

Joint DE, Naïve DE, Gauss/Joint DE, Gauss Naïve
DE, Bayes Net Structure Learning, GMMs

Linear Regression, Polynomial Regression,
Perceptron, Neural Net, N.Neigh, Kernel, LWR,
RBFs, Robust Regression, Cascade Correlation,
Regression Trees, GMDH, Multilinear Interp, MARS

In
p
u
ts Inference

Engine Learn
P(E1|E2)

Joint DE, Bayes Net Structure Learning

(from Moore 2002)

Simple Clustering Analysis:

Gaussian Mixture Modeling

µ1 µ2

µ3

• There are k clusters, wi ,

i = 1, …, k, where the

number of clusters, k,

may be either given by

the scientist, or derived

from the data themselves

• Each cluster can be

modeled as an N-variate

Data points are distributed in some N-dimensional parameter space,

     xj ,  j = 1, … N

•    Each data point has an association probability of belonging to

      each of the clusters, Pi

Gaussian with mean µi and covariance matrix Si  (NB: in the real

life, things are seldom Gaussian…)

An Example
(from Moore et al.)

GMM result

Original

Model density distribution  "

A Popular Technique:
K-Means

•  Start with k random cluster centers

•  Assume a data model (e.g., Gaussian)
–  In principle, it can be some other
.   type of a distribution

•  Iterate until it converges

–  There are many techniques;    .

.   Expectation Maximization (EM)

.   is very popular; multi-resolution

.   kd-trees are great (Moore, Nichol,

.   Connolly, et al.)

•  Repeat for a different k if needed

•  Determine the optimal k :

–  Monte-Carlo Cross-Validation

–  Akaike Information Criterion (AIC)

–  Bayesian Information Criterion (BIC)
(Moore et al.)



In VO data sets:  DD >> 1, DS >> 1

Data Complexity " Multidimensionality " Discoveries

But the bad news is …

The computational cost of clustering analysis:

Some dimensionality reduction methods do exist (e.g., PCA, class
prototypes, hierarchical methods, etc.), but more work is needed

Terascale (Petascale?) computing and/or better algorithms

K-means:   K # N # I # D

Expectation Maximisation:   K # N # I # D2

Monte Carlo Cross-Validation:  M # Kmax
2 # N # I # D2

N =  no. of data vectors, D =  no. of data dimensions

K =  no. of clusters chosen, Kmax =  max no. of clusters tried

I =  no. of iterations, M =  no. of Monte Carlo trials/partitions

Voronoi Foam Model Random data realization mrkd (EM+AIC) restored

Probably the best (fastest) GMM techniques to date:

Multi-resolution kd-tree (mrkd) implementation of the EM

method by Moore, Nichol, Connolly, et al. (PICA group)

(see, e.g., astro-ph/0012333, 0007404, 0008187)

Examples of Challenges for Clustering Analysis from

“Standard” Astronomical Clustering/LSS Analysis:

DPOSS Clusters (Gal et al.) LSS Numerical Simulation (VIRGO)

Clustering on a clustered background Clustering with a nontrivial topology

Then:  Selection effects, missing data, non-Gaussianity…

Exploration of Parameter Spaces in the
Catalog Domain (Source Attributes)

• Clustering Analysis (supervised and unsupervised):

– How many different types of objects are there?

– Are there any rare or new types, outliers?

• Multivariate Correlation Search:

– Are there significant, nontrivial correlations present
in the data?

Clusters vs. Correlations:

Astrophysics " Correlations

Correlations " reduction of
the statistical dimensionality



Correlation Searches in Attribute Space

xi

xj xk
f 

(x
i, 

x
j, 

…
)

Data dimension DD = 2

Statistical dim.  DS = 2

DD = 2

DS = 1

If DS < DD,

correlations

are present

A real-life example:

“Fundamental Plane” of
elliptical galaxies, a set of
bivariate scaling relations in
a parameter space of ~ 10
dimensions, containing
valuable insights into their
physics and evolution

Correlations are clusters

with dimensionality

reduction

Galaxy Parameter Space

Most galaxy properties are

connected by bivariate (Ds=2)

scaling relations in a Dp ! 3

parameter space of

independent observables or

physical properties (e.g.,

measures of “size”, “density”,

and “temperature”).

Projections onto the individual

coordinate planes produce

correlations with a large

intrinsic scatter " loss of

information.

However, some properties do not participate in these correlations,

retaining a high Ds:  no correlations " no physical insight.

