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ABSTRACT

We present an overview of a new paradigm in astronomy, the Virtual Observatory  (VO). 
We trace it from the early developments only a decade ago to its current state. In a few 
years, astronomy will have accumulated an unprecedented amount of data, on the order 
of 100 Pb, and adding 2-4 PB/year. This is an astonishing five orders of magnitude 
higher than it was in 2000. The VO is a response to the astronomical communityʼs 
demands for improved and homogenized access to this data, combined with the tools to 
manipulate and explore them. It is a complex enterprise with a decentralized, 
webcentric nature, implying that astronomers need to rethink the old ways of conducting 
their scientific programs. Most projects related to the VO started in the late 90ʼs and 
today an international effort is coordinated by the International Virtual Observatory 
Alliance (IVOA). In Brazil the National Institute for Science & Technology (INCT-
Astrophysics) recently created by  the Ministry of Science & Technology (MCT) is taking 
the lead in VO development (BRAVO - BRAzilian Virtual Observatory). At the National 
Institute for Space Research (INPE), we are concentrating our effort (BRAVO@INPE) 
on three distinct aspects of the VO development: 1)  Database Development and Basic 
Infrastructure; 2) Data Grid & Processing Grid; and 3) Data mining. This paper 
describes our view in setting a roadmap for VO in Brazil and a few technical 
developments on which we have already embarked.
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1 Introduction
Astronomy is now an enormously  data-rich science, and currently  produces terabytes of 
raw data per day, with a few petabytes already in various archives. Both the data 
volume and data rate are increasing exponentially, with a doubling time of ~ 1.5 years.   
Even more important is the growth of data complexity (expressed, e.g., as the 
dimensionality of the parameter space spanned by the measurements of the detected 
sources) and heterogeneity.  These data are now being federated in a global data grid 
under the umbrella of the Virtual Observatory (VO) paradigm. A complete and effective 
scientific exploitation and exploration of these large and complex data spaces is a highly 
non-trivial task, requiring a new generation of software (databases, scalable data mining 
tools, interfaces), hardware (computing power, storage, network infrastructure), and 
expertise. The absence of these resources is a key bottleneck in data-rich astronomy: 
the data are there, but the means of extracting knowledge from them are not. 

The diagram below demonstrates the severity of these problems. We see the rapid 
increase in data volume from only a decade ago, where the Digitized Second Palomar 
Observatory Sky Survey provided single-epoch observations of half the sky in just 3 
bands, to current projects like Pan-STaRRS1, which provides imaging of three-quarters 
of the sky in 5 filters but at hundreds of epochs. The addition of the time domain not 
only grows the storage and computational requirements, but challenges the community 
with the need for new algorithms and tools. Incredibly, we see that astronomy is 
generating data at the same pace as experiments in particle physics. This is 
extraordinary, considering that the number of researchers and the worldwide financial 
investment is much less in astronomy.  Figure 1 clearly exhibits the necessity  of efficient 
data storage, data processing and data mining, which are specific topics covered by this 
project.  

Typical research paths taken in the scientific exploitation of large sky surveys are either 
construction of statistical samples of objects or populations of interest (e.g., normal 
galaxies, quasars, etc.) and their study  (e.g., to probe their evolution, large-scale 
structure, etc.), or selection of interesting targets (e.g., peculiar galaxies, distant 
quasars, brown dwarfs, supernovae, etc.) for follow-up observations.  The scientific 
potential of such studies is greatly  enhanced by federating data sets (e.g., combining 
optical, infrared, and radio sky surveys), which often reveal important features and 
populations of objects not easily distinguishable in any  of the data sets taken separately.  
For example, a typical VO-data-enabled project would be a complete clustering and 
correlation analysis of combined source catalogs, using a federation of multi-wavelength 
data from several major astronomical surveys, ranging from radio, through infrared, 
optical, UV, to X-ray, or even γ-ray.  Data federation of the source catalogs from these 
surveys generally  results in a parameter space of ~ 108 – 109 data vectors in ~ 102 – 
103 dimensions.  The existing tools and algorithms do not scale well to such hyper-
dimensional data sets, so we must assemble, test, improve, and deploy the necessary 
data mining, statistical, and visualization tools for this exploration. Concurrently, we 
must develop  the necessary computational and network infrastructure and human 
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expertise to develop, implement, and utilize these tools. Examples of specific 
challenges will be presented later in this paper.

Figure 1 - The rapid increase of astronomical data, considering only the 
most important optical surveys carried out in the past 20 years. For 
comparison we show the data rate from the Large Hadron Collider 
experiment at CERN (for details see http://lhc.web.cern.ch/lhc/).

The main objective of the BRAVO@INPE project is to address these strategic issues. 
More specifically, the BRAVO@INPE project intends to generate investment in 
information technology, with particular emphasis on Computational Infrastructure, Data 
Grid, Data Processing, and Data Mining. We present not only  a brief history  of what has 
been done in the recent past but also elucidate the specific needs for the near future. 
This effort aims to prepare the Brazilian astronomical community for the avalanche of 
data and massive data processing needs that are a reality  now, and which will increase 
rapidly in the coming years with the advent of the large telescopes and surveys 
currently under development (GMT, TMT; LSST, Pan-STaRRS, VISTA, VST).

This paper is organized as follows: Section 2 outlines the general concept of the Virtual 
Observatory, establishing a context for the more specific components described later. 
Section 3 describes the initial stages taken in generating a roadmap for the VO in Brazil, 
while Section 4 introduces two of the basic   elements of any VO: computational 
infrastructure and databases. The fundamental  concepts of  data grids and processing 
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grids are presented in Section 5. Section 6 describes an image processing pipeline 
developed by our group, 2DPHOT, and the main characteristics of the Astro-Wise 
environment. Section 7 provides an overview of the ongoing developments within Brazil 
in terms of astrophysical applications. Section 8 reviews data mining and describes 
specific projects we are undertaking in this field. Section 9 focuses on the four main 
areas in which we plan to invest resources, while Section 10 summarizes the 
BRAVO@INPE project.

