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1. Executive summary 
 

This workshop brought together an extremely diverse set of world leading researchers, 

mathematicians, computer scientists, meteorolgists, statisticians, machine learning 

professionals, computational fluid dyanmics modellers, geodesists, engineers, 

biologists, geotechnicians, oceanographers and physicists were all represented. 

Bringing these groups of people together is of paramount importance for the 

adaptation, mitigation and resilience of problems arising in climate change that require 

wide fields of expertise, a truly multidisciplinary effort is needed. 

The workshop was organised into four working groups:  

1. Modeling, Computer Architecture and Physical Process 

2. Checking/Verification Time Series 

3. Data Science & Machine Learning 

4. Disaster Risk Reduction 

Within each group, the dynamics allowed for the creation of a set of international 

collaborative projects between researchers to be taken forward. The resulting projects 

included extremely broad application areas, such as, model and data reduction through 

deep learning approaches, extreme event identification and uncertainty quantification 

through adjoint and Monte-Carlo methods, but also targetted projects to specifc 

scenarios, like the spread of disease through epidemiology, long range interactions 

between oceans and atmosphere and the predictability of landslides. 

This resulted in a diverse set of high impact projects for which we plan to seek funding 

through appropriate research support agencies. This will allow for the fruition of the 

ideas initially developed here. Already applications are being developed resulting from 

these collaborations and further international knowledge exchange partnerships are 

being planned. 
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2. Workshop Schedule 
 

AUGUST 29TH, 2017 (TUESDAY) 

MORNING 

08:30 Registration 

09:30 Opening ceremony 

10:00 Talk 1 - Haroldo Campos Velho-INPE/BR 

11:00 Talk 2 - Jean Ometto-INPE/BR 

12:00 Lunch 

AFTERNOON 

13:30 Talk 3 - Jair Koiller-SBMAC/BR and Leonardo Santos-Cemaden/BR 

14:00 Talk 4 - Tristan Pryer-University of Reading/UK 

15:00 Talk 5 - Luiz Fagundes-Edinburg/UK 

15:30-16:00 Coffee-break 

16:00 Talk 6 - Fangxin Fang-Imperial College/UK and Jeff Gomes-University of 

Aberdeen/UK 

16:30 Talk 7 - Luciana Londe-Cemaden/BR 

17:00 Talk 8 - Nicolas Rubido-Universidad de la República/UY 

18:00 First day closing ceremony 

19:00 Welcome Dinner (Ema Palace Hotel) 

AUGUST 30TH, 2017 (WEDNESDAY) 

MORNING 

09:00-09:30 Working-groups formation 

09:30-12:00 Working-groups Coordinator: explanation about the work dynamics 

Participants will introduce themselves, indicating his/her institution, 

expertise, and current research. 

12:00-13:30 Lunch 

AFTERNOON 

13:30-15:30 Working-groups: defining scientific questions 

15:30-16:00 Coffee-break 
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16:00-17:00 Talk 9 – Marcelo Barreiro- Universidad de la República (UY) 

17:00-18:00 Networking 

AUGUST 31ST, 2017 (THURSDAY) 

MORNING 

09:00-12:00 Working-groups: discussion about data and methods 

12:00-13:30 Lunch 

AFTERNOON 

13:30-15:30 Group report preparation 

15:30-16:00 Coffee-break 

16:00-17:00 Talk 10 - Tristan Pryer-University of Reading/UK 

(Funding opportunities for Brazilians in the UK) 

17h-18h Networking 

SEPTEMBER 01ST, 2017 (FRIDAY) 

MORNING 

09:00-11:00 Working-groups: presentation preparation 

11:00-11:30 Group-1: Report presentation (Plenary meeting) 

11:30-12:00 Group-2: Report presentation (Plenary meeting) 

12:00-13:30 Lunch 

AFTERNOON 

13:30-14:00 Group-3: Report presentation (Plenary meeting) 

14:00-14:30 Group-4: Report presentation (Plenary meeting) 

14:30-15:00 Group-5: Report presentation (Plenary meeting) 

15:00-15:30 Coffee-break 

15:30-17:00 Plenary discussion 

SEPTEMBER 02ND, 2017 (SATURDAY) 

09:00-10:30 Workshop final report 

10:30-11:30 Letter addressed to support agencies, indicating priority scientific topics 

11:30-12:00 Closing ceremony 

12:00-15:00 Closing Lunch (Brazilian Barbecue) 
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3. Group discussion and future Projects 
 

3.1 Working Group I - Modeling & Computer Architecture/Physical Process 

 

Group: Tristan Martin Pryer (Moderator), Marcelo Barreiro (Moderator), Cassiano 

Bortolozzo, Jemima Tabeart, Luís Marcelo de Mattos Zeri, André Lanfer Marquez, Celso 

Von Randow, James Jackaman, Jean Ometto, Rodrigo S. Costa, Rong Zhang, Oliver 

Sutton, and James Targett. 

