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Motivation

I Global numerical weather forecasts.

I Incoorporate observations from planes, ships, air balloons, satelittes,
ground based observatiories, etc.

I Able to resolve small scale features when it matters.
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Motivation

Main ingredients in an atmospheric model

I A PDE hierarchy of models

I A numerical method for a specific PDE model

I Data assimilation tools
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Motivation

Difficulties

I Which PDE model is the correct one to use?

The most physically
accurate would be compressible Navier-Stokes on a rotating sphere.
The current ECMWF model is comprised of 10 evolution equations in
3D. NS forms part of this.

I Find a stable, accurate numerical method for the chosen PDE system.
Stability of numerical schemes for fast fluid flows equations is a
challenging topic.

I Under resolution of small scale features. Different length and time
scales present can, in general, not be represented on current generation
computational models.

I Computational complexity. As computational capacity grows, one
typically invests in increased resolution, more ensemble runs, addition
of PDEs governing new physical processes. This has a massive impact
on the computational complexity.
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Motivation

Purpose of this talk

I will show some novel techniques for reducing the computational
complexity of geophysical simulations. The focus being:

I Automated mesh adaptivity;

I Automated PDE model adaptivity.

The key word is ’automated’, meaning no user input.
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Finite element and finite volume methods

Difficulties

I Which PDE model is the correct one to use? The most physically
accurate would be compressible Navier-Stokes on a rotating sphere.
The current ECMWF model is comprised of 10 evolution equations in
3D. NS forms part of this.

I Find a stable, accurate numerical method for the chosen PDE.
Stability of numerical schemes for fast fluid flows equations is a
challenging topic.

I Under resolution of small scale features. Different length and time
scales present can, in general, not be represented on current generation
computational models.

I Computational complexity. As computational capacity grows, one
typically invests in increased resolution, more ensemble runs, addition
of PDEs governing new physical processes. This has a massive impact
on the computational complexity.
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Finite element and finite volume methods

Stable discretisations

I Finite Element Methods are attractive for their simplicity and
robustness, especially in structural mechanics and heat flow
simulations, owing to their variational interpretation and origins.

I Discontinuous Galerkin and finite volume methods, on the other hand,
are popular in fluid flows and fast convection simulations, due to their
superior numerical stability properties, stemming from the ability to
incorporate general numerical flux functions seamlessly.
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Finite element and finite volume methods

Admissible meshes

DG and FV methods are particularly easy to defined over general meshes.
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Finite element and finite volume methods

A 1d linear example

Consider the transport equation

ut + ux = 0 over [0, 1],

with periodic boundary condtions
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Finite element and finite volume methods

Continous FEM

The standard (continuous) finite element procedure is to write down a
finite dimensional basis:

Make an ansatz the u(x) ≈ uh(x) :=
∑N

j=0 Uj(t)φj(x), write the
problem weakly: To seek uh such that∫ 1

0

uh,tφi − uhφi,x dx+[uhφi]
x=1
x=0 = 0 ∀ i = 0, . . . , N

which yields a linear system of ODEs AU(t) = F , for the unknowns
U(t) =(U0(t), U1(t), . . . , UN (t))ᵀ. Apply your favourite Runge-Kutta
method.
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Finite element and finite volume methods

Discontinuous Galerkin

The standard discontinuous Galerkin procedure differs in the finite dimensional
basis chosen:

It doesn’t look too different, but there are more basis functions and continuity
is no longer enforced in the solution. Again, make an ansatz the
u(x) ≈ uh(x) :=

∑2N−1
j=0 Uj(t)φj(x) and write the problem weakly, this time it

needs to be elementwise: To seek uh such that∑
K

∫
K

uh,tφi − uhφi,x dx+[uhφi]
n+1/2

n−1/2 = 0 ∀ i = 0, . . . , N.

Notice though, that uh will be multi-valued at the edges
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Finite element and finite volume methods

Numerical fluxes

This problem is well studied, however, and the idea is to use a
numerical flux function

[uh]
n+1/2

n−1/2 → H(uL
h , u

R
h , 1),

which here will correspond to upwinding.
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Finite element and finite volume methods

Main ideas

I Discretise the domain you’re interested in.

I Write the PDE system weakly over each element.

I Take into account the fact that numerical solutions are discontinuous.

I Introduce *appropriate* flux functions for stabilisation.

Other topics that I’m brushing under the carpet

I How to generalise schemes to multi dimensional problems.

I How to generalise to nonlinear problems.

I Which flux functions do a good job?

I How do you solve the system of ODEs?

I Linear/nonlinear solvers.
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A posteriori analysis and mesh adaptivity

Difficulties

I Which PDE model is the correct one to use? The most physically
accurate would be compressible Navier-Stokes on a rotating sphere.
The current ECMWF model is comprised of 10 evolution equations in
3D. NS forms part of this.

