

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Mathematics of Climate Climate change and natural disasters

Haroldo Fraga de Campos Velho

E-mail: <u>haroldo@lac.inpe.br</u>

Web-page: www.lac.inpe.br/~haroldo

International Workshop on Mathematics of Climate Change and Natural Disasters 29/Ago up to 02/Sep/2017

São José dos Campos (SP), Brazil

The climate is going to another equilibrium point

Some words in the agenda:

The climate is going to another equilibrium point
What can we expect from this new point?
Is there fixed point? Or, is it a dynamic equilibrium?
This is part of the climate change research

Some words in the agenda:

The climate is going to another equilibrium point
 What can we expect from this new point?
 Is there fixed point? Or, is it a dynamic equilibrium?
 This is part of the climate change research

Some words in the agenda:

- Mitigation
- Adaptation
- Diagnosis

Scientific consensus

- Earth climate is changing
- Human society is a geophysical forcing
 - (anthropogenic sources)
- Colder winters
- Hotter summers
- Change statistics for extreme (severe) weather
 - Extreme events more intense
 - Extreme events more frequent

Scientific consensus

- Earth climate is changing
- Human society is a geophysical forcing
 - (anthropogenic sources)
- Colder winters
- Hotter summers
- Change statistics for extreme (severe) weather
 - Extreme events more intense
 - Extreme events more frequent

□ But, ... how can we know that?

- But, ... how can we know that?
 - Several (a lot) evidences

INPE

Climate change research

But, ... how can we know that? Several (a lot) evidences

Muir Glacier – Alaska (USA): August 13, 1941 (left) / August 31, 2004 (right)

Mathematical models

- A scientific conquer is to use mathematical equations for doing predictions.
- In geophysical fluid dynamics, meteorology has initiated the forecasting process by mathematical equations
- □ However, we solve the equations **only approximately**!
- Numerical methods need to be applied
- Impact from model resolution
- □ (More) Physical process need to be included

Mathematical model (hard equations: non-linear)

Movement Equation (momentum)

$$\frac{du}{dt} - fv + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 \qquad \frac{dh}{dt} + g + \frac{1}{\rho} \frac{\partial p}{\partial z} = 0 \qquad \frac{dv}{dt} + g + \frac{1}{\rho} \frac{\partial p}{\partial z} = 0$$

$$\frac{dv}{dt} + fu + \frac{1}{\rho}\frac{\partial p}{\partial y} = 0$$

dt

Continuity Equation (mass)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho h) = 0$$

Thermodynamic equation (energy)

INPE

Preparing the models: calibration

No	Name	Description
1	rhoveg_vis	Leaf reflectance in the upper canopy - visible (dimensionless)
2	rhoveg_NIR	Leaf reflectance in the upper canopy - NIR (dimensionless)

- 3 *tauveg_vis* Leaf Tramitância in the upper canopy - visible (dimensionless)
- 4 *tauveg_NIR* Leaf Tramitância in the upper canopy - NIR (dimensionless)
- 5 *chifuz* Sheet guiding factor in the upper canopy (-1: vertical, 0: random, 1: horizontal)

- 41 *alogl_cef* Coefficient for calculation of the lower canopy roughness (dimensionless)
- 42 alogu_coef Coefficient for calculation of the upper canopy roughness (dimensionless)
- 43 avmuir_coef Coefficient for calculating the canopy emissivity (dimensionless)

INPE

Climate change research

$$F_{1}(\mathbf{w}) = \sqrt{\frac{1}{N} \left[\sum_{j=1}^{9} \sum_{i=1}^{N} \left(Y_{i}^{Obs,(j)} - Y_{i}^{Mod,(j)}(\mathbf{w}) \right)^{2} \right]}$$
(1)

$$F_{2}(\mathbf{w}) = \sqrt{\frac{1}{N} \left[\sum_{j=1}^{9} \sum_{i=1}^{N} \left(\frac{1}{Y_{i}^{Obs,(j)}} - \frac{1}{Y_{i}^{Mod,(j)}(\mathbf{w})} \right)^{2} \right]}$$
(2)

