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AMCG is committed to both the development and application of innovative modelling techniques in

earth, nuclear, engineering and biomedical sciences.

AMCG - Applied Modelling & Computation Group

AMCG Internal

The group has core research interests in the development and application of numerical methods for
fluids including ocean, atmosphere, and industrial multi-phase flows, for neutral particle radiation

transport, for optimisation mathematics and its applications, and for the solution of inverse (imaging/tomographic) problems.
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Fluidity

X Open Source Model Software for
Multiphysics Problems

*¢* Unstructured FEM Meshes
* Anisotropic Adaptive Mesh

An open-source computational fluid dynamics code
with adaptive unstructured mesh capabilities

technology
¢ User-friendly GUI

¢ Python interface to calculate
diagnostic fields, to set
prescribed fields and user-

defined boundary conditions




Predictive and Uncertainty Model Framework

Uncertainty

quantification
» Analysis, real-time
updating and
representation of
uncertainties.

Data science
laboratory

Reduced order
modelling
» Emergency rapid
response

Atmospheric
Modelling

d

Multi-scale predicative
modelling with multi-
physical Fluidity

Data assimilation

» Optimisation of
uncertainties

» Minimisation of misfit
between observational
data and numerical
results

_Optimal design, risk

HPC

_assessment, decision
- and policy-making
. processes risk
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Ocean, flooding
multifluid flow
modelling

Adaptive targeted

observations

» Optimal
experimental
design

» Optimal sensor
locations



Computational Multi-Fluid Flow Dynamic Model

% Porous media model embedded in Fluidity are based on:
* new family of FE element-pairs (P,,DG-P,, and P, DG-PDG) and
« numerical formulation (overlapping CVFEM) that ensures high-order
accuracy on the solution fields (i.e., pressure, velocity, saturation,
temperature etc)
% The model has been used on transport of contaminant in subsurface media
(mining spillage), oil and gas production, nuclear waste repository etc;
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Atmospheric Environmental Model: Critical bridge between
human activities and environmental change (IAP)
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Atmospheric Environmental Model: Critical bridge between
human activities and environmental change (IAP)
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Urban Air Pollution Modelling
(MAGIC, supported by EPSRC) @Elephant Castle, London




Air Pollutant Modelling
(IAP-1CL, supported by NSFC/ EPSRC)

Viewl: SE-NW
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SO, released
from over 100
power plants

(over Beijing
and 55 cities)

View2: NE-SW




Chemical modelling (IAP-ICL, Zheng etc.)
(NO and NO2 released from over 100 power plants)

Continuous formation/consumption of NOx and Ozone over 5 days.



3D chemical modelling (IAP-1CL, Zheng etc.)
(NO and NO2 released from over 100 power plants)
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2010-03-19_04 2010-03-20_04

Dust (ug/m3)

Dust storm
2010-03-20 18 (IAP-ICL, 2010-03-21_04
Zheng etc.)a




MODIS image of the 20 March 2010 dust storm Dust mass concentration (ug/m3) on 20Mar2010
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3D Atmospheric Modelling: Cyclone 3D Simulation (IAP-ICL

Velocity Vector
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Tohoku event from 2011
(Visiting PhD student from Japan)




Natural Disaster: Simulating Flooding — Denmark

(R. Hu ete. supported by the EU PEARL project)

Denmark

Baltic Sea Y

poe s _ .

Greve
Municipality

Study Area

Fig. 11. Situation of Study Area in Greve, Municipality of Denmark, see Soledad (2014)




Natural Disaster: Simulating Flooding — Denmark

(R. Hu etc. supported by the EU PEARL project)
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Predictive and Uncertainty Model Framework

Uncertainty

quantification
» Analysis, real-time
updating and
representation of
uncertainties.

Data science
laboratory

Reduced order

modelling
» Emergency rapid
response

Atmospheric
Modelling

modelling with multi-
physical Fluidity

_Optimal design, risk
_assessment, decision
and policy-making
processes risk

N

Ocean, flooding
multifluid flow
modelling
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Multi-scale predicative

Data assimilation

» Optimisation of
uncertainties

» Minimisation of misfit
between observational
data and numerical
results

L HPC

Adaptive targeted

observations

» Optimal
experimental
design

» Optimal sensor
locations
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Data Assimilation (DA)

DA methods: Motivation for DA:
Optimal interpolation; ~ ** To improve the predictability of numerical
Nudg”’]g’ mOde|S;_ o .
3D-Var: * Uncertainty sensitivity analysis;
4D-Var (Adjoint); % Optimisation of uncertainties in models;
Ensemble KE % Goal-based error measure and mesh

adaptivity;
*» Design optimisation;
s Adaptive observation (Optimisation of
sensors locations).
4 model state 4D-Var
analysis time t, All observations y, between
initial time t, 1 t,-92h and t,+3h are valid at
1 their actual time
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Work from Institute of Atmospheric and Physies, China
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DA: Optimal sensor location
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Reduced Order Modelling

Navier-Stokes Equations:

—

ou - _ _ "
Po (E"‘U'VU) = V- uVil+ Vp = —(p" + py)8ny, (1)
V-i=0, (2)

‘ Discretising equations (1) and (2)
Full discretised system (high dimensional):

e o]l =10 ol [l o]

' Projecting onto the reduced space using SVD/POD

|: BP oD CP oD Mt 1 B B’P(}D 0 oM
( —

CP(}D )T 0 aP 1 0 0 Pt

(POD
10|

‘ Wring the reduced order model in a general form

a = fila™ "), ne{l,2,...,N;}. The function fis
represented
by deep learning




Reduced Order Modelling (POD) and Deep Learning (Xiao etc)

Top panel: Full modelling

Output gj‘

I S S S S B Hidden layers > 1



Rapid modelling: Air flow (Elephant Castle London)

(Xiao etc. supported by MAGIC —EPSRC)
Left: reduced order modelling; right: high fidelity modelling

CPU time: seconds (Reduced order model); 3 hours (10 cores, Full fidelity model)



Future work

Adaptive-mesh air

quality model

Adaptive-mesh
weather forecast
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Rapid modelling: Flow past two buildings
Top: reduced order modelling; hottom: high fidelity

modelling

Velocity

Do