I Find a stable, accurate numerical method for the chosen PDE.
Stability of numerical schemes for fast fluid flows equations is a
challenging topic.

I Under resolution of small scale features. Different length and time
scales present can, in general, not be represented on current generation
computational models.

I Computational complexity. As computational capacity grows, one
typically invests in increased resolution, more ensemble runs, addition
of PDEs governing new physical processes. This has a massive impact
on the computational complexity.
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A posteriori analysis and mesh adaptivity

Aim of an a posteriori estimator

We wish to construct an explicit estimator E = E (uh), dependant only
on the numerical solution and problem data such that

‖u− uh‖L∞(0,T ;L2(I)) ≤ E (uh).

AND that E (uh) should be of the same order as the error. It should
also be localisable.
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A posteriori analysis and mesh adaptivity

What can I use this for?

These estimators are a crucial component in mesh adaptivity. Mesh
adaptivity allows for increased resolution in places where deemed
necessary, near features of interest, singularities, shocks, etc.
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A posteriori analysis and mesh adaptivity

How does mesh refinement work? Example: newest vertex bisection

I Mark some elements for refinement based on some criteria.

I Split the elements into two “children”.

I Check for “hanging nodes”, if there is one, refine neighbour.

I The result is called a “conforming triangulation”.

This is only one possible algorithm. It’s nice as it is simple to
implement and provably guarantees shape regularity and that you will
not just globally refine the mesh.
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A posteriori analysis and mesh adaptivity

When to refine?

Now we know how to refine, let’s try to justify when we should refine.
Consider the Euler equations of gas dynamics:

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇p = 0

∂te+ div ((e+ p)v) = 0.

These constitute prognastic equations for density, momentum and
energy and 1 diagnostic equation for pressure. We’ll look at a 2D
situation over a rectangle so there are four prognastic equations.
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A posteriori analysis and mesh adaptivity

dG scheme for Euler’s equations

We can rewrite Euler’s equations as a system with w =(ρ, ρv, e) for
the unknowns and

∂tw + div (f(w)) = 0,

with

f(w) =


ρv1 ρv2

ρv21 + p ρv1v2
ρv2v1 ρv22 + p

(e+ p)v1 (e+ p)v2

 .
and try to find a wh such that∫

T

∂twh · φ− f(wh) · ∇φ+

∫
E

F (w−h ,w
+
h ) JφK = 0 for all φ ∈ Vq,

uh(0) = Pq[u0],

where F is an appropriate flux function.
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A posteriori analysis and mesh adaptivity

A posteriori techniques

Now we have a scheme we can apply an a posteriori argument. For a
scalar conservation law there are at least two approaches available to
us:

I Those based on L1-Kruskov techniques [DMO11]

I Those based on L2-relative entropy techniques [GMP15, GD16].

For systems only the relative entropy is appropriate.
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A posteriori analysis and mesh adaptivity

Entropy/ entropy flux pair

The pair η : U → R, and q : U → R satisfy

∇ηDf = ∇q. (*)

Strong solutions of
ut + f(u)x = 0 (**)

satisfy
η(u)t + q(u)x = 0.

Definition

A weak solution of (∗∗) is called an entropy solution with respect to the
entropy/ entropy flux pair (η, q) provided it satisfies

η(u)t + q(u)x ≤ 0

in the sense of distributions. The solution concept is motivated by a vanishing
viscosity approach.
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A posteriori analysis and mesh adaptivity

Remarks on entropy solutions

I In the scalar case every function η : U → R is an entropy.

I In the scalar case entropy solutions (satisfying the inequality for all
convex entropies) are unique.

I For systems of hyperbolic conservation laws there is usually only one
(physically motivated) entropy/entropy flux pair.

I (For systems) entropy solutions need not be unique.

I In most cases the entropy is convex. But there are important cases
where it is not.

I The entropy inequality is thought to ensure compatibility with 2nd-law
of thermodynamics.
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A posteriori analysis and mesh adaptivity

Stability and some PDE theory

Theorem (Dafermos, e.g.)

Given a system of conservation laws with an entropy/entropy flux pair
(η, q) and let D2η be positive definite and bounded. Let u be an
entropy solution and v a Lipschitz solution, then there exist C, C̃ > 0
such that

‖u(t, ·)− v(t, ·)‖L2(I) ≤ Ce
C̃(t)‖u(0, ·)− v(0, ·)‖L2(I).

Remark 1: This shows uniqueness of Lipschitz solutions in the class
of entropy solutions.
Remark 2: In the scalar case the abundance of entropies leads to a
much stronger stability result:

‖u(t, ·)− v(t, ·)‖L1(I) ≤ ‖u(0, ·)− v(0, ·)‖L1(I).