2 The VO Concept
For more than two decades, the international astronomical community  has witnessed an 
exponentially growing capacity for accumulating astronomical data. Today, information is 
gathered in large surveys from the ground and from space, covering virtually the entire 
electromagnetic spectrum, from X-rays through the ultraviolet, optical, infrared, and 
beyond. Individual projects yield complementary data through specific, targeted 
scientific programs. Much of these data are made available to the community  through 
public servers, usually in several different formats, and distributed at many institutions. 
The data quality, metadata, interfaces, and accessibility  are heterogeneous, since each 
project typically curates its own data, presents it in a custom database, and even data 
formats in astronomy are instrument dependent with little effort made to unify them.

An underlying concept of the VO is that by  providing improved and homogenized data 
access combined with the tools to manipulate and explore the data, the need for new 
observations will be reduced even as the scientific output is increased. All gathered 
data, even those that are initially  proprietary, can be accessed via the VO, enriching the 
international community. Large surveys would take precedence over individual, targeted 
observations, providing added coherence to the VO structure. Therefore, the VO is not 
an enterprise driven by a single institute or even one country. It is rather a community 
proposal aimed at the democratization of information that will certainly  expand to other 
scientific areas like meteorology, geophysics, and space science, allowing new 
interactions and the exchange of methods and technology. Thus, the VO today 
represents to the astronomical community what the Internet was for the academic world 
in the 1980s. It is clear today that science, especially in developing countries, would be 
shockingly different without the Internet in the same way that we envisage in the future 
saying that astronomy would not be the same without  the VO. 

The Virtual Observatory (VO) concept is the astronomical communityʼs response to the 
scientific and technological challenges posed by massive and complex data sets. To 
exemplify  the obstacles to dealing with a modestly large amount of data, its complexity, 
and the challenge of processing it over a reasonable timescale, we examined the re-
processing of  reduced galaxy images from the seventh and final data release from the 
Sloan Digital Sky Survey (SDSS DR7). These data cover ∼8400 square degrees on the 
sky and providing images in four bands. We consider only the re-measurement of 
photometric parameters using a custom pipeline (described later) - not the reprocessing 
of raw data to calibrated images, and ignore the spectroscopic data entirely. Even for 
this modest task, if we want to process the imaging data in one week, we would need 
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6577 processors, which is a factor of 15 more computing power than everything 
currently available to Brazilian astronomers. We use a timescale of one week as an 
upper limit for what a user would accept to retrieve important information from such a 
large data set - and this dataset is almost trivial compared to upcoming surveys. 

Computational hardware requirements are just one small part of the issues  that arise 
when dealing with such vast datasets. Processing takes a lot of time, so once 
completed, it is of paramount importance that querying and retrieving data be done 
quickly. This requires investment in not only database software, but the astronomical 
and computational expertise to design and implement efficient and scientifically useful 
data models. This information, once structured in such a database, needs to be 
retrieved efficiently, demanding high-speed internet connections to which most research 
centers in Brazil do not have access. For these reasons, our top priorities include 
implementing grid computing to enable the processing of massive datasets; creating a 
dedicated network for astronomy to enable access to the resulting data, and training 
astronomers and computer scientists to develop these tools to produce cutting-edge 
science. Figure 2 summarizes this critical situation.

Figure 2 - Diagram showing the complexity of implementing a VO 
structure when considering all the infrastructural elements and attending 
the demands of the astronomical community, which expands fast and will 
grow beyond the computational resources currently available, especially in 
Brazil.
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3 BRAVO: Brazilʼs First Steps Into the VO
The new era of large data sets and the co-requisite data processing needs  led to the 
recognition two years ago that we must modernize the tools for astrophysics in Brazil. In 
addition to the large photometric and spectroscopic surveys being carried out in both 
hemispheres, Brazil has committed significant resources to new facilities (including 
SOAR, Gemini, BDA, etc). As a result, we have access to extraordinary  amounts of data 
in all portions of the electromagnetic spectrum, but without standard techniques for 
storage, retrieval, distribution, processing or analysis. Thus, the underlying concept of 
BRAVO@INPE is to federate these resources, using a common framework, standard 
interfaces, computational infrastructure, and analysis tools.

Before embarking on a major enterprise to develop  BRAVO@INPE, we must 
understand our current hardware/software/personnel resources and their ability  to meet 
our needs both today and in the future. The partners in this project are the thirty-one 
institutes comprising the INCT-Astronomy (National Institute for Science & Technology) 
recently created by the MCT (Ministry of Science & Technology). The central repository 
of knowledge about computational hardware, software and personnel in BRAVO@INPE 
will be the BNPGA (Brazilian Network for Processing Grid in Astronomy). Appendix A 
lists the institutes that will compose the BNPGA and their representatives. This new 
program will allow us to trace the roadmap of what is really needed for the future. 

We have performed an initial census of the capabilities of the INCT-Astronomy member 
institutes. Here we provide a brief synopsis of the results; the complete list of questions 
and results can be found in Appendix B.  We find that most users of our community 
have access to at least a desktop computer with moderate computational capacity. This 
conclusion must be seen with caution, as many members of our community use data of 
low complexity and in small volumes. This situation is changing dramatically  with the 
next generation of large surveys and telescopes. In this context, the current 
computational facilities may be adequate today,  but it is clear that the current cyber-
infrastructure will be obsolete when dealing with the extremely large amount of data 
coming from both stellar and extragalactic projects. 

These new programs will often require large computing clusters. We examined access 
to modern servers with more than 8 processors each (Class A) and to beowulf types, 
composed of mono-processed nodes and internal networks of 100 Mps (Class B). Only 
12 out of the 20 institutes  that responded have access to a cluster and only 7 out of 
these 12 have access to a Class A cluster. It is important to note that in some cases the 
clusters are shared with researchers from different disciplines like Physics since the 
small groups of researchers developing Astronomy in Brazil are contained within large 
Physics departments.  

Adding up all the available processors in the different clusters gives, in principle, the 
total number of processors available for grid processing (see App. B, Table 4). This total, 
419, is only 6% of the required number to processing the entire SDSS DR7 in one band, 
in one week, for example. This is only a crude estimate considering that all the 
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processors are different, some better than others - fifty  are old types of processors that 
would add little to the total processing capacity. Even more disturbingly, modern surveys 
like Pan-STARRS use a single 512-node cluster with the latest 3+GHz processors to 
analyze their data - more powerful than all of the Brazilian astronomical communityʼs 
computers combined.  

Beyond processing power, the total disk storage available to our clusters is 
approximately  45 Tb. While this satisfies the needs of individual groups, it is clearly 
incompatible with the needs of the coming decade where telescopes will produce data 
at a rate of 2 Pb/year. Moving any fraction of such data quantities also requires high-
speed network connections, which many of our institutions still do not have.