 

3.1.1 Hydrological modelling. 
 

A hydrological model is a simplification of a real world system to aid in the prediction 

and management of water resources.  

The siltation of reservoirs is a consideration of paramount importance for regions that 

suffer from large amounts of erosion. This is particularly important for the maintenance 

and life span of the reservoir itself, allowing for the uninterrupted supply of water to 

both hydropower and, indeed, the population. 

In the energy context, water is an extremely important resource. Most of electric matrix 

in Brazil comes from hydropower (68,1% in 2016 according to EPE), and it has a conflict 

evolved: the use of water to human consumption, agricultural uses and energy 

production. Know how are the real situation of the resource is crucial for decision 

makers. 

Current practice in Cemaden is to use a Probability Distributed Model (PDM) [Moore, 

2007] to forecast run-off/stream-flow. It is used due to the simplicity of the model, less 

demand on data and the computational time. This is necessary because of the limited 
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operational time. Hydrological processes change in time, effected by many processes, 

for example, the change in land-use. The PDM model does not include distributional 

information on land-use, soil properties and other information such as rainfall, 

transpiration, etc., this is completely insufficient for hydrological simulation. 

 

 

Another model is the SHETRAN package [Ewen et. al. 2000], this is a computational tool 

that uses a finite difference (Preissman) to approximate the solution of PDEs. This 

system of PDEs incorporates more information than the PDM model, including detailed 

surface, subsurface and channel flow processes along with detailed land use and soil 

information. It is currently not used for operational forecasting due to the high 

computational cost of the model, this is not feasible due to the limited operational time. 

A particular challenge is how to reduce the complexity of the PDE system to allow for 

efficient approximation in short time. Adaptivity is crucial in the success of algorithms 

for geophysical multiscale problems with exactly this in mind. There are many notions 

of adaptivity, mesh refinement being one of the more popular, but local polynomial 

enrichment, movement of the nodes, are also possible, but the main goals are the 

balancing of computational time with accuracy of the numerical model. 

References: 

Ewen, J., Parkin, G., & O'Connell, P. E. (2000). SHETRAN: distributed river basin flow and 

transport modeling system. Journal of hydrologic engineering, 5(3), 250-258. 

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'connell, P. E., & Rasmussen, J. (1986). An 

introduction to the European Hydrological System—Systeme Hydrologique 

Europeen,“SHE”, 2: Structure of a physically-based, distributed modelling 

system. Journal of hydrology, 87(1-2), 61-77. 

R. J. Moore. (2007). The PDM rainfall-runoff model. Hydrology and Earth System 

Sciences Discussions, European Geosciences Union, 11 (1), pp.483-499. 

 

 

FIGURE 1: THE STRUCTURE OF THE SHETRAN NUMERICAL HYDROLOGICAL 

MODEL. SOURCE [ABBOTT ET. AL. 1986]. 
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3.1.2 Developing predictive theories for storm tracks' response to external forcing. 

 

In the extratropical latitudes extreme meteorological events, like strong rainfall, heat 

waves and dry spells are related to the position and intensity of the jet streams and 

storm tracks as well as the occurrence of atmospheric blocking. In the context of climate 

change due to anthropogenic forcing, it has been shown that regional climate changes 

strongly depend on these dynamical aspects of climate. Moreover, the regions that do 

not show a robust response to radiative forcing have been tied to dynamical aspects of 

climate change (see Figure 1, Shepherd 2014) and have not changed significantly 

between IPCC AR4 and 5 reports. The energetic point of view that prioritizes global 

atmospheric warming and thermodynamic/radiative feedbacks makes sense to 

determine the global atmospheric response to greenhouse gases, but there is a need to 

include changes in atmospheric circulation to fully understand regional climate 

projections and reduce its uncertainties (Deser et al 2012, Sheperd 2014). Less 

uncertainty would produce more reliable projections to inform climate adaptation. 