Useful vs. “Useless” Parameters:
Clusters (classes) and correlations may exist/separate in some
parameter subspaces, but not in others - the trick is to find which
ones …

xi

xj

xn

xm

Principal Component Analysis
An essential dimensionality reduction tool

Solving the eigen-problem of the data hyperellipsoid

in the parameter space of measured attributes

p1

p2

p3
$1

$2

$3

p i = observables

    (i = 1, …Ddata)

$ j = eigenvectors, or

principal axes of the

data hyperellipsoid

e j = eigenvalues, or

amplitudes of $ j

     ( j = 1, …Dstat )



Correlation Vector Diagrams:
Projections of the data and observable axes onto

the planes defined by the eigenvectors

$ 1

$ 2
p 1

p 2
%12
)

$ i = a i1 p 1 + a i2 p 2 + …

p i = b i1 $ 1 + b i2 $ 2 + …

cos %12 = correlation coef. of  p 1 and  p 2

The natural coordinate system

given by the data themselves

An Example, Using VOStat

Here is a data file, with 6 observed and 5 derived quantities (columns)

for a few hundred elliptical galaxies (rows, data vectors):

Pairwise Plots for Independent Observables Their Correlation Matrix:

You can learn a lot just from the inspection of this matrix,

and comparison with the pairwise (bivariate) plots …



Now Let’s Do the Principal Component

Analysis (PCA):

5 independent observables, but only 2 significant dimensions:

the first 2 components account for all of the sample variance!

The data sit on a plane in a 5-dim. parameter space: this is the

Fundamental Plane of elliptical galaxies.  Any one variable can

be expressed as a combination of any 2 others, within errors.

PCA Results in More Detail

(This from a slightly different data set …)

Eigenvectors and projections of parameter axes:

Now Project the Observable Axes Onto the

Plane Defined by the Principal Eigenvectors:

Compare with the

correlation matrix:

Cosines of angles

between parameter

axes give the

correlation

coefficients.

Another Approach:  Correlated Residuals

Y

X

mediocre
correlation

Z

X

mediocre
correlation

Y

Z

poor correlation!
&Z

Y

… but the residuals

correlate with the

3rd variable!

best-fit line

} &Z residual

" The data are

on a plane in

the XYZ space



VOStat:  Interactive Statistics Package

for VO Applications

http://vostat.org

Automated Classification Techniques

• Implementation of clustering algorithms in a machine-

learning (ML) or AI setting

– Examples: star-galaxy separation, automated galaxy

morphology classification, stellar or galaxy spectral types,

etc., etc.

• Supervised classifiers:  a set of learning examples is

provided; the number of possible classes is known

– Examples:  Artificial Neural Nets (ANN), Decision Trees

(DT), Support Vector Machines (SVM)…

• Unsupervised classifiers:  the program decides how

many classes are needed to account for the diversity of

the data, and classifies on the basis of the data

A Relatively Simple Classification Problem:

Star-Galaxy Separation

• Important, since for most astronomical studies you want either stars

(~ quasars), or galaxies; the depth to which a reliable classification

can be done is the effective limiting depth of your catalog - not the

detection depth

– There is generally more to measure for a non-PSF object

• You’d like to have an automated and objective process, with some

estimate of the accuracy as a  f (mag)

– Generally classification fails at the faint end

• Most methods use some measures of light concentration vs.

magnitude (perhaps more than one), and/or some measure of the

PSF fit quality (e.g., '2)

• For more advanced approaches, use some machine learning

method, e.g., neural nets or decision trees

Typical Parameter Space for S/G Classif.

Stellar locus

!

Galaxies

(From

DPOSS)

A set of such parameters can be fed into an automated classifier

(ANN, DT, …) which can be trained with a “ground truth” sample

A measure

of image

concentration

! Brightness



Star/Galaxy Classification Parameter

Spaces: Normalized By The Stellar Locus

Then a set of such parameters can be fed into an automated classifier

(ANN, DT, …) which can be trained with a “ground truth” sample

Automated Star-Galaxy Classification:

Artificial Neural Nets (ANN)

Input:

various

image

shape

parameters.

Output:

Star, p(s)

Galaxy, p(g)

Other, p(o)

(Odewahn et al. 1992)

Automated Star-Galaxy Classification:

Decision Trees (DTs)

(Weir et al. 1995)

Automated Star-Galaxy Classification:

Unsupervised Classifiers
No training data set - the program decides on the number of classes

present in the data, and partitions the data set accordingly.

Star

Star+fuzz

Gal1 (E?)