The results of this census demonstrate the extreme deficiency of the current hardware, 
software and network infrastructure in Brazil. An often overlooked (and underfunded) 
aspect of any computational project is the need for personnel with expertise in all 
aspects of the program. In BRAVO@INPE, we cannot expect a computer scientist with 
experience in commercial database applications to understand and implement 
astronomical databases without new training. Similarly, we would not expect an 
astronomer to develop  efficient computational algorithms for, say, clustering analysis, 
without learning about recent advances in such applications.

To address some of these issues, we organized two workshops in 2007 at INPE where 
formal presentations were released by well known researchers working on e-science, 
including Dr. George Djorgovski (Caltech), Roy Williams (Caltech), and Robert Hanisch 
(STScI). At the second workshop we had specific presentations by researchers from 
Brazil engaged in VO-related projects, showing the tremendous potential that we have 
to actively  participate in this international effort (see www.ivoa.net). For more 
information and access to the presentations of the lectures see www.lac.inpe.br/
projetos/bravo/. A major component of this project will be the training of technical staff, 
which is of paramount importance for us. We  have already begun a program of visits by 
Brazilian astronomers and computer scientists to foreign institutions with extensive 
astronomy database involvement, including Caltech, Johns Hopkins University, and the 
Institute for Astronomy in Hawaii.

4 Database Development and Basic Infrastructure
Many scientists, including those of you reading this document and those of us writing it, 
think of databases as a just some place to store a simple table of data, like an Excel 
spreadsheet. Perhaps you could do simple computations on those columns on your 
personal computer and output the results. Typical tables might have tens to thousands 
of entries. Even a large food market has only  about 50,000 different items available - 
and we are tempted to imagine that their warehouse database must be large and 
complex. We would be very wrong.

Astronomical datasets have far surpassed the largest commercial databases in size and 
complexity. Almost twenty years ago the Digitized Second Palomar Observatory Sky 
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Survey database contained over  100 million objects, measured in three bands, with a 
total of ~100 properties per object. Information about the survey (calibration, plate 
metadata, related CCD imaging, classification schemes) was spread over ~50 different 
tables, which often had to be cross-referenced. This database never became easily 
accessible to the public, which would have required the creation of an added layer of 
interfaces and query tools.

The current “gold standard” of databases in astronomy is the Sloan Digital Sky Survey. 
The imaging catalog has almost half a billion objects, in five filters, with nearly 500 
columns of data on each object. While the volume of this single table (many Tb) is itself 
daunting, the SDSS database has nearly 100 unique tables, with an additional 50 views 
offering easy access to scientifically  useful subsets of specific tables. The complexity of 
this database required years of consideration to design a workable schema, decide on 
which columns to generate indices to speed queries, understand how to load and 
update tables with new data, and how to provide public access. Just writing a portion of 
the table documentation was a full time job for a postdoctoral researcher for almost two 
years. Beyond the nearly 20Tb  of catalog data, SDSS also allows users to access a 
comparable volume of images.

While one is tempted to believe that SDSS is as complicated as astronomical databases 
could become, it is far from the truth. Upcoming surveys such as Pan-STaRRS and 
LSST will yield a comparable amount of data - every time they survey the sky. These 
projects will create a new “SDSS” every few months. Not only do they produce multi-
filter imaging, which must be processed, cataloged, stored, and distributed, they will 
also produce time series. Every object detected in one image must be matched to its 
corresponding detection in all earlier images of that same area. Optimal methods for 
differencing images must be developed to look for astronomical sources that vary or 
move. An entire pipeline is necessary to take moving objects, find them at different 
locations in images taken at different times, associate them, and generate orbits. Light 
curves for both stationary and moving objects must be created. All of this must be done 
almost instantaneously, because rare, one-time events such as supernovae must be 
found and notifications for follow-up observations disseminated before they fade. This 
means processing one gigapixel image every minute. The resulting database is 
correspondingly  more difficult to model and populate. A “static” sky database must be 
created with everything detected, and updated as repeated observations allow for the 
creation of ever deeper images. Variable and moving objects must have all of their 
detections stored so that light curves and orbits can be derived. 

The evolution of these surveys vividly demonstrates that we must contend with a new 
paradigm in astronomy. We must have the resources to store, disseminate and access 
large databases. We must have the knowledge of how such databases are structured, 
and how we can develop our own tools to create novel science. We must have our own 
databases for Brazilian programs, and enable interoperability with VO tools to maximize 
the scientific potential.  We must also remember that so far we have only  discussed 
large optical surveys. Multi-wavelength and multi-epoch studies demand new tools to 
cross-identify  sources observed across the electromagnetic spectrum, with different 
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spatial and temporal resolution. This fundamental problem too has been approached 
but is far from solved. In all of these arenas, Brazil has much to learn, but also much to 
contribute.

5 Data Grid & Processing Grid
We are in the midst of a revolution in data gathering that encompasses all realms of 
science. In particular, the volume of data in astronomy, both real and simulated, is 
growing exponentially. The need for tools to analyze these data is naturally creating a 
new branch of scientific investigation - data science. There are many challenges in this 
emerging enterprise. We must have methods for extracting knowledge from large 
amounts of data, which by itself in non-trivial. What is important and what is noise? 
Which correlations are fundamental and which are secondary? In addition, we must 
urgently  develop the skills and tools for processing these data. These requirements are 
already being addressed by  two areas of computer science: data mining and high 
performance computing (HPC). We discuss the former in Section 8; here we will focus 
on the latter.

There are many approaches to HPC. The first direction utilized parallel machines 
(vector machines, multi-processing machines with shared memory, multi-processing 
machines with distributed memory, and more recently multi-core processing chips). 
These solutions aimed to improve the processing capacity of a single, central machine. 
By the late 1990s, a form of distributed computing was created, using internet 
connections among geographically  distributed processors to spread the computational 
labor. This is the underlying concept of grid computing, where processors across a city, 
country, or the whole world can be shared by a single program. This type of grid is a 
new environment for the science of the current century. 

