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m Team profiles
Computational fluid dynamics modelers
Machine learning professionals
Computer science
Meteorologist
Statistician
Geodesist
Mathematician
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‘ Data Science and Machine Learning

m Climate change and risks: research opportunities
Data assimilation and model reduction

Data dimension reduction

Climate change and impact on urban atmospheric
pollution

Extreme weather events
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m Data assimilation and model reduction
High performance computing: hardware
Improving the computer power
Processor (transistor(s))
Vector processor (shared memory)
Multi-processor (shared memory)
Multi-processor (distributed memory)
Cloud and grid-computing
Multi-processor (multi-core processor)
Multi-processor (multi-core processor) + co-processor
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m Data assimilation and model reduction
High performance computing: software
One example: FFT (changed the world)
Algorithm complexity
Lesson to be learned: do the same thing
Lesson to be learned: do in another way (efficiency)
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O model reduction
Do same thing
... but more efficient
Lesson to be learned!
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N model reduction
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m Data assimilation

1 Do same thing ... but more efficient
1 NN doing same thing than LETKF (COAPS-FSU)

oy 1ok mnnivele Y AAT P analysis (o) Differences analvsis

o

Fig. 7 -Surface Pressure (PS) [hPa] Fields 03/01/2004 at 06 UTC. (a) LETKF analysis (b) MLP-DA analysis
(c) differences between LETKF and MLP-DA analyses.

Total running time of 124 cycles or January/2004.

QAGU FALL MEETING
San Francisco | 14 -18 December 2015

Analysis time 00:02:25 11:01:20

Ensemble time 00:00:00 15:50:40

Parallel model time 00:27:20 00:00:00

Total Time 00:29:45 26:52:00
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m Data dimension reduction
As already mentioned: SVD_POD

Methodologies based on computational intelligence
Kaizen Programming

Decision Tree
m Random Forest

ANN:
m MLP (S-NR), RBF (S-NR), ElIman/Jordan (S-R),
m Hopfield (unS-R), SOM (unS-R)
m Deep-Learning

m Kaizen Programming
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m CC and impact on Urban Atmospheric Pollution
"1 Impact on health of communities

1 Sustainable cities: VAPOR (Virtual City Air POllution Fast
Response Model)
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m CC and impact on Urban Atmospheric Pollution
Sustainable cities: VAPOR
IPCC scenarios: downscaling techniques
Analysis of different scenarios:

m under detailed simulations: reduction of problem dimensionality
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m Extreme weather events

"1 IPCC report: more intense and more frequent extreme
events
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m Extreme weather events
Intense rain fall (storms, hurricane/typhoon)
Floods
Deep drought
Heatwaves

Scales:
m Short and medium term (1 day — 10 days)
m Sub-seasonal (2 up to 4 weeks)
m Climate (more than 4 weeks)
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m Extreme weather events (methods for detections)

Data reduction:
m Raizen approach
m P-value evaluation
m Rough set theory
m Map reduce

Detection:
m Deep Learning (LSTM: Long-Short Term Memory)
m Decision Tree
m Random forest

Example:
m P-value (reduction) + Decision Tree (detection)
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m Extreme weather events (methods for detections)

1 Example: (Nov/2008: Santa Catarina state, Brazil)
m P-value (reduction) + Decision Tree (detection)
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m Extreme weather events (methods for detections)
1 Example: (Nov/2008: Santa Catarina state, Brazil)

m P-value (reduction) + Decision Tree (detection)

Sea Level Pressure 0.9

215 1
40N 0.6
30N 0.4 245 -
0.2
2081 0.1 275 -
10N 1 Q.08
0.08 305 .
EQ 1
Q.07 335 8 0.08
105 1 0.06 : ‘ s
205 | 0.05 TR A
0.04
3051 0.03 31
403 r T T 7 — 0.02
TaOW 120w 100w 80w 60w 40W 20w 0 425 1
0.01
0 455 1
485 -
60W 57W 54W 51W 4BW 45W 42W 39W I6W 33W 30W




INPE

‘ Data Science and Machine Learning

m Extreme weather events (methods for detections)

Example: (Nov/2008: Santa Catarina state, Brazil)
m P-value (reduction) + Decision Tree (detection)
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