Thus, in order to reduce uncertainty in regional climate change projections it is 

extremely important to address the sensitivity of storm tracks to external forcing. In 

recent years it has been shown that the variability of storm tracks on seasonal and longer 

time scales depend not only on internal atmospheric dynamics, but also on the surface 

oceanic conditions (Chang et al 2014) and polar sea ice loss (Barnes and Screen 2015). 

Thus, it is a coupled ocean-atmosphere-ice problem.   

On the other hand, climate dynamics is often studied using statistical methods like 

Principal Component Analysis, which has lead to “statistical modes of variability” 

thinking. This is a convenient way to condense the atmospheric behaviour but does not 

allow to develop a predictive theory for atmospheric dynamics, particularly for the 

behaviour of the response of storm tracks, blocks and jet streams to external forcing. 

Given the complexity of the problem, there is a need to tackle it using a hierarchy of 

climate models of increased complexity. CMIP5 are very complex models and is very 

difficult to diagnose the physical processes involved as well as to determine if a 

particular response was expected.  

To proceed, the first step is to develop process-based metrics based on the known 

theory, like one characterizing eddy-mean flow interaction, to diagnose the behaviour. 

Then use the hierarchy of models to develop an understanding and predictive theory 

that would tell what to expect about changes in jets and storm tracks under 

antropogenic forcing. 



 

9 
 

 

 

Data-driven research can also help if it is connected to physical understanding. For 

example, stratify the data according to different physical/dynamical regimes and 

characterize each situation using tools from complex networks or machine learning. Do 

it in a controlled environment, as for example in reduced-complexity climate models and 

then try to find the associated signatures in more complex models at the same time 

determining how the inclusion of added physics modify the characteristics found before. 

A step-by-step process would then help understand how the dynamical regime would 

change under external forcing (e.g. radiative forcing). 

References: 

Shepherd, T.G. (2014) Atmospheric circulation as a source of uncertainty in climate 

change projections. Nature Geoscience, 7. pp. 703-708. 

n precipitatiFrom Knutti and Sedlacek (2013).  

Deser, C., A. S. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change 

projections: The role of internal variability. Climate Dyn., 38, 527-546. 

Barnes, Elizabeth A. and James Screen, 2015: The impact of Arctic warming on the 

midlatitude jetstream: Can it? Has it? Will it?. WIREs Climate Change, 6. 

 

3.1.3 Complexity and the cost of large scale simulations 

 

Simulating large scale physical systems, such as atmospheric and ocean models, can be 

inherently very expensive. Recently, the sheer scale of these simulations is beginning to 

reach a limit dictated by the power consumption of the data centres in which the 

computations occur. In order to continue to improve the scale and accuracy of these 

simulations, it is therefore necessary to turn to new approaches to improve the 

FIGURE 2: ANNUAL MEAN PRECIPITATION CHANGE FOR THE END OF THE 21ST 

CENTURY FOR AN ENSEMBLE OF CMIP5 CLIMATE MODELS. STIPPLED (ROBUST 

CHANGES); HATCHED (CHANGES SMALLER THAN NATURAL VARIABILITY); NO MARKS 

(INCONSISTENT MODEL RESPONSE). 
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efficiency of the methods in use. Broadly speaking, there are five design choices within 

these simulations which contribute to their cost: the choice of underlying physical 

model, the type of numerical method used, the resolution of the mesh, the precision of 

the arithmetic used in the computation, and the choice of computer hardware. 

Four of these, the chosen model, the class of numerical method, its resolution, and the 

arithmetic precision all contribute to the error of a simulation — for a certain level of 

accuracy to be achieved, these must all be chosen to provide high enough accuracy. 

However, where any of these are set to a higher level of accuracy than is necessary, the 

computation will take longer and use more resources. The choice of what hardware the 

computation is run on will also affect the time, but also the power usage (Figure 3). For 

instance, a high performance computing cluster built around general purpose CPUs is 

highly flexible, but consumes a significant amount of energy per computation. At the 

other end of the spectrum, specialist hardware such as Field Programmable Gate Arrays 

(FPGAs) are often better suited to different methods than CPUs and use dramatically 

less power, but require very specialist programming. 