There are many types of grids and generally they can be classified according to: 

 1 - the nature of the processing: data grid or processing grid;
 2 - the focus of the processing: open vs. closed or general vs dedicated;
 3 - the hardware components: homogeneous or heterogeneous
             

Since the accumulation rate of data in astronomy is already reaching an unprecedented 
level of 10 Pb/year, it is becoming difficult, technically and financially, to centrally store 
all of the data, and impossible to replicate data for personal use. A data grid provides an 
environment for distributing, sharing, and modifying large amounts of data. We find 
applications for such a grid in different fields, such as meteorology. Examples include 
the Earth System Grid (http://www.earthsystemgrid.org/) and SegGrid (http://
seghidro.lsd.ufcg.edu.br/). In astronomy, the Montage software platform (http://
montage.ipac.caltech.edu) has been prepared to run in a grid environment.
 
Similarly, increasingly large and complex processing tasks are required to process and 
analyze these data sets, or to generate large simulations. A processing grid addresses 
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these issues. Collaborative processing is a type of application that exemplifies this new 
technology. The SETI@home project (Search for Extra-Terrestrial Intelligence, http://
setiathome.ssl.berkeley.edu/) is the largest popular distributed computing project, with 
over 3 million users, hosted by the Space Sciences Laboratory (University of California, 
USA). It is only one of 50 such projects using the BOINC  volunteer and grid computing 
platform (http://boinc.berkeley.edu/). A UK project called AstroGrid has been developing 
VO-compliant tools that operate on a grid. Processing grids in other fields include 
pro te in fo ld ing (h t tp : / / fo ld ing .s tanford .edu/ ) , c l imate change (h t tp : / /
www.climateprediction.net/), and seasonal mesoscale climate prediction GBRAMS 
(h t tp : / /www.cptec . inpe.br /b rams/gbrams.sh tml ) and RECLIRS (h t tp : / /
yule.lacesm.ufsm.br/nucleus332/).

Thus, it is imperative that we take advantage of the computing resources available at 
different computer centers linked by fast network connections.  This could take the form 
of our own, internally developed grid implementation, or the installation and deployment 
of existing tools such as BOINC. Today, Brazilian users contribute almost 10 Teraflops 
of computing power to BOINC projects, the highest in South America. One of the main 
goals of BRAVO@INPE is to create a processing grid to harness academic computing 
along with this private processing power, with initial focus on two specific astrophysical 
applications: image processing with 2DPHOT (described in Section 3); and analysis of 
cosmological simulations with hundreds of millions of particles using the FoF algorithm 
(described in Section 4).

Our team is currently strongly engaged in the use of grid technologies and web  services 
within the VO context. Specifically, our focus is data modeling, within the scope of 
BRAVO@INPE, to develop a framework for the metadata describing both observed and 
simulated data. We examine the logical relationships between these metadata, with the 
intent of establishing a general architecture for retrieving, processing, and interpreting 
data from different branches of spatial science and in particular from astronomy. This is 
an important step for constructing protocols that will guide VO applications.

6 Data Processing
As described above, critical issues in VO development include the large amount of data 
and how it is to be processed - taken from raw images to reduced data suitable for 
further analysis. Here, we describe two concrete steps to address these problems 
undertaken in Brazil:  the installation and operation of the first Astro-Wise (AW) node in 
South America and the insertion of our photometry environment (2DPHOT) into AW.  
2DPHOT is an automated tool to obtain both integrated and surface photometry of 
galaxies in an image, to perform reliable star-galaxy separation with accurate estimates 
of contamination at faint flux levels, and to estimate the completeness of the image 
catalog. A 2DPHOT graphical user interface (named 2DGUI) is also under development, 
allowing the user to easily set 2DPHOT input options and detection parameters. More 
details can be found in La Barbera et al. 2008a. We show a schematic representation of 
the 2DPHOT environment in Figure 3.
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Figure 3 - Schematic representation of the 2DPHOT environment

The main tasks of 2DPHOT are:

1 -   Producing a cleaned catalog of the image.

2 -   Performing reliable star/galaxy  classification.

3 - Estimating the completeness of the galaxy catalog and the contamination due to 
star/galaxy misclassification.

4 - Constructing an accurate  model of the Point Spread Function (PSF) of the input 
image, taking into account possible spatial variations of the PSF as well as deviations of 
stellar isophotes from circularity.

5 - Deriving structural parameters of galaxies by fitting galaxy images with two-
dimensional PSF-convolved Sérsic models.

6 - Measuring galaxy isophotes by fitting them with Fourier-expanded ellipses, and 
deriving one-dimensional surface brightness profiles of galaxies.

7 - Measuring the  growth  curve of  seeing corrected  aperture magnitudes for galaxies.
The image analysis flow of 2DPHOT is presented in Figure 4.
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Figure 4 - Image Analysis flow of 2DPHOT.

2DPHOT is being applied in several projects conducted by researches involved in this 
project and others. In a spectroscopic and photometric study of a rich cluster at 
intermediate redshift, it is used to measure global properties of cluster galaxies 
(Mercurio et al. 2008); and on a fundamental plane study based on SDSS and UKIDSS 
data (La Barbera et al. 2008b). The analysis of internal color gradients in early-type 
systems have been recently published in La Barbera & de Carvalho (2009). We also 
used 2DPHOT in a recent study of Fossil Groups (La Barbera et al. 2009). We have 
also begun a large-scale study (SPIDER; Spheroidʼs Panchromatic Investigation in 
Different Environment Regime of the general properties of early-type galaxies (ETGs) 
combining SDSS and UKIDSS data). This project makes extensive use of 2DPHOT to 
properly measure the seeing corrected structural parameters for 40356 ETGs. 

2DPHOT is only  a starting point in preparation for the avalanche of data in the next few 
decades. 2DPHOT requires as input an already processed image. Thus, we must be 
able to process raw images either on an individual basis or in a pipeline. To do so, we 
are taking advantage of the Astro-Wise (AW) system, developed by a consortium of 
European astronomy research institutes, coordinated by Dr. Edwin Valentijn of Kapteyn 
institute in Groningen. The AW environment consists of hardware and software 
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federated over five institutes in Europe. It was designed to scientifically exploit the 
increasing amount of data produced by experiments in different fields. AW  is a general 
information system which was initially geared towards astronomy, but is now also used 
in other branches of science. This is an essential trait of AW  in the context of a unified 
environment for data processing at INPE. It allows a user to archive raw data, calibrate 
data, and perform post-calibration scientific analysis. All results are stored in one 
environment that links together all the discrete steps in data analysis. This complete 
linking, including the input, output, and the software code used to get from one to the 
other, for arbitrary  data volumes, has only been feasible thanks to a novel paradigm 
devised by the creators of AW. The algorithms included in the software have been 
developed to include arbitrary optical wide field imagers. This aspect is of major 
importance for BRAVO@INPE, since we will be developing software that enables us to 
ingest data from instruments available at SOAR and in the future from LSST.