Remark 3: Note that the estimate is in L1 in the scalar case and in
L2 for systems.
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of entropy solutions.
Remark 2: In the scalar case the abundance of entropies leads to a
much stronger stability result:

‖u(t, ·)− v(t, ·)‖L1(I) ≤ ‖u(0, ·)− v(0, ·)‖L1(I).

Remark 3: Note that the estimate is in L1 in the scalar case and in
L2 for systems.
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A posteriori analysis and mesh adaptivity

Theorem (The case with residuals)

If v is a Lipschitz solution of a perturbed problem:

ut + div (f(u)) = 0, vt + div (f(v)) = R,

(think of R as a discrete residual) we have that

‖u(·, t)− v(·, t)‖2L2(I) ≤ C
(
‖u0 − v0‖2L2(I) + exp

(
t ‖v‖W1,∞(I)

)
‖R‖2L2(I×(0,t))

)

Notice that v must be Lipschitz!
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A posteriori analysis and mesh adaptivity

The need for reconstruction

We would like to use the relative entropy framework to estimate the
difference between exact and approximate solution.

There are two main problems:

I uh(t, ·), u(t, ·) are not Lipschitz continuous.

I ∂tuh + div (f(uh)) =: Rh is just measure valued, Rh(t, ·) 6∈ L2(I).

Basic idea of reconstruction:
Introduce intermediate quantity û such that

I û− uh can be explicitly bounded and is of optimal order.

I û is Lipschitz continuous and satisfies a perturbed PDE with an L2

residual.

I Use ‖u− uh‖ ≤ ‖u− û‖+ ‖û− uh‖.
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https://sites.google.com/site/tmpryer/home



A posteriori analysis and mesh adaptivity

Error estimate

I Making use of this stability result and reconstruction techniques it has been
shown that for the Richtmer dG scheme, defining

ût + div (f(û)) = ∂t(û− uh) + div
(
f(û)− f̂

)
=: Rh

and

L(t) := ‖ div (û(t, ·)) ‖∞
E(t) := ‖Rh(t, ·)‖2L2(I).

‖u(t, ·)− uh(t, ·)‖2L2(I) ≤ C
(
‖û(t, ·)− uh(t, ·)‖2L2(I) +

∫ t

0

E(s)
(
L(s) + 1

)
× exp

(
C̃

∫ t

s

L(σ) + 1 dσ
)

d s+ E(t)

)
.

There is also a contribution of the initial error.
I E(t) and L(t) are explicity computable.
I Both uh and û are computable.
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A posteriori analysis and mesh adaptivity

Remarks on error estimate

I The estimate depends exponentially on time.

I The estimate also depends exponentially on ‖div (û) ‖L∞(I). This to
be bounded as h→ 0 if u is Lipschitz.

I Thus, E1(uh) will not converge for discontinuous u.

I For Lipschitz u we expect E (uh) to be of the same order as the error
(which depends on polynomial degree and the regularity of u.)
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A posteriori analysis and mesh adaptivity

Estimators in action

Applying these estimators to a 2D simulation of Euler’s equations over
a rectangle with a ’mixing’ term.
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Model adaptivity

Difficulties

I Which PDE model is the correct one to use? The most physically
accurate would be compressible Navier-Stokes on a rotating sphere.
The current ECMWF model is comprised of 10 evolution equations in
3D. NS forms part of this.

I Find a stable, accurate numerical method for the chosen PDE.
Stability of numerical schemes for fast fluid flows equations is a
challenging topic.

I Under resolution of small scale features. Different length and time
scales present can, in general, not be represented on current generation
computational models.

I Computational complexity. As computational capacity grows, one
typically invests in increased resolution, more ensemble runs, addition
of PDEs governing new physical processes. This has a massive impact
on the computational complexity.
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Model adaptivity

Main idea

Rather than trying to approximate the original full PDE model
globally, a reduced PDE model is approximated over some of the
domain. The two models are coupled. The numerical scheme
“chooses” when and where to switch between the two based on an a
posteriori estimator.
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Model adaptivity

The main idea via illustrative example

The “exact” model is given by isothermal Navier-Stokes

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇(p(ρ)) = div (µ∇v)

where ρ denotes density, v denotes velocity and p = p(ρ) is the
pressure, given by a constitutive relation as a monotone function of
density, and µ ≥ 0 is the viscosity parameter.
The reduced model is given by

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇(p(ρ)) = 0
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Model adaptivity

Some motivation

I Arguably the NS system provides a more accurate description of reality since
viscous effects which are neglected in Euler’s equation play a dominant role in
certain flow regimes like thin regions near obstacles, for example, aerofoils
exhibiting Prandtls’s boundary layers [Nickel 1973].

I However, viscous effects are negligible in large parts of the computational
domain where convective effects dominate [Brezzi, Canuto, and Russo 1989,
Coclici and Wendland 2001, Discacciati, Gervasio and Quarteroni 2012].