 

 

In recent years, there have been several key advances which could particularly help 

decrease the cost associated with large simulations while maintaining similar levels of 

accuracy, or, equivalently, allow for larger scale or more accurate simulations for a 

similar cost. For instance, modern numerical techniques are often able to help here, by 

incorporating features such as tightly focussing computational effort to resolve features 

which required it. Automatic approaches for this include coarsening and refining their 

computational mesh or in response to estimates of the local quality of the simulation, 

or switching locally between high and low fidelity models, incorporating physical 

phenomena occurring at many different scales only where they are needed. Such 

techniques can retain the accuracy of a numerical scheme often without increasing the 

size of the simulation.  

Coupled with this, the ECMWF have recently shown that usual ‘double precision’ 

arithmetic is often not required to ensure the accuracy of their simulations, observing 

that single precision was enough. Switching to reduced precision arithmetic, can offer 

sizable performance gains. Since the simulation error produced by this loss of arithmetic 

precision is less significant than the other sources of discretisation error, the quality of 

the outputs would not be noticeably affected. To take full advantage of this flexibility, 

FIGURE 3: PREDICTED POWER USAGE ON LARGE SCALE CLIMATE MODELS. 
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however, requires specialised hardware, since conventional CPUs are generally 

restricted to either single and double precision. GPUs often additionally support half 

precision, while FPGAs have far greater flexibility as it is possible to choose nearly any 

level of precision. 

Significant challenges remain before the efficiency gains offered by techniques such as 

these can be properly exploited by in the large scale simulations where they could be 

exploited. For instance, many of the numerical techniques still require further 

development before they can be applied to the complex models used in applications 

such as weather forecasting and climate modelling, and the precise savings possible in 

such models remain to be seen. Similarly, the impacts and potential savings of using 

reduced precision arithmetic remain to be investigated. In particular, it will be important 

to build a theoretical understanding of the behaviour of numerical methods in a reduced 

precision environment, and how fundamental properties such as conservation of mass 

or energy are affected. 

References 

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather 

prediction. Nature, 525(7567), 47-55. 

N.P. Wedi, P. Bauer, W. Deconinck, M. Diamantakis, M. Hamrud, C. Kühnlein, S. 

Malardel, K. Mogensen, G. Mozdzynski, P.K. Smolarkiewicz. (2015). The modelling 

infrastructure of the Integrated Forecasting System: Recent advances and future 

challenges. 

 

3.1.4 Correlated Observation Errors 

 

Higher resolution of a numerical weather prediction system permits improved global 

and regional forecasts, and is key for natural disaster prediction. In order to obtain high 

resolution weather forecasts, more densely distributed observations are required. 

Currently up to 80% of observations are discarded (‘thinned’) to try and minimise the 

effect of correlated observation errors. Accounting for these error correlations would 

reduce the requirement to thin and means that better use of observations can be made. 

More observations allow a better understanding of small scale and local features and an 

improved ability to predict them [RBC15].  

Correlated observation errors occur for three main reasons [JBB + ]: errors in 

transformation of indirect variables, a difference in scale between the model grid and 

observations, and artificial correlations induced by errors in the model. Examples of 

transformation errors are seen for satellite and radar observations. Satellites measure 

radiances, whereas standard model variables are temperature, humidity etc. To 

compare model variables with observations a highly non-linear radiative transfer 

method is required. In order to calculate this transform in operational time (hours), 
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approximate transfer techniques are needed. These approximations introduce 

correlated error in the observations. 

 

 

The introduction of correlated observation errors is very recent [WBE14], and is an 

active area of research both academically and operationally. Using correlated 

observation errors is more expensive computationally as a full matrix inversion is 

required. This, combined with a lack of knowledge about the structure of the 

correlations, has led most weather centres to use uncorrelated observation errors until 

relatively recently. One technique, commonly referred to as the Desroziers diagnostic, 

is almost exclusively used to diagnose observation error correlations. This technique 

relies on accurate knowledge of the errors in a corresponding model run, which is not 

necessarily true. Additional mathematical methodologies would increase confidence in 

the correlations. 