AW  was designed and implemented as a fully scalable and distributed information 
system to properly handle the huge amount of data that will be  produced by large area 
surveys in the near future. By allowing the end-user to trace the data products, following 
all dependencies from the final catalog back to the raw data and, it becomes possible to 
re-derive the result with better calibration and/or improved analysis tools. This 
represents perhaps the first time that astronomers could truly reproduce each othersʼ 
results. 

To achieve these goals, the structural functions of AW include:

* A data model that is translated to an object model and stored in a database;
* I/O residing in a distributed database, containing all metadata for bulk data, parameter 

values used for processing/calibration, and the resulting catalogues;
* A federated file server connecting to the synchronized databases and storing 

hundreds of terabytes of data
*  An AW  processing grid which sends jobs to parallel clusters, which then request data 
from the database. 

The database architecture supports rapid trend analysis, complex queries and fast 
searching in terabyte-sized catalogues. All system components are distributed 
throughout Europe, enabling research groups to collaborate on shared projects. The 
web portal includes data viewing, quality labeling and compute services.

Some of the attractive features of the AW information system include:

* fully scalability
* can work with data from any imaging camera
* allows sharing of results with collaborators globally
* provides a web-based archive (called DB Viewer) to view an arbitrary subset of data 

of an arbitrary project at each stage of the processing
* based on the python programming language
* easy to add your own analysis code in python
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* wrapping of code written in fortran, C, etc. is straightforward
* access to computing power via computer clusters (compute-grid infrastructure is part 

of the system)

These properties mean that AW  overcomes the limitations of traditional analysis tools, 
which typically reside on a userʼs own computer or cluster. Reduction processes would 
usually be run by  a single user, and saving sufficient metadata to reproduce every step 
is up to that individual. These behaviors are simply not sufficient for the new data 
volumes, collaborations and complexity  in modern astronomy.  The Astro-Wise system 
will be connected to the Virtual Observatory via the Euro-VO. Hundreds of terabytes of 
data will start entering the system when SOAR starts operating with the complete suite 
of instruments that were planned.

7 Data Analysis
The processing of raw data from a telescope into images, spectra or other products 
suitable for further analysis is only  the first computationally intensive step  on the path 
from photons to science. The processed data must be analyzed to detect, classify  and 
characterize individual objects and groups of objects, and obtain physically meaningful 
measurements.

Within BRAVO@INPE, we are focusing on a few distinct data analysis projects: 
1. Implementation of a decision tree for star/galaxy separation in the faint magnitude 

regime for wide field images; 
2. Development of a parallelized Friends-of-Friends (FoF) algorithm , with application to 

galaxy catalogs from the SDSS Stripe 82 project (http://www.sdss.org/drsn1/
DRSN1_data_release.html)

3. Automatic  morphological analysis of images in Stripe 82 using both traditional tools 
for structural parameter estimation (e.g. concentration/ asymmetry, Hernandez-
Toledo, 2008) and advanced methods for image analysis such as the Euler 
characteristic and gradient spectral analysis (Rosa et al., 2007). 

4. Development of a cluster finding algorithm based on Voronoi-Tesselation code, but 
considering a more realistic background distribution instead of the usual poissonian 
assumption. Preliminary results were presented in Soares Santos et al. (2008).

5. Virial analysis of galaxy clusters, allowing us to measure the most important 
dynamical quantities including total mass, based on the gapper technique described 
below.

7.1  Decision Tree (DT)
A decision tree is a computational method for splitting data into distinct classes, either 
based on pre-existing knowledge of the subgroups (supervised) or on inherent 
characteristics (unsupervised). Let a data set be described by a collection of attributes 
for each object in the data set. Each attribute is a measurement of some characteristic 
of an object (such as magnitude or size). These objects could belong to different 
classes or clusters (such as stars and galaxies). Imagine a data set for training, where 
the class of each object is already  known. Our task is to develop a classification rule to 
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determine the class of an object based on its various attributes. If two objects have the 
same attributes, but they belong to different classes, then it is impossible to separate 
these objects based on this set of attributes. In this case, the data set with these 
attributes is not appropriate for a training set for the induction task. Thus, we must also 
determine the appropriate attributes to separate the objects into the desired classes.
 
Unlike other techniques for clustering analysis, the DT does not rely  on distance metrics 
but instead makes a series of branching decisions based solely on numerical values of 
the attributes. A DT is a simple structure, where the final leaves define to which cluster 
an object with a specific set of attributes belongs. The nodes represent tests on a given 
attribute, with a branch for each possible output. For classifying an object, the starting 
point is the root of the tree; a test is applied to one attribute and the appropriate output 
branch is determined. The process is repeated using other attributes until the last leaf. 
Therefore, the object will belong to the cluster represented by that leaf. 

There are many induction algorithms for decision trees. The ID3 algorithm, developed 
by Quinlan (1986), is the most popular. The algorithm was improved, allowing 
continuous parameters (Quinlan 1993). A package has been developed, called WEKA 
(Waikato Environment for Knowledge Analysis) where several standard machine 
learning techniques were incorporated into a  "workbench". Several decision trees were 
designed for classifying objects detected in the SDSS (Sloan Digital Sky Survey) data 
for 5 passbands (u, g, r, i, z), employing WEKA (see Ruiz et al. 2008; Suchkov 2005; 
Ball et al. 2006). Our main goal is to provide a VO service to deal generally with the 
problem of star-galaxy separation -  for whatever training set provided by the user, allow 
the generation of an appropriate DT using different methods and cross-validate the final 
obtained tree.

7.2  Parallel Friends-of-Friends algorithm
The friend-of-friends (FoF) algorithm is commonly used to join galaxies within a linking 
volume around each galaxy. This method has several attractive features, like being 
independent of the particular geometry of the galaxy distribution. For a given linking 
volume a unique group catalog is defined.  One of the main problems in using this 
algorithm is the time it takes to process large numbers of objects, scaling with N2  log N. 
It is necessary  to weaken this dependence on the total number of objects and thus be 
able to treat the hundreds of millions of particles found in current large cosmological 
simulations.