Calibration: sensitivy analysis ⁽²⁾

Morris' method

INPE

Sensitivity analysis

$$d'_{k}(\mathbf{w}) = \frac{Y(w_{1}, \dots, w_{k} + \Delta, w_{k+1}, \dots, w_{p}) - Y(\mathbf{w})}{\Delta}$$
(3)

Trajectories in the search space (2D (a) / and 3D (b))

Numerical results ⁽¹⁾

Identifying faster to slower processes (Figure 1)

- (a) L1: radiative flows: PAR₀ and f_{APAR} (3 parameters);
- (b) L2: surface radiation balance: R_n (3 parameters);
- (c) L3 Turbulence: *u*^{*} (3 parameters);
- (d) L4: turbulent flows: NEE, HE, LE (16 parameters);
- (e) L5: Carbon Allocation: LAI (6 parameters).

Numerical results ⁽²⁾

Model parameter estimation

Parameter	Exact	Estimated	funca-coef	5477.4147	6678.2708
rhoveg-vis	0.0872	0.0778	funcbcoef	5900.2127	5306.0478
tauveg–vis	0.0498	0.0498	root-coef	0.8429	1.0703
chifuz	-0.2249	-0.1643	rwood-coef	0.1563	0.0857
rhoveg–NIR	0.2966	0.3468	tempvm–coef	3961.8800	3502.3284
tauveg-NIR	0.2038	0.2235	stressf-coef	-5.3121	-5.1114
avmuir-coef	370.9740	366.4872	clitls-coef	1.4686	2.1727
dispu–coef	0.9779	0.9895	clitrs-coef	4.5124	4.9226
alogl–coef	3.9289	4.4682	clitws-coef	1 0452	1 0452
alogu–coef	7.2151	6.4447	csoislon_coef	0.2502	0 3/29
vmax-pft	0.0001	0.0001		6.2502	0.3429
coefmub	7.5494	7.6680	csoislop-coef	6.3736	6.6974
chs	33448.5189	22679.8452	kfactor	1.4744	1.3810
beta2	0.7838	0.8081	rgrowth-coef	0.2965	0.2738
			tauleaf	0.5808	0.7208
			specla	31.2950	32.9062
			aleaf	0.2654	0.1856

aroot

awood

0.3269

0.6280

0.1870

0.4773

- Preparing the models: calibration
 - Each module should have its calibration process
 - □ Calibration: multi-objective optimization
 - Calibration: sentitivy analysis is essential
- Calibration: depends on prediction time-scale
 - Sentitivy analysis shows more relevant parameters
 - Parameters relevance change with prediction time-scale
 - Nowcasting
 - Forecasting
 - Climate: seasonal, year, decadal, century(ies)

Mathematical models (hard equations: resolution impact)

INPE

Mathematical models (hard equations: resolution impact)

Precipitation Total (mm) – Eta 20 km

Rio and Angra dos Reis, 31/Dec/2009 (prediction for 24 h)

Precipitation for24 horas – Eta 5 km

Catarina Hurricane: images from space

Catarina Hurricane: differents resolutions (Global model)

Catarina Hurricane: differents resolutions (Global model)

INPE

Mathematical models (more physical process)

Mathematical models (more physical process)

Bull. American Met. Soc. – 2008

INPE

Mathematical models (more physical process)

Mathematical models

- □ Hard (*difficult* and stiff) equations
- Finer resolution
- □ More physical process involved
- More data to be processed

This means ...