The following problems have been highlighted as areas of potential interest: 

• The development of alternative methods to determine observation error 
correlations. This could take the form of analytical methods arising from statistics, 
or operationally driven methods. One example of the latter is the use of 
conventional direct observations alongside satellite observations to extract 
correlation information. 

• The identification and quantification of sources of error in models, with the aim of 
understanding how these introduce observation error correlations. With respect to 
satellite observations, this could be an analytic description of how correlations are 
expected to be introduced via an approximate transfer technique. Error attribution 
requires accurate knowledge of instrument calibration as well as good physical 
intuition. 

• Temporal error correlations are currently not well understood. They will become 
increasingly important as knowledge of aforementioned forms of error correlations 
mature. 

References 

FIGURE 4: A DIAGNOSED CORRELATED MATRIX FOR THE IASI OBSERVING 

INSTRUMENT USING THE DESROZIERS DIAGNOSTIC [SDNEC14]. 

 



 

13 
 

[DBCP05] G. Desroziers, L. Berre, B. Chapnik, and P. Poli. Diagnosis of observation, 

background and analysis-error statistics in observation space. Quarterly Journal of the 

Royal Meteorological Society, 131(613):3385–3396, 2005.  

[JBB + ] T. Janjić, N. Bormann, M. Bocquet, J. A. Carton, S. E. Cohn, S. L. Dance, S. N. 

Losa, N. K. Nichols, R. Potthast, J. A. Waller, and P. Weston. On the representation 

error in data assimilation. Quarterly Journal of the Royal Meteorological Society. QJ- 

16-0326.R2. 

[RBC15] Sabrina Rainwater, Craig H. Bishop, and William F. Campbell. The benefits of 

correlated observation errors for small scales. Quarterly Journal of the Royal 

Meteorological 

Society, 141(693):3439–3445, 2015. 

[WBE14] P. P. Weston, W. Bell, and J. R. Eyre. Accounting for correlated error in the 

assimilation of high-resolution sounder data. Quarterly Journal of the Royal 

Meteorological 

Society, 140(685):2420–2429, 2014. 

[SDNEC14] Stewart, L. M., Dance, S. L., Nichols, N. K., Eyre, J. R. and Cameron, J.,  

Estimating interchannel observation-error correlations for IASI radiance data in the Met 

Office system. Quarterly Journal of the Royal Meteorological Society, 140:1236–1244, 

2014. 

 

3.1.5 Landslides Prediction 

 

The monitoring of mass movement systems is one of the objectives of CEMADEN's 

natural hazards alert system, since many cities in Brazil (and in the world) suffer from 

the problem of mass movements in populated areas. Although many events are 

triggered by rain, the distribution of geological structures and layers has a key role in the 

landslide event. For this reason CEMADEN is implementing a system integrated to the 

SALVAR system for the monitoring of the underground water content in several critical 

areas in Brazil. The equipment corresponds to a pluviometer station coupled to sensors 

installed in wells that measure the humidity every 0.5m (Figure 5). The humidity values 

are acquired every hour in times without rain and every 10 minutes during the rainy 

period, with the sampling change done automatically. Some stations are already 

operating in Campos do Jordão for the last 2 years. During the drilling of the well, where 

the sensors go, a distribution of the geological layers is already obtained at that point. 

In addition, geophysical acquisitions are planned with the Resistivity and Inductive 

Electromagnetic methods in the station areas to determine the 2D variation of 

subsurface structures. 
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The initial use of the stations is to have a constant monitoring in the Situation Room, 

with the average values of humidity, critical values of humidity that produce a rupture 

and the current value of humidity. With an automatic warning when moisture values 

change rapidly. This system is still being developed and is not yet operational at 

CEMADEN. Although the system allows instantaneous visualization of the humidity in 

different layers in real time, its use for alert is restricted, once the alert will be in very 

short notice. In this way, a project is proposed to associate the rain forecast and the 

current situation of the geological layer’s humidity to predict a possible rupture situation 

due the stability deterioration caused by the accumulation of water in the underground. 

 

 

 

FIGURE 5: SOIL MOISTURE SENSOR INSTALLED IN CAMPOS DO JORDÃO – SP. 