First experiments on reducing the dependence on N have shown that after a domain 
decomposition (subdividing the data in redshift shells) combined with a post-processing 
step we have already  reduced the scaling to N log N2, a considerable improvement. A 
simple domain decomposition can be implemented in a purely parallel manner, but it is 
insufficient because some objects artificially  separated  by sub-domain boundaries 
could in reality belong to the same group. Therefore, a post-processing procedure is 
applied to examine objects close to a boundary but with a valid friend in an adjacent 
sub-domain. Our parallel version has fully  reproduced previous results (Caretta et al. 
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2008) for computing the potential gravitational energy spectrum for galaxies and 
clusters of galaxies at many redshifts. A VO service will be made available allowing the 
user to run the FoF algorithm over the most important cosmological simulations 
available to date and those inputed by the user.

7.3  Advanced tools for morphological analysis
As spatial information becomes ever more accessible through high resolution digital 
images, the need for robust techniques for complex pattern characterization is obvious. 
An obvious example is the  mathematical description of galaxy images. Considerable 
attention has been paid to morphological classification of E/SO/Sa/Sab/Sm/Irr galaxy 
morphologies using Sloan Digital Sky Survey imaging. The data to be analyzed usually 
are (1) sky-subtracted, cleaned and log scaled g-band images; (2) filtered-enhanced 
versions of the g-band images; (3) the corresponding RGB composite images; and (4) a 
set of measured parameters, including surface brightness, position angle, ellipticity and 
spectral coefficients. In this sense, some useful mathematical and statistical approaches 
have been proposed (e.g. Lots et al. 2004) to estimate the CAS (concentration, 
asymmetry  and clumpiness) structural parameters.  Motivated by the data analysis 
challenges in the context of BRAVO@INPE, we have developed an alternative and 
complementary approach for characterization of inhomogeneity and radial asymmetry in 
galaxy images.  Inhomogeneity is calculated using the Euler characteristic from the 
Minkowski functional. Radial asymmetry is obtained by applying gradient pattern 
analysis to 2D wavelet multi-resolution samples of the image. The combination of both 
structural characteristics is proposed as an effective measurement for galaxy 
morphology. The main objective here is to implement a VO service to deal with 
morphological analysis in general and in particular to analyze the entire SDSS (DR7) 
and explore the relationships between morphology  and stellar population parameters, 
for instance.

7.4 A Modified Voronoi Tesselation code to search for clusters of 
galaxies
We are currently developing a cluster finder algorithm in 2+1 dimensions based on 
Voronoi tesselation (VT). The method is non-parametric and does not smooth the data, 
making the detection independent of the cluster shape. It uses all of the available 
galaxies, going as far down in the luminosity function as the input catalog permits. It 
does not rely on the existence of features such as a unique brightest cluster galaxy or a 
tight ridgeline in color-magnitude space. It works in shells of redshift, treating each shell 
as an independent 2-dimensional field. The core of the VT algorithm is the background 
above which an overdensity must rise to be identified as a cluster. In contrast to earlier 
implementations of the VT algorithm, we do not assume a Poissonian background. We 
use a more realistic assumption that the angular two-point correlation function of the 
background distribution has a power-law shape. In a given redshift shell, we build a 
Voronoi diagram and compare the distribution of cell areas with the distribution 
expected from a background-dominated field. We set as a threshold the cell size below 
which the distribution starts to increase faster than its background counterpart. The 
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clumps of contiguous cells found with density  significantly above their respective cells 
are flagged as potential clusters.

The Voronoi diagram of a 2-dimensional distribution of points is a unique, non-arbitrary 
and non-parametric fragmentation of the area into polygons. A  simple pseudo-algorithm 
to perform such fragmentation is the following: starting from any point P1 , we label its 
nearest neighbor P2 and walk along the perpendicular bisector between those points. 
We stop when we reach for the first time a point Q1 equidistant from P1 , P2 and any 
third point P3 . We now walk along the perpendicular bisector between P1 and P3 until 
we reach the point Q2 and identify the next point P4 by the same criterion. Successive 
repetition of this process will eventually brings us back to Q1 after a finite number of 
steps. The set of points Qi are the vertices of a polygon, the Voronoi cell, associated 
with P1. If this process is repeated for each point Pi we will have built the VT 
corresponding to this point field. There are several robust and efficient computational 
algorithms to build a Voronoi diagram from a given distribution. In our code we use the 
so-called divide-and-conquer algorithm implemented in the Triangle library (Shewchuk 
1996). 

There are no arbitrary parameters in constructing the VT for a given dataset. The cell 
edges are segments of the perpendicular bisectors between neighbor points and each 
vertex is an intersection of two bisectors. This implies that the cells will be smaller in the 
high-density  regions and since each cell contains one and only one point, the inverse of 
the cell area gives the local density. The VT cluster finder takes advantage of this fact in 
the process of detection. We plan to implement a VO service where the user can input a 
galaxy catalog over a given area of the sky and receive a cluster catalog as output. 

7.5  The Virial analysis tool for understanding cluster dynamics
Removal of interlopers and proper selection of galaxy cluster members is an essential  
step in the dynamical modeling of clusters and investigations of environmental effects  
affecting bound galaxies. There are several different approaches for interloper removal  
available in the literature. A recent comparison of the performance of many different 
methods applied to N−body cosmological simulations is given by  Wojtak et al. (2007). In 
particular, they found that differences in mass estimates may be explained by the 
number of interlopers a given method selects or rejects. These could also explain the 
discrepant estimates from other methods of mass estimation (e.g., based on X-ray 
observations or lensing analysis). The shifting gapper method has two main 
advantages: (i) it is based on combined information for both position and velocity; (ii) it 
is independent of any hypotheses regarding the dynamical state of the cluster.  The 
procedure we consider is similar to the approach adopted by  Fadda et al. (1996).  The 
input data consists of the radial and velocity offsets of each galaxy from the cluster  
center, being visualized as a phase-space diagram. It works through the application of 
the gap technique (Katgert et al. 1996; Olsen et al. 2005) in radial bins from the cluster 
center. This technique is used to identify gaps in the redshift distribution, resulting in the 
identification of groups in z-space. The bin size we consider for the shifting gapper is 
0.60 Mpc or larger to force the selection of at least 15 galaxies (consistent with Fadda et 
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al. 1996). Galaxies not associated with the main body of the cluster are eliminated. This 
procedure is repeated until the number of cluster members is stable (no more galaxies 
are rejected as interlopers). After a final list of members is reached, they can be used to 
measure the cluster velocity  dispersion, from which we can estimate the cluster mass 
through virial analysis. While other procedures are based on physical assumptions 
about the cluster mass profile, the  shifting gapper makes no  physical hypotheses 
about the clusterʼs dynamical state. Further details of this method can be found in Lopes 
et al. (2009). This technique will be integrated in the VO service described in the 
previous subsection and will allow the user to carry out a dynamical analysis for the 
clusters detected with VT and having sufficient redshift measurements.