Computer power

- Solving the models: computers and computing
 - Computers

INPE

Computing

Multi-processing machine with distributed memory CPTEC-INPE: Cray XE6

1280 nodes 30720 cores

Hybrid computing: CPU multi-core + Cell IBM Cell project: CPU + co-processor (project was finished)

Hybrid computing: CPU multi-core + FPGA

SGI RASC: CPU + FPGA

(project was finished)

RASC: Reconfigurable Application-Specific Computing

Hybrid computing: CPU multi-core + GP-GPU

Top 500: **1°** Year 2009 – Tianhe-1

Hybrid computing: CPU multi-core + CPU many-core

Top 500: 1° Milkway-2 (Tianhe-2): CPU + Xeon Phi

Hybrid computing: CPU multi-core + (MIC+FPGA)

Mathematical model (computing initial condition)

Movement Equation (momentum)

$$\frac{du}{dt} - fv + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 \qquad \frac{dh}{dt} + g + \frac{1}{\rho} \frac{\partial p}{\partial z} = 0 \qquad \frac{dv}{dt} + fu$$

Continuity Equation (mass)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho h) = 0$$

Thermodynamic equation (energy)

 ∂p

dt

Observations × weather predictions

Advanced parameterization for the water cycle has been considered in the modern models. Better numerical weather predictions have been obtained using efficient data assimilation, employing all information available (observational data from satellites, radars, GPS, etc). This promotes a feedback mechanism, enhancing our understanding on the atmospheric water cycle itself.

Forecasts Scores

INPE

ECMWF

doi:10.1038/nature14

Peter Bauer¹, Alan Thorpe¹ & Gilbert Brunet²

PART 2 – Applications: Data assimilation

Data assimilation: data fusion

PART 2 – Applications: Data assimilation

Data assimilation: data fusion

PART 2 – Applications: Data assimilation

Data assimilation: data fusion

Impact with the exponential growth for the available data

Numerical models with very high resolution

<figure><section-header>

Number of observation are increasing: different satellites with thousands of bands, sensor cost decreasing.

Data assimilation: an essential issue

Temperature: ANN assimilation experiment

Data assimilation: an essential issue

Moisture: 1 month assimilation experiment

Numerical experiment: LEKF and ANN

OBSERVATION STATIONS (REALISTIC NETWORK NOBS=415)

Atmospheric general model circulation (spectral model): **3D SPEEDY** (Simplified Parameterizations primitivE Equation DYnamics)

Gaussian grid: 96 x 48 (horizontal) x 7 levels (vertical) = T30L7 Total grid points: 32,256 Total variables in the model: 133,632 Observations: (00, 06, 12, 18 UTC) – radiosonders "OMM stations" Observations: 12035 (00 and 12 UTC) = 415 x 4 x 7 + 415 Observations: 2075 (06 and 18 UTC) = 415 x 5 (only surface)

Mathematical models (post-processing)

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

EDITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

EDITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Data science – Data mining example

Association rules: database from Agriculture Eng. (Unicamp)

Association rules: database from Agriculture Eng. (Unicamp)

It was used DMII-CBA (Classification Based on Association) - software developed by School of Computing, National University of Singapore

http://www.comp.nus.edu.sg./~dm2/p_overview.html

Temperatura [⁰ C]	Nomenclatura	Sensação do animal
<20	T1	frio
20-23	T2	frio
23-25	Т3	frio
25-27	T4	conforto
27-30	T5	conforto
30-32	Τ6	calor
>32	Τ7	calor

Níveis de ruído [dba]	Nomenclatura	Classificação
<60	RU1	ambiente tranqüilo
60-70	RU2	barulho
70-80	RU3	muito barulho
80-85	RU4	nível preocupante
>85	RU5	nível prejudicial

ary nomeneration a accurate e benoução ao animan		
Umidade [%]	Nomenclatura	Sensação do animal
<60	UR1	desconforto
60-70	UR2	conforto
70-80	UR3	conforto
>80	UR4	desconforto

0	UR3,T4,RU5
1	UR2,T3,RU5
2	UR2,T4,RU5
3	UR2,T5,RU5
4	UR1,T5,RU5
5	UR1,T5,RU5
6	UR1,T5,RU5

Rule 28:

UR1 = Y -> RU5 = Y (42.857% 100.00% 3 3 42.857%)