FIGURE 6: GEOPHYSICAL RESULTS IN CAMPOS DO JORDÃO – SP. IN A) THE RESULTS WITH 

INDUCTIVE ELETROMAGNETIC METHOD, IN B) THE RESULTS WITH VERTICAL ELECTRICAL SOUNDING 

AND C) THE RESULTS WITH ELECTRICAL RESISTIVITY TOMOGRAPHY. 
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The proposed multidisciplinary project has as main objectives: 

1. Understand how geotechnical parameters (for example, hydraulic conductivity, 
porosity, permeability, chemical composition) can be associated with geophysical 
parameters (for example, electrical resistivity, magnetic susceptibility). 

2. Determine how the water content in the layers is related to the amount and intensity 
of rainfall. 

3. Predict how the expected rainfall will change the soil humidity. 
4. Determine if with the expected humidity will have the occurrence of landslides. 
The challenges of the proposed project are: 

1. There are some equations and procedures to associate geotechnical parameters to 
geophysical parameters, but not many are addressed to the problem of landslides. 

2. To understand the relationship between rain intensity and the water content of the 
layers, a numerical modeling process is required. 

3. The prediction of how future rainfall will influence the humidity of the layers should 
be made in conjunction with future weather forecasting. 

4. The modeling of how future rainfall will influence the hydrogeodynamic balance of 
the areas should be done automatically or semi-automatically. 

5. In CEMADEN, the softwares that models the hydrogeodynamic balance of the slopes 
are GeoSlope and GeoStudio. That way the whole process is done as a black box and 
cannot be changed for the proposed goals. 

 

3.2 Working Group II - Checking/ Verification & Time Series 

 

Group: Nicolás Rubido Ober (Moderator), Alan James P. Calheiros (Moderator), 

Alessandra Corsi, Luana Albertani Pampuch, Luciano Xavier, Luis Ricardo Lage Rodrigues, 

Sheila Brito, and Tasmin Louise Symons 
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3.2.1 Forecasting severe storms 

 

Collaborators: A. Calheiros, A. Corsi, N. Rubido, and T. Symons 

Recents studies have shown that the number of extreme precipitation events have 

increased in recent decades [1,2] and, according to climate models, this condition will 

get worse in the coming years [3,4]. However, the current methods used to predict these 

severe events are inaccurate. Nowadays, the nowcasting of storms is essential in 

mitigating the effect (including life losses) of the natural disasters they can trigger, such 

as landslides or flooding. Nowcasting combines an ensemble of non-adaptive techniques 

that can make short range weather predictions (~6 hours). Consequently, our main goal 

is to develop adaptive nowcasting techniques for severe storm prediction that can go 

beyond the former time scale. In order to achieve this goal, we plan to use Compressive 

Sensing methods -- recovering a signal from sparse data -- [5-8] on different data 

platforms. 

The data to develop this forecasting system are based on cloud top information from 

weather satellites (radiance from different channel measurements), weather 

precipitation radars (from polarimetric variables), and numerical weather models (re-

analysis and prediction). It is worth noting that many of these channels and variables are 

irrelevant to the forecasting of storms, or have strong inter-dependencies. In order to 

keep the most relevant and independent measurements, a machine learning technique 

is therefore needed to separate them. Moreover, we are interested in forecasting 

storms in particular locations, such as areas at high risk of landslides or flooding, thus, 

the spatial characteristics of the data need to be discarded. 

In order to tackle our forecasting goal, our approach is twofold and is explained in what 

follows. On the one hand, we want to “storm-chase” -- track the clouds -- and use the 

most relevant time-series in order to develop a forecasting tool. This approach is 

analogous to a Lagrangian view-point of the cloud system. The forecasting tool will be 

derived by using Compressive Sensing on the corresponding data, namely, we will derive 

a model for the evolution of the cloud system, fitting previous recordings and 

extrapolating to future states. Consequently, we will be able to predict the cloud/rain 

systems evolution and perform parameter changes to assess possible tipping points. On 

the other hand, we want to construct a severe storm early-warning indicator for 

locations that have experienced disastrous landslides or flooding in the past. This 

approach is complementary to the former, being similar to an Eulerian view-point of the 

cloud system. The forecasting tool in this case will again be an application of 

Compressive Sensing, this time to define a pre-convective situation (which occurs a few 

hours before the appearance of the first convective cells over a specific area) to the 

time-series of weather variables coming from numerical models in the chosen locations 

and local information, such as rain gauges, precipitation from radar, and soil humidity. 