8 Data Mining
After the completion of image processing and derivation of meaningful quantities 
through data analysis, we are now confronted with an enormous collection of numerical 
quantities describing our data. An extant example is SDSS imaging, with 500 million 
objects, each with nearly 500 measured attributes. Which of these parameters are 
connected to fundamental physical properties? How do different types of objects cluster 
in high-dimensional parameter spaces? How do we find rare classes of objects, 
especially  in the presence of errors or catastrophic mismeasurements? The 21st 
century will be a period of data-driven science, with the development of techniques to 
uncover the hidden knowledge in these kinds of massive datasets. This is the primary 
concern of a new branch of computer science - data mining (DM). It embraces a set of 
techniques for dealing with:classification, clustering, rule induction, visualization, pattern 
recognition and statistical analysis of massive data sets with extremely  high 
dimensionality. 

In the space science domain, although there are extensive archival data resources 
available over the web, the ability of scientists to access and analyze this content is 
becoming more and more limited. The large data volumes cannot be moved to a 
personal workstation to be processed by an individualʼs own software, while the 
software cannot be placed on the data host. Thus, DM in the context of this project, 
refers to specific computational methodologies, working in a logical system, to extract 
information and find hidden patterns embedded in the large amounts of data from space 
science surveys. Generally speaking, any computational methodological tool performed 
to transform data into information is calling a Data Mining System (DMS). It is notable 
that in space science (astronomy, astrophysics, cosmology and solar system studies) 
many existing data archives are unsuitable for DM because key pieces of metadata are 
missing. Hence, our goal in the first part of this project is to outline the major 
components of such a DMS, logically  connected to the data processing and data grid 
requirements described previously.

9 A New Era for BRAVO
In the past two years we have gained important experience and knowledge of VO 
development, and our project was realigned to be fiscally  feasible. New collaborations 
were established in all aspects of our planned investment. Within the context of the 
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INCT-Astronomy, the priority is to devise a roadmap for the near future to coherently 
invest in hardware and software that can meet our researchersʼ needs. BRAVO@INPE 
aims to create this synergy and contribute in strategic areas of the global VO. 

Below we list the main strategic points of this enterprise. We emphasize that these are 
the overarching items defining this project and can be seen as pillars of a consistent 
investment in VO:

9.1 Network Infrastructure
From the results of our IT census we see the level of insufficiency of the network used 
by the scientific community in Brazil, especially  for astronomers. High speed and secure 
network connections are of paramount importance not only for simple tasks in our daily 
work but also for establishing a national grid processing facility, such as the one we are 
developing with the BNPGA. Discussions are already in place with people from RNP 
(Brazilian National Research and Education Network) on development of a plan to 
elevate the accessibility of the astronomical community in Brazil to a higher level. This is 
one of the main points of this project - to conduct a study of the current situation and 
move to a modern network infrastructure. 

9.2 Astro-Wise as a national environment for data reduction and 
analysis
Several pipelines were developed in recent years to address the demand of large area 
surveys like SDSS. In these cases, users do not have to worry about data reduction. 
However, more and more sophisticated algorithms for object detection, star-galaxy 
separation, photometric redshift estimates, morphological analysis and more are 
flourishing and there is an obvious need for reprocessing in some cases. As presented 
before, we are implementing AW as the environment for large amounts of data 
processing, which was developed under the VO rules. It will be the first AW node in 
South America. AW  is currently extant only in Europe in compliance with IVOA 
standards.

9.3 Creating the BNPGA
The census we did within the INCT-Astronomy community indicated that we not only 
need to upgrade our network infrastructure but also invest in creating a Grid Processing 
facility that can meet the growing demands of the astronomy community, not only 
because of the increase in the amount of data but also due to its increasing complexity. 
The BNPGA is the response to communityʼs need for processing a large amount of data 
and  reliably  publishing the results in an environment meeting VO standards. BNPGA 
will start as an exercise of processing the entire SDSS in one band and by doing so we 
will be able to implement the environment before we can move to better and more 
powerful clusters with thousands of  modern processors. 
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9.4 The Virtual Lab for Advanced Data Analysis (VLADA)
The Virtual Laboratory  for Advanced Data Analysis is a project initiated at the  Lab for 
Computing and Applied Mathematics-INPE which aims to provide a new virtual 
environment for scientific analysis tools to extract statistical and physical information 
from times series, images and hypercube data. Its preliminary version consists of a 
PHP user interface through which the user can input the data and receive specific 
measures  characterizing the data (ex. statistical moments, power spectra, generalized 
dimensions, Euler characteristics, asymmetry coefficients, etc). In the context of 
BRAVO@INPE, VLADA might be considered a virtual tool box for data analysis in 
general.

