

Climate simulation analysis: approach by Data Science

- Team profiles
 - Computational fluid dynamics modelers
 - Machine learning professionals
 - □ Computer science
 - Meteorologist
 - ☐ Statistician
 - ☐ Geodesist
 - Mathematician

- Climate change and risks: research opportunities
 - □ Data assimilation and model reduction
 - Data dimension reduction
 - Climate change and impact on urban atmospheric pollution
 - Extreme weather events

- Data assimilation and model reduction
 - □ High performance computing: hardware
 - ☐ Improving the computer power
 - Processor (transistor(s))
 - □ Vector processor (shared memory)
 - Multi-processor (shared memory)
 - □ Multi-processor (distributed memory)
 - ☐ Cloud and grid-computing
 - Multi-processor (multi-core processor)
 - □ Multi-processor (multi-core processor) + co-processor

- Data assimilation and model reduction
 - ☐ High performance computing: software
 - □ One example: FFT (changed the world)
 - Algorithm complexity
 - ☐ Lesson to be learned: do the same thing
 - □ Lesson to be learned: do in another way (efficiency)

- Data assimilation and model reduction
 - □ Do same thing
 - □ ... but more efficient
 - □ Lesson to be learned!

Received: 26 February 2017

Revised: 14 July 2017

Accepted: 14 July 2017

DOI: 10.1002/fld.4416

RESEARCH ARTICLE

WILEY

Model identification of reduced order fluid dynamics systems using deep learning

Z. Wang¹ | D. Xiao^{2,4,5} \bigcirc | F. Fang^{2,5} | R. Govindan³ | C. C. Pain^{2,5} | Y. Guo⁵

- DA and model reduction
 - Deep Learning for ROM
 - □ Full ("Exact")
 - □ 3 POD
 - □ 12 POD
 - ☐ (POD: Proper Orthogonal Decomposition
 - ☐ (ROM: Reduced Order Model)



- Data assimilation and model reduction
 - Do same thing ... but more efficient
 - NN doing same thing than LETKF (COAPS-FSU)

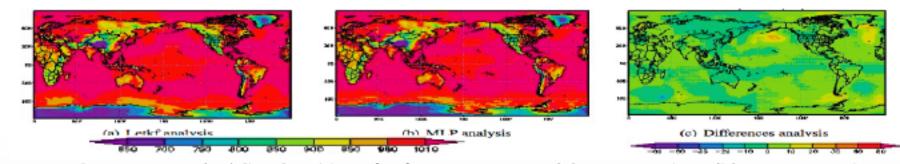
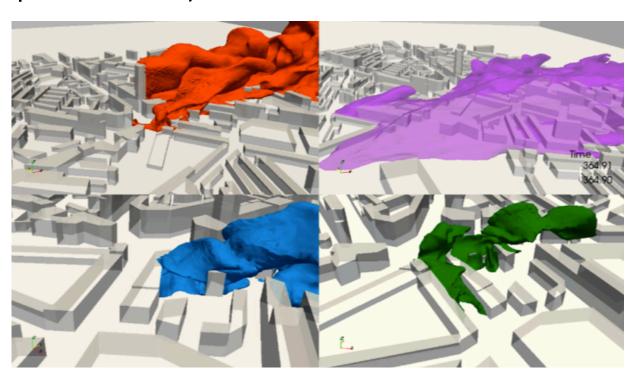


Fig. 7 -Surface Pressure (PS) [hPa] Fields 03/01/2004 at 06 UTC. (a) LETKF analysis (b) MLP-DA analysis (c) differences between LETKF and MLP-DA analyses.

Total running time of 124 cycles or January/2004.		
Execution of 124 cycles	MLP-DA (hour:min:sec)	LETKF (hour:min:sec)
Analysis time	00:02:25	11:01:20
Ensemble time	00:00:00	15:50:40
Parallel model time	00:27:20	00:00:00
Total Time	00:29:45	26:52:00

- Data dimension reduction
 - □ As already mentioned: SVD_POD
 - Methodologies based on computational intelligence
 - □ Kaizen Programming
 - □ Decision Tree
 - Random Forest
 - ☐ ANN:
 - MLP (S-NR), RBF (S-NR), Elman/Jordan (S-R),
 - Hopfield (unS-R), SOM (unS-R)
 - Deep-Learning
 - Kaizen Programming
 - ☐ Fuzzy, Neuro-Fuzzy

- CC and impact on Urban Atmospheric Pollution
 - ☐ Impact on health of communities
 - ☐ Sustainable cities: VAPOR (Virtual City Air POllution Fast Response Model)



- CC and impact on Urban Atmospheric Pollution
 - ☐ Sustainable cities: VAPOR
 - ☐ IPCC scenarios: downscaling techniques
 - Analysis of different scenarios:
 - under detailed simulations: reduction of problem dimensionality

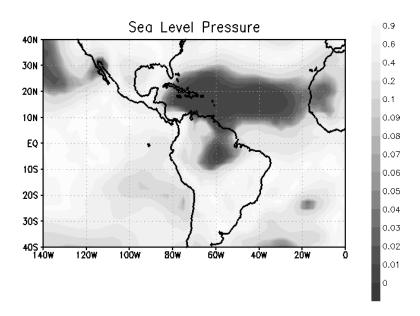
- Extreme weather events
 - □ IPCC report: more intense and more frequent extreme events

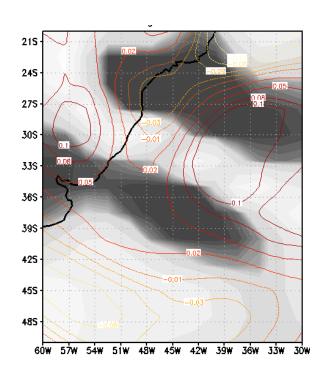
- Extreme weather events
 - □ Intense rain fall (storms, hurricane/typhoon)
 - ☐ Floods
 - □ Deep drought
 - Heatwaves
 - □ Scales:
 - Short and medium term (1 day 10 days)
 - Sub-seasonal (2 up to 4 weeks)
 - Climate (more than 4 weeks)

- Extreme weather events (methods for detections)
 - □ Data reduction:
 - Raizen approach
 - P-value evaluation
 - Rough set theory
 - Map reduce
 - □ Detection:
 - Deep Learning (LSTM: Long-Short Term Memory)
 - Decision Tree
 - Random forest
 - □ Example:
 - P-value (reduction) + Decision Tree (detection)

- Extreme weather events (methods for detections)
 - □ Example: (Nov/2008: Santa Catarina state, Brazil)
 - P-value (reduction) + Decision Tree (detection)

- Extreme weather events (methods for detections)
 - □ Example: (Nov/2008: Santa Catarina state, Brazil)
 - P-value (reduction) + Decision Tree (detection)





- Extreme weather events (methods for detections)
 - □ Example: (Nov/2008: Santa Catarina state, Brazil)
 - P-value (reduction) + Decision Tree (detection)