Our expected outcomes are the following: we will develop two parameter-free adaptive 

algorithms, one for severe storm prediction and another one for early-warnings of 
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potentially imminent landslide or flooding in risk areas. Both algorithms will work in real 

time using live feeds of cloud/precipitation/weather data and local information. 

References: 

[1] MARENGO, J.A.; RUSTICUCCI, M.; PENALBA, O.; RENOM, M.; An intercomparison of 

observed and simulated extreme rainfall and temperature events during the last half of 

the twentieth century: part 2: historical trends. Climatic Change, v. 98, n. 3-4, p. 509-

529, Oct. 2010. 

[2] SILVA DIAS, M.A.F.; DIAS, J.; CARVALHO, L.M.V.; FREITAS, E.D.; SILVA DIAS, P.L. 

Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, v. 116, n. 3-4, p. 

705 – 722, feb. 2013. 
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of model-simulated in extreme rainfall and temperature events during the last half of 

the twentieth century. Part 1: mean values and variability. Climatic Change, v. 98, n. 3-4 

, p. 493-508, Feb. 2010. 

[4] SILLMANN, J.; KHARIN, V.V.; ZWIERS, F.W.; ZHANG, X.; BRONAUGH, D. Climate 

extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. 

J. Geophys. Res. Atmos., v. 118, p. 2473–2493, Mar. 2013.. 

[5] E. J. Candès, J. Romberg, and T. Tao, IEEE Trans. Info. Theor. 52(2), 489-509 (2006). 

[6] D. L. Donoho, IEEE Trans. Info. Theor. 52(4), 1289-1306 (2006). 

[7] Wen-Xu Wang, et al., Phys. Rev. Lett. 106(15), 154101 (2011). 

[8] W.-X. Wang, Y.-C. Lai, and C. Grebogi, Phys. Rep. 644, 1-76 (2016). 

Data specifics: 

The storm tracking is based on the Forecast and Tracking the Evolution of Cloud Clusters 

(ForTraCC) algorithm, VILA et al. (2008). The system allows us to apply different input 

data, as brightness temperature from infrared channels in geostationary satellites or 

radar reflectivity as well. Several sources of information about the cloud tops and rain 

in the clouds will be analysed. The following list shows each variable for all data 

platforms. 

● Satellite GOES-10,12,13 (GOES-16 the new platform): 
○ Raw data 2D: reflectance and brightness temperature from different 

channels: 0.65μm, 3.9μm, 6.7μm, 10.7μm, and 12μm (GOES-16 - ); 
○ Spatial resolution: GOES-10,12,13 is 1x1km (shorter wavelength) and 4x4 

km over (longer wavelength). GOES-16 is 0.5x0.5km and 1x1km;  
○ Temporal resolution: every 30 minutes (GOES-16 every 15 minutes); 
○ Estimated variables: Cloud top height, phase, pressure and temperature, 

total precipitable water, lightning detection, cloud type, size expansion, 
etc.  

● RADAR: 
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○ Raw data 3D (lat,lon,level): reflectivity (horizontal and vertical wave), 
differential reflectivity, copolar correlation coefficient and Specific 
Differential Phase; 

○ Spatial resolution: 2x2km;  
○ Temporal resolution: 10 minute; 
○ Estimated variables: Hydrometeor classification and severe signature. 

● Landslide and Flood inventory from IPT 
● Numerical Weather Models: 

○ WRF, ETA, and BRAMS numerical models - 3D (lat,lon,level) Temperature, 
humidity, pressure, instabilities index, wind, etc.; 

○ Spatial resolution: 5 km; 
○ Temporal resolution: 3 hours (operational) and 1 hours (intensive 

operational period - SOS CHUVA project field experiment). 
 

3.2.2 Assessment of droughts impacts and forecasting on Paraíba do Sul basin 

 

Collaborators: S.S.B. Brito, L. R. Lage-Rodrigues, L.A. Pampuch, N. Rubido, T. Symons, 
and L. Xavier 

This project aims to assess drought predictability and impact at different climatological 

time-scales in the Paraíba do Sul basin. This region is located between the two most 

populous and wealthiest Brazilian cities (São Paulo and Rio de Janeiro), hence, it is a very 

important basin for water supply and energy production, making drought forecasting 

for this basin an extremely important issue. In general, drought duration, severity, and 

frequency are commonly estimated from the SPI, SPEI, and PDSI indices, which come 

from observational data. In this project, we will assess the seasonal-drought 

predictability by using the North America Multimodel Ensemble (NMME) forecast 

systems. Particularly, our main focus is in making a forecast quality-assessments that 

include deterministic and probabilistic verification-measures. Namely, we plan to 

critically and quantitatively contrast the NMME forecast outputs with the observations. 