10 Summary
The Virtual Observatory is rapidly  becoming a reality. The combination of growing data 
volumes and data complexity, coupled with computational and algorithmic advances, 
has made the VO a necessity. We have described some of the ongoing projects to 
implement databases, general-purpose computational algorithms, grid networks, and 
other VO-enabling technologies in Brazil. A common theme among all of these 
developments is the dire need for computational resources (CPUs, storage and 
network), software, and the expertise to design, install, and bring to life these complex 
systems. The international nature of astronomy implies that everyone can benefit and 
everyone should contribute to this enterprise. We have provided a basic and certainly 
not exhaustive outline of the components of the VO, and described the specific 
contributions that the Brazilian astronomical and computer science communities have 
made and will be making to this effort. Our growing partnerships in large telescopes and 
unfettered access to large public datasets demands that we develop  our own tools and 
expertise to leverage these investments and strengthen our scientific output. Finally, we 
have described the necessary next steps in terms of hardware, software and personnel 
to advance BRAVO from an incipient program to a fully functioning project
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Appendix A

Universities and Institutes Associated to INCT-A:

São Paulo

 USP - Universidade de São Paulo
INPE - Instituto Nacional de Pesquisas Espaciais
UPM - Universidade Presbiteriana Mackenzie 
UNICSUL – Universidade Cruzeiro do Sul 
UNIVAP- Universidade do Vale do Paraíba 
UNESP – Universidade Estadual Júlio de Mesquita Filho
UNIFESP – Universidade Federal de São Paulo 
UFABC – Universidade Federal do ABC 
FSA - Fundação Santo André 
Rio Grande de Sul
UFRGS – Universidade Federal do Rio Grande do Sul 
UFSM – Universidade Federal de Santa Maria 
UFPel – Universidade Federal de Pelotas 
Unipampa – Universidade Federal do Pampa
UCS – Universidade de Caxias do Sul 
Rio de Janeiro
ON - Observatório Nacional 
UFRJ – Universidade Federal do Rio de Janeiro 
CBPF - Centro Brasileiro de Pesquisas Físicas 
Minas Gerais
UFMG – Universidade Federal de Minas Gerais 
LNA - Laboratório Nacional de Astrofísica 
UNIFEI – Universidade Federal de Itajubá 
UFJF – Universidade Federal de Juiz de Fora 
Santa Catarina
UFSC – Universidade Federal de Santa Catarina 
Unochapecó – Universidade Comunitária Regional de Chapecó 
Bahia
UESC – Universidade de Santa Cruz 
Distrito Federal 
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UNB – Universidade de Brasília 
Paraná
UEL – Universidade Estadual de Londrina 
Pernambuco
UNIVASF – Universidade Federal do Vale do São Francisco 

Appendix B

We conducted a census with all these 31 institutes associated to INCT-Astronomy, 
asking specifically:

1 -  What is the total number of users they have in their Department ?

2 - How many computers they have access to, including Desktops, and what are their 
main characteristics ?

3 -  Do they have access to cluster systems ? if so, what are the characteristics ?

Although the questionary might not be very objective, the main idea was to collect as 
much info as possible and then try to organize it accordingly. Twenty (66%) of the 
institutes participating of the INCT-Astronomy responded to the questions. The 
remaining institutes, which did not answer, represent small groups (2-3 researchers in 
located in Physics Departments) still involved in implementing basic infrastructure. 
Therefore, it would be fair to consider the data presented in the Tables 1-4 (see 
appendix) as representative of the cyber infrastructure of the Brazilian astronomical 
community. 

Three types of information were requested and we present them in Tables 1-4:

i)   Number of users, including researchers and graduate students (Table 1)

ii)  Cyber infrastructure available in terms of Desktops (Table 2)

iii) Cyber infrastructure available in terms of clusters (Tables 3a and 3b)

From Table 1 we see that 66% of the institutes composing the INCT-Astronomy 
contribute with 277 users. The remaining 12 institutes contribute  with ˜30 users, making 
a total of ˜310 users who participate directly or indirectly of the INCT-Astronomy. The 
figure below shows the distribution of the number of users per institute from where we 
can see that although the Brazilian community had a very significant growth in the last 
20 years, most of the main power working on astronomy in Brazil is still concentrated in 
a few places. This is something to be addressed in the near future within the context of 
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a broad program being prepared by the INCT-Astronomy but it goes beyond the scope 
of this project.

From Table 2, we can conclude that most users of our community has access to at least 
a Desktop with moderate computational capacity. This conclusion must be seen with 
caution. It happens that the Brazilian astronomical community  is dominated by stellar 
astrophysicists ( ∼70%) doing important and competitive research but using data of low 
complexity  ( 1D spectroscopy and/or 1D photometry etc). It is important to remember 
that even this situation is changing dramatically  and will keep changing in the near 
future with the large telescopes coming up. In this context, we understand that the 
current computational facilities available seem to be adequate and fulfill the present 
demand. However, it is clear that the current Cyber infrastructure will be obsolete when 
dealing with the extremely large amount of data coming from either stellar or 
extragalactic projects. 

Tables 3a and 3b  refer to the info about clusters available, allowing high performance 
processing. As we can see, researchers from these 20 institutes have access to modern 
servers with more than 8 processors each (Class A) and to beowulf types, composed of 
mono-processed nodes and internal networks of 100 Mps (Class B). Only  12 out of the 
20 institutes listed in Tables 3a and 3b have access to a cluster and only 7 out of these 
12 have access to a Class A cluster. These numbers will not change considerably if we 
include the remaining 12 institutes which did not provide information. 

In essence, 50% of the institutes composing the INCT-Astronomy have access a cluster, 
regardless of which class. It is important to note that in some cases the clusters are 
shared with researchers from different disciplines like Physics since the small groups of 
researchers developing Astronomy in Brazil are inserted in large Physics Departments.  

Adding up  all the available processors in the different clusters as listed in Tables 3a and 
3b, we would have in principle the total number of processors for grid processing (see 
Table 4). This total, 419, is only  6% of the required number mentioned in the figures 
presented previously for processing the entire DR7 in one band, in one week, for 
example. This is only a crude estimate considering that all the processors are different, 
some better than others - fifty  are old type of processors that would add little to the total 
processing capacity.
In terms of total storage, these clusters do not go over 45 Tb, and although it satisfies 
the needs of individual groups, is clearly incompatible with the needs of the coming 
decade where large telescopes will produce data on a 2 Pb/year rate.

Finally, we want to stress that this census although may not represent the entire 
Brazilian astronomical community, it shows how deficient it is the current hardware/
software and network infrastructure.
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Table 3b
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Table 4

Notes to Tables
1 - Items within braces ({ }) correspond to projected acquisitions.
2 - Items within brackets ([ ]) are our own estimates of not informed items.
3 - In Table 1 column (2) totalizes the content of the ensuing columns.
4 - In Column (6) of Table 4: L = Linux ; W = Ms-Windows ; M = Mac OS.
5 - In Tables 3a and 3b, column (2) gives the nicknames of the
     corresponding equipment; a bar (/) indicates that this is a shared
     resource. Notice that multi-processed (N >4) storage servers have also 
     been included here. 
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