
1

Advanced Services

Roy Williams
California Institute of Technology

Building Compute Services

• Developer and Admin
– Services should be built by developers
– In a framework managed by an adminstrator

• Service developers must be careful
– Services can be dangerous (eg “execute any command”)

• Service users authenticated with “graduated security”
– Easy to start, but great power is possible
– Or just keep it anonymous

• Asynchrony for compute intensive jobs
– Jobs submitted to batch queue
– Unique benchID may be used to monitor job & return results

• From “clicking” to “scripting”
– Services may be accessed by clicking on a web page or with scripted client

codes
– Authentication for web clicking comes from a certificate in browser
– Scripted access requires a certificate

client
service container

services

Persistent Storage
(“workbench”)

Ceramics class meets each week for 8 weeks

Workbench

• Persistent storage
• Just a directory in the web space

– Initiated by service
– Tools operate on files in workbench

• http://……?bench=39840422 & action=PCA & (other params)

2

Workbench

• URL to workbench is obscure
– htttp://localhost/cgi-bin/vim?benchID=16213077368925688004920409437160

– Can send to your colleague

• Set up as
– Read is free but URL is obscure
– Using tools / write permission via password

• Reaping
– Maybe 30-day lifetime for workbench storage?

• Need cron process to delete old benches

Keywords

• “bench”
– If present, specifies workbench

• “action”
– What should the server do?

• Create workbench (provide password)
• Upload data
• Start algorithm
• Monitor run (does the result exist?)
• Download result

• Others:
– Depends on action, specifies detail

VIM server

if actionkey == "init":
benchID = bench.makeBench()

elif form.has_key("bench"):
benchID = form["bench"].value

else: print "No bench specified -- exiting"

bench must be 32 decimal digits (NOT ../../precious)
if re.match(r'^[0-9]{32,32}$', benchID, re.IGNORECASE) == None:

print "Sorry, but %s does not look like a valid benchID name" % benchID
sys.exit(1)

bench.setBenchID(benchID)

if actionkey == "urltable": actions.urltable(bench)
if actionkey == "deletetable": actions.deletetable(bench)
if actionkey == "fetch": actions.fetch(bench)
if actionkey == "addcol": actions.addcol(bench)
if actionkey == "select": actions.select(bench)
if actionkey == "join": actions.join(bench)
if actionkey == "sort": actions.sort(bench)

Making things easier

• Let them log in!
– Keeps record of workbenches
– Who owns which
– Users can ask for “my workbenches”
– Can make log for funders

• Who is doing what

• BUT
– Users *hate* to register at websites

3

Security and Certificates

• Stop attacks
• Access to secret data
• Access to big resources
• BUT

– Lots of extra infrastructure
– Users hate it

NESSSI
NVO Extensible Secure Scalable Service

Infrastructure

• Services are science-oriented
• Services are made by trusted developers from

the science community
• Web forms OR command line (Python API)
• Built-in security (X.509 certificates)
• Very large jobs can be run
• Easy to get a certificate
• No complex install needed by client
• Different levels of certificate get different service
• Is installed on Teragrid
• Services can be part of a workflow

Nesssi

client nesssi

node

node

node

node

cluster

certificate
policies

queue

workbench
storage

Secure SOAP

certificate

open http

Clarens server

An open-source
webserver based
on OpenSSL.

4

A “Graduated Security”
Model

Web form - anonymous access, small jobs
Some science....

Get NVO weak certificate - access logged, but identity not verified

More science....

Full Grid account - browser access
Big-iron computing....

Scripted access
Power user

Portal-Based

Traditional Grid Security

client

Show us your Certificate!I will do exactly what you want.

Graduated Security

client
May I have your Request and your Certificate?

Authentication with
Certificates

• A digital certificate proves who you are
• X.509

– Usually encrypted by passphrase

• Certificate as login
– Map from certificate to account

5

This is a US driver’s licence.
In the US it proves identity strongly.
It is like a strong certificate.

This is a loyalty card where I buy food.
(You can put a false address on the application.)
It is like a weak certificate.

Certificates
The Virtual Observatory as a Virtual Organization

How to be a
Certificate Authority

In order for an RA to validate the identity of a person, the subject should
contact the RA face-to-face and present photo-id and/or valid official
documents showing that the subject is an acceptable end entity as defined in
the CP/CPS document of the CA.

In case of host or service certificate requests, the RA should validate the
identity of the person in charge of the specific entities using a secure
method. The RA should ensure that the requestor is appropriately
authorized by the owner of the FQDN or the responsible administrator of
the machine to use the FQDN identifiers asserted in the certificate.