Example of rule created by DMII-CBA software

BraVO@INPE

2. Decision tree for astronomical data classification

Classification

Star/galaxy

It is not easy task

See the figure:

(a) Easy -

BraVO@INPE

2. Decision tree for astronomical data classification

Classification Star/galaxy It is not easy task See the figure: (a) Easy (b) More complicated

BraVO@INPE

2. Decision tree for astronomical data classification

Extreme events

INPE

Two types of events: Deep drought (2010: Amazon drought)

Extreme events

- Two types of events:
 - □ Intense rain fall (Nov/2008: Santa Catarina state, Brazil)

135 people died78.000 homeless

Data science – tools

From statistics

INPE

Biometric Research Branch

Division of Cancer Treatment and Diagnosis

From artificial inteligence

Amazon drought

Amazon drought

4 variáveis com menores p-valor das figuras anteriores

Amazon drought

Temp Superf Mar 93.5W 20.5N Press Niv Mar 65W 20N Press Niv Mar 67.5W 20N Press Niv Mar 67.5W 17.5N Press Niv Mar 67.5W 15N Omega 500 hPa 77.5W 0 Vento Zonal 850 hPa 75W 7.5N Vento Zonal 850 hPa 72.5W 7.5N Vento Zonal 850 hPa 70W 7.5N Vento Meridional 850 hPa 65W 2.5S Vento Meridional 850 hPa 62.5W 2.5S Vento Meridional 850 hPa 62.5W 0 Vento Meridional 850 hPa 60W 0 Umid Especif 850 hPa 60W 12.5N Umid Especif 850 hPa 62.5W 10N Umid Especif 850 hPa 57.5W 10N Umid Especif 850 hPa 60W 10N Temp Superf Mar 75.5W 12.5N Temp Superf Mar 77.5W 12.5N Temp Superf Mar 77.5W 14.5N Temp Ar Superf 60W 5S Temp Ar Superf 62.5W 5S Temp Ar Superf 60W 7.5S Temp Ar Superf 62.5W 7.5S Vento Zonal 850 hPa 75W 2.5S Omega 500 hPa 70W 7.5S

4 variáveis com menores p-valor das figuras anteriores

Dimension reduction: Amazon drought

- **Class-1:** p-values < 0,0005 → 104
- **Class-2:** p-values < 0,005 → 182
- **Class-3:** p-values < 0,001 → 825
- **Class-4:** Selecting 10 features with lowest p-value AND features with p-value $< 0,001 \rightarrow 120$
- **Class-5:** Selecting 10 samples for each meteorological feature with smallest p-value \rightarrow 280

Dimension reduction: $10^8 \rightarrow 10^2$ or 10^3

Decision tree: Amazon drought

Class-4

Decision tree generated by J4.8 algorithm

Dimension reduction: Intense rain fall

Class-1: 50 features with lowest p-values \rightarrow 104

Class-2: p-values < 0,001 → 179

Class-4: Selecting 10 features with lowest p-value AND features with p-value $< 0,001 \rightarrow 94$

Class-5: Selecting 10 samples for each meteorological feature with smallest p-value \rightarrow 50

Dimension reduction: $10^8 \rightarrow 10^2$

Decision tree: Rain-fall

Class-4

Decision tree generated by J4.8 algorithm

Predictability

- Predictability (... or quantifying uncertainties)
- What is that?
 - □ A set of PDE could be a prediction system
 - Question-1: How can I solve the PDE's?
 - Answering Question-1: Prediction
 - Question-2: How good is the prediction?
 - Answering Question-2: Predictability
 - Predictability: quantifying uncertainties (computing the confidence interval)

- Predictability (... or quantifying uncertainties)
- Ensemble prediction
 - □ Time-integration of a set of initial conditions
 - □ From ensemble: statistical properties are computed
 - From the statistical properties:
 - A confidence interval can be calculated

Ensemble prediction

Guidelines on Ensemble Predictio Systems and Forecasting

WMO's report describing/suggesting ensemble prediction

- Ensemble prediction
 - Computing the confidence interval