Gal2 (Sp?)

An example:

AutoClass
(Cheeseman et al.)

Uses Bayesian

approach in

machine

learning (ML).

This application

from DPOSS
(Weir et al. 1995)



Star-Galaxy Classification:
The Next Generation

Multiple imaging data sets

Optimally combined imagery

Individually

derived

classifications

Ci , Ci , …

Classification

(C)

Dataset

dependent

constraints

Context

dependent

constraints

Optimal 

Classification

One key

external

constraint

is the

“seeing”

quality for

multiple

imaging

passes

(quantifiable

e.g., as the

PSF FWHM)

Good seeing

Mediocre seeing

How to Incorporate the External or A

Priori (Contextual) Knowledge?

• Examples:  seeing and transparency for a given night; direction

on the sky, in Galactic coordinates; continuity in the

star/galaxy fraction along the scan; etc.

• Still an open problem in the machine learning

• In principle, it should lead to an improved classification

• The problem occurs both in a “single pass” classification, and

in combining of multiple passes

• In machine learning approaches, must somehow convert the

external or a priori knowledge into classifier inputs - but the

nature of this information is qualitatively different from the

usual input (individual measurement vectors)

Two Approaches Using ANN:

{

External

parameters:

coordinates,

seeing, etc.

Image

Parameters

{p1, …, pn}
NN

Output S

(stellarity

index)

NN 1

NN 2

{

Output S1

Output S2

{
Image

Parameters

{p1, …, pn}

External

parameters {

1.  Include the external

knowledge among the

input parameters

2. A two-step classification:

Object dependent

Dataset dependent



Classification Bias and Accuracy

P(S)

Stellarity
index S

0 (pure galaxy) 1 (pure star)

Good seeing

Galaxies

Bad seeing

Stars

Classification
boundary

?

Assuming a classification boundary divider (stars/galaxies) derived from

good quality data, and applying it to poorer quality data, would lead to a

purer, but biased sample, as some stars will be misclassified as galaxies.

Shifting the boundary (e.g., on the basis of external knowledge) would

diminish the bias, but also degrade the purity.

Combining Multiple Classifications

{pi}1

{ei}1

S1NN1

{pi}n

{ei}n

SnNNn

!

!

!

MC

Final

output

joint

classif.

(S)

Measured

attributes and

classifications

from individual

(independent)

passes

Metaclassifier, or a committee of machines with a chairman?

Design?

Weighting algorithm?

Training data set?

Validation data set?

Note: individual classifiers "
may be optimized or trained

differently

Visualization: An Essential Need

• Visualization is the bridge from the

data (and data mining results) to the

human intuition and understanding

• It has to be an integral part of the

data mining and exploration process

• Many good packages exist, but they

generally do not scale well to huge

numbers of data points, and to a high

dimensionality of data sets

• Some popular and useful VO options include:

– TopCat:  http://www.star.bristol.ac.uk/~mbt/topcat/

– VisiVO:  http://visivo.cineca.it/  (see also astro-ph/0707.2474)

– Mirage:  http://cm.bell-labs.com/who/tkh/mirage/

– PartiView: http://virdir.ncsa.uiuc.edu/partiview/

Mirage GUI - Tin Kam Ho

TopCat Examples



VisiVO Examples Dealing With Hyper-Dimensionality

• A key problem is visualization of hyper-dimensional (D >> 3)

data sets, without a loss of information

• We are biologically and evolutionary geared to perceive visual

signals in 2-D and 3-D; yet, interesting structures and

information may be present in the data in highly-dimensional

structures which cannot be projected to 2-D or 3-D spaces

– We may need to deploy machine intelligence to help us discover,

analyze and understand such structures

• This is closely related to the problem of dimensionality

reduction in data mining

• Unfortunately, essentially all R&D on visualization now seems

to be oriented towards 3-D, driven by the commercial apps.

• This suggests a potentially very important research program

Parallel Coordinates

• One technique to visualize

hyper-dimensional data sets

• Each dimension corresponds

to an axis, and the N axes are

organized as uniformly

spaced vertical lines

• A data element in N-dim.

space manifests itself as a

connected set of points, one

on each axis.  Points lying on

a common line or plane

create readily perceived

structures in the image

•  Not the greatest method - but it may help in some situations

Some Useful Websites

In addition to those already cited, start with:

http://www.astro.caltech.edu/~george/dposs/kdd-links.html

Links on surveys, VO, statistics, etc., at:

http://www.astro.caltech.edu/~george/ay122/

… and follow the links from there