Bench ID

• Identify which job we are talking about
• 32 character hex string eg

cb28d0753a7fec9a485981f741d425ec

• Used to monitor a running job
sessionID = nesssiServer.cutout.init()
msg = server.cutout.monitor(sessionID)

• Used to form URL where results appear, eg
– http://dtf-test1.sdsc.teragrid.org:8080

/clarens/shell/cb/cb28d0753a7fec9a485981f741d425ec/cutou
ts/index.html

• If you lose the sessionID, you lose your job

6

<NesssiMonitor>

<Service>Cutout</Service>

<Uname>ux400560</Uname>

<SessionID>774daf5ef52facc68cb03db4b1fdc815</SessionID>

<Sandbox>http://dtf-test1.sdsc.teragrid.org:8080/
clarens/shell/77/774daf5ef52facc68cb03db4b1fdc815</Sandbox>

<Result>http://dtf-test1.sdsc.teragrid.org:8080/
clarens/shell/77/774daf5ef52facc68cb03db4b1fdc815/cutouts/index.html</Result>

<QueueStatus>149.envoy.cacr.calte roy batch C8845cb 11516 1 -- -- 60:00 R --

 </QueueStatus>
</NesssiMonitor>

Monitoring a Nesssi job

service name

running as this user

session ID

sandbox URL

results URL

queue status
(R = running)

Example: SleepyAdd

nesssiServer=nesssi.client('https://dtf-test1.sdsc.teragrid.org:8443/clarens/',debug=0)

sessionID = nesssiServer.sleepyadd.init()
print "Your session ID is", sessionID

Run: sleep 30 seconds then add 52 and 344
nesssiServer.sleepyadd.run(sessionID, "-time 30 -n 52 -m 344")

web portal

command line

Monitoring the Run

Key n is 52
Key m is 344
Key time is 30
Sleeping for 30 seconds
Waking up...
Sum of 52 and 344 is 396

<NesssiMonitor>
<Service>Sleepyadd</Service>
<Uname>ux400560</Uname>
<SessionID>a3a167a383111c0cbd6941325b8659aa</SessionID>
<Result>http://dtf-test1.sdsc.teragrid.org:8080/clarens/shell/a3/a3a167a383111c0cbd6941325b8659aa/batch.out</Result>
<Sandbox>http://dtf-test1.sdsc.teragrid.org:8080/clarens/shell/a3/a3a167a383111c0cbd6941325b8659aa</Sandbox>
<QueueStatus>305875.dtf-mgmt1.sds ux400560 dque Ca3a167 -- 1 -- -- 18:00 Q --
</QueueStatus>
</NesssiMonitor>

Mosaic
Service

nesssiServer=nesssi.client('https://envoy.cacr.caltech.edu:8443/clarens/',debug=0)

mosaic_loc = "-ra 49.1 -dec 60.1 -rawidth 0.5 -decwidth 0.5 -filt f -bgcorr 0"

session = nesssiServer.dpossMosaic.mosaic(mosaic_loc)
print "Your session ID is %s." % session

msg = dbsvr.dpossMosaic.monitor(session)
print msg

7

nesssiServer.
dpossMosaic.mosaic (
“-ra 49.1
-dec 60.1
-rawidth 0.5
-decwidth 0.5
-filt f
-bgcorr 0”)

Coadd
Service

nesssiServer=nesssi.client('https://envoy.cacr.caltech.edu:8443/clarens/',debug=0)

Initialize the service
sessionID = nesssiServer.hyperatlas.init()
print "Session id is ", sessionID

Arguments for service, the coaddition to do
args = "-bandpass z1 -ra 170.08 -dec 13.275 -rawidth 1.0 -decwidth 1.0"

-bandpass z1
-ra 170.08 -dec 13.275
-rawidth 1.0 -decwidth 1.0

Cutout
Service

nesssiServer=nesssi.client('https://envoy.cacr.caltech.edu:8443/clarens/',debug=0)
sessionID = nesssiServer.cutout.init()
print "Session id is ", sessionID

Upload locations file
remoteinputfile = "/shell/%2s/%s/inputfile.xml" % (sessionID[0:2], sessionID)
nesssiServer.upload_file(inputfile, remoteinputfile)

Arguments for service, surveys to use and cutout size
args = "-surveys PQ:gr,PQ:gi,PQ:z1,PQ:z2,SDSS:r,SDSS:i,SDSS:z,2MASS:k,2MASS:h "
args += "-size 64"

Run service
nesssiServer.cutout.run(sessionID, args)

8

Cutout
Monitoring

cutouts from Palomar-Quest, SDSS, 2MASS
of sources from Veron quasar catalog

Amazon Grid
(who will pay?)