I Thus, it is desirable to avoid the effort of handling the viscous terms in these
parts of the domain, that is, to use the NS system only where needed and
simpler models, e.g., (linearised) Euler everywhere else.
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Model adaptivity

Some more motivation

I This insight has lead to the development, of a certain type, of heterogeneous
domain decomposition methods where on a certain part of the computational
domain the NS equations are solved numerically, whereas the (linearised) Euler
equations are used for farfield computations [Utzmann, Schwartzkop, Dumbser
and Munz 2006, Borrel, Halpern and Ryan 2011., e.g.].

I In those works the domain was decomposed a priori before the start of the
numerical computation. The accuracy and effciency of those schemes depends
sensitively on the placement of the domains. Thus, the user is required to have
some physical intuition on where to solve each model.
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Model adaptivity

A different spin

Can this be done in an a posteriori fashion? That is, can we find a
way to appropriately decompose the domain into areas where we use
the simple and complex models automatically with no user knowledge
or input into the code?
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Model adaptivity

The main idea via illustrative example

Remember we’re trying to approximate isothermal Navier-Stokes with
fixed viscosity

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇(p(ρ)) = div (µ∇v)

by a non viscous equation

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇(p(ρ)) = 0

over parts of the domain.

To do this we introduce the coupled problem

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇(p(ρ)) = div (µ̂∇v) ,

where µ̂ is a piecewise constant function taking values either 0 or µ.
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Model adaptivity

A posteriori modelling error control

Let w =(ρ,v) be a weak solution to NS and wh =(ρh,vh) be an
approximation. Under some further technical assumptions, the
following a posteriori error estimate holds:

‖w(·, t)−wh(·, t)‖2L2(Td) +

∫
Td×(0,t)

µ

4k
‖∇v −∇vh‖2L2(Td)

≤ C
(
‖w(·, 0)−wh(·, 0)‖2L2(Td) + ED + EM

)
with C, k being constants and

EM := ‖(µ− µ̂)∇v̂‖2L2(Td×(0,t))

ED :=
k2

µ
‖RP ‖2L2(0,t;H−1(Td)) + ‖RH‖2L2(Td×(0,t)) .
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Model adaptivity

Specifics

Consider the use of model adaptivity on the Isothermal Navier-Stokes
system in a situation where Kármán vortices are produced by a flow
over a cylinder with a Reynolds number of 100. We impose slip
boundary conditions on the top and bottom of the rectangular region,
an inflow and outflow on the left and right hand side respectively,
compatible with the initial conditions and a no slip condition on the
cylinder itself.
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Model adaptivity

The full problem

Now consider the Navier-Stokes-Fourier problem with fixed viscosity

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇p = div (µ∇v)

∂te+ div ((e+ p)v) = div (µ(∇v) · v + κ∇T ) .

We’re approximating this by the non viscous Euler’s equation

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇p = 0

∂te+ div ((e+ p)v) = 0.

over parts of the domain.

We use the coupled problem

∂tρ+ div (ρv) = 0

∂t(ρv) + div (ρv ⊗ v) +∇p = div (µ̂∇v)

∂te+ div ((e+ p)v) = div (µ̂(∇v) · v + κ̂∇T ) ,

where µ̂ and κ̂ are piecewise constant functions taking values either 0 or µ or 0
and κ respectively.
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Model adaptivity

Full Navier-Stokes-Fourier

Consider the use of model adaptivity on the Navier-Stokes-Fourier
system in a supersonic flow around an aerofoil. Here we are travelling
at Mach 1. We impose slip boundary conditions on the top and
bottom of the rectangular region, an inflow and outflow on the left
and right hand side respectively, compatible with the initial conditions
and a no slip condition on the aerofoil itself.
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Model adaptivity

Full Navier-Stokes-Fourier

Consider the use of model adaptivity on the Navier-Stokes-Fourier
system in a supersonic flow over a forward facing step. Here we are
travelling at Mach 3.66.
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Conclusions, open problems, future work directions

Conclusions

I We have derived a Mathematical framework able to produce a posteriori
bounds to drive both mesh refinement and model switching within a numerical
simulation.

I This procedure is automated and does not rely on a priori knowledge of any
features of the model.

I Offers the potential for significant speedup in computational runs, by solving a
reduced dimensional PDE model and a reduced complexity simulation.

Open problems and future work

I How does one couple the two models best in practice? Is a piecewise
discontinuous switch between the models too sharp? Additional interface
conditions? Multigrid coupling?

I Generalisation to other PDE model hierarchies.
I Efficient implementation of a coupled model to really see the benefits in terms

of CPU time. Whilst we saw some speedup, we can do better utlising
paralellisation in a clever way.
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