Amazon Grid

• Simple Storage Service

• Write, read, and delete.
• Each object has a unique, developer-assigned key.
• Authentication mechanisms. Objects can be private or public.

Rights can be granted to specific users.
• REST and SOAP interfaces
• Default download protocol is HTTP. BitTorrent(TM) also available.

9

Amazon Grid

• Elastic Compute Cloud

• Create an Amazon Machine Image (AMI) containing your applications,
libraries, data and associated configuration settings.

• Upload the AMI into Amazon Simple Storage Service.
• Configure security and network access.
• Start, terminate, and monitor as many instances of your AMI as needed.
• Pay for the instance hours and bandwidth that you actually consume.

• $0.10 per instance-hour consumed
• $0.20 per GB of data transferred outside of Amazon
• $0.15 per GB-Month of Amazon S3 storage

Amazon Grid

• Simple Queue Service

• Move data between distributed application components
performing different tasks, without losing messages or requiring
each component to be always available.

• Unlimited number of queues, unlimited number of messages.
• New messages can be added at any time.
• A computer can check a queue at any time for messages waiting to

be read.
• REST, SOAP and query interfaces.
• The queue creator determines which other users can write to or

read from the queue.

AJAX (Asynchronous Javascript + XML)

• Uses browser’s XML support: DOM, XSLT
• XMLHttpRequest
• Google Maps is best-known AJAX application

What do GET/POST services
lack?

• Format method for describing interface contract
• Reliable messaging
• Digital signatures
• Message routing
• Resource life cycle management
• Asynchronous event notification
• Other capabilities captured by WS-* specs

10

What is SOAP?

• Simple Object/Service-Oriented Access
Protocol (Snakes On A Plane?)

• An XML-based communication protocol
and encoding format for exchanging
structured information in a decentralized,
distributed environment

• W3C specification
(http://www.w3.org/TR/soap)

Anatomy of a SOAP
message

• An envelope to encapsulate data which defines
formatting conventions for describing the
message contents and routing directions: header
and body

• A message exchange pattern: request/response
(RPC mechanism), fire-and-forget

• A transport or binding protocol
• Data encoding rules for describing the mapping

of application-defined datatypes into an XML tag-
based representation

SOAP example

Request:
<soap:Envelope xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
<ComovingLineOfSight xmlns="http://skyservice.pha.jhu.edu">

<z>float</z>
<hubble>float</hubble>
<omega>float</omega>
<lambda>float</lambda>

</ComovingLineOfSight>
</soap:Body>

</soap:Envelope>

Response:
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<ComovingLineOfSightResponse xmlns="http://skyservice.pha.jhu.edu">
<ComovingLineOfSightResult>float</ComovingLineOfSightResult>

</ComovingLineOfSightResponse>
</soap:Body>

</soap:Envelope>

Client Invocation Models

• Static: use generated stubs:
java org.apache.axis.wsdl.WSDL2Java <wsdl url>

• Dynamic:
– no generated code
– a proxy dynamically generates a class at runtime that conforms to

a particular interface, proxying all invocations to a single ‘generic’
method

– Examples:
• Java : use javax.xml.rpc.Service.getPort() and createCall()
• .NET : use RealProxy class (must extend ContextBound) or

Reflection.Emit

• Generic SOAP client: http://soapclient.com/soaptest.html

11

Why is SOAP better?

• Asynchrony
• Reliable messaging (e.g. once-and-only delivery,

guaranteed or exact execution)
• Send and receive complex datatypes to invoke a particular

method not just key-value pairs
• Security
• Binds to other protocols
• Service description

Take a REST from SOAP?
• IVOA jumped into SOAP services in 2002
• But SOAP is perceived as “difficult”

– WSDL (formal service description) is complex and not interoperable
• REST and GET are perceived as easier
• Where is the sophistication of SOAP really needed?

Steering the VO ship

• Short term Pragmatism
• useful tools now
• simple protocols (eg cone search)
• “just use RA and Dec”

vs
• Long term Architecture

• modular suite of interoperable tools
• sophisticated protocols (eg skynode)
• sophisticated Space-Time coordinates

Building Information
Standards

• Semantics
• Meaning
• Usefulness
• Applicability

• Code
• Services
• Interfaces

• Documents
• Agreements
• Data Models

• Schema

• UML
• XSD
• WSDL

A Data Model is a bridge from
community to computers

12

Questions?