In addition, we will evaluate the capacity of the Coupled Model Intercomparison Project 

Phase 5 (CMIP5) forecast systems to represent droughts in present time. Future 

scenarios, duration changes, drought severity and frequency will also be evaluated. 

Complementarily, the impacts of past drought events on energy production and water 

supply in this basin will be studied as well as the impacts due to the projected changes 

on drought patterns. The outcomes of this project can be extended to other regions and 

applied by institutions, such as CEMADEN, CPTEC, INMET, ONS, ANA, and others dealing 

with drought forecasting, in order to support decision-makers in reducing the potential 

negative drought impacts. 

Main Goals: 

● To compare indices for determination of drought periods (SPEI, SPI, PDSI): 

drought duration, drought frequency, drought severity 
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● Verification of forecasting at seasonal time scale and quantification of sampling 

uncertainties 

● Assessment of drought representation with climate system forecast (CMIP5) in 

the present period and changes of drought events on future climate scenarios. 

● Verification of drought impacts in economic sectors, for example, energy 

production and water supply 

Data: 

● Variables: precipitation, temperature, evapotranspiration, stream flow  

● Observation: GPCP, INMET, ANA, INPE, CEMADEN, ONS 

● Models (forecast/hindcast): NMME (North America Multimodel Ensemble; 

Kirtman et al., 2014) 

● Models (projections/simulations): CMIP5 and Regional Climate Models (RegCM 

and ETA) 

● Streamflow: basin committee (AGEVASP, ANA) 

 

Methodology: 

● Index Calculations: SPI, PDSI, SPEI on different time scales (McKee et al., 1993; 

Palmer, 1965; Vicente-Serrano et al., 2010) 

● Quantification of drought: duration, frequency, severity (Spinoni, et al. 2014; 

Spinoni, et al. 2015) 

● Forecast quality assessment using several verification measures, such as Pearson 

and Spearman correlation coefficient, Brier skill score, continuous ranked 

probability skill score, and ROC curves (Hersbach, 2000; Stephenson et al., 2008; 

Wilks, 2006; Jolliffe and Stephenson, 2012) 

● Quantify the sampling uncertainty using non-parametric bootstrap method 

(Mason, 2008; Jolliffe and Stephenson, 2012) 

● Assessment of models projections: CMIP5 and Regional Climate Models - 

drought representation in historical period and quantification of changes for 

future periods in different representative concentration pathways (RCP4.5 and 

RCP8.5)  
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3.3 Working Group III - Data Science & Machine Learning 

 

Group: Fangxin Fang (Moderator), Haroldo F. de Campos Velho (Moderator), Albert Sánchez, 

Alejandro Cholaquidis Noblia, Christopher Castro, Eugenio S. Almeida, Ivo K. Koga, Jefferson L. 

M. A. Gomes, Lucas Massaroppe, Maha H. Kouri, Tiago Jose de Carvalho, Vinicius V. de Melo. 

 

Climate simulation analysis: approach by Data Science 
Introduction. 
On the 29th of August, the city of São José dos Campos - Brazil held the International 

Workshop on Mathematics of Climate Change and Natural Disasters.  Several 

researchers from different institutions collaborated in a joint effort to address academic 

and scientific problems that exist in the contemporary society and science regarding 

Climate Change and Natural Disasters. Many of them can make use of Machine learning 

and Data Science techniques. 

In this report we identified some key points regarding Initial Conditions/Data 

Assimilation, Data Dimension Reduction, Urban Air Pollution and Extreme Events. 

These are individually addressed in the following document, divided by four major 

sections. Section one discuss key issues of the current Data Assimilation techniques, 

summarizing its current obstacles, open questions and possible methodological 

approaches. Section two regards the Data dimensionality reduction, as the amount of 

actual data generated in a daily basis grows bigger, Big-Data approaches and 

dimensionality reduction techniques are proposed to address it. Sections three and four 

regards the air pollution that is mainly driven by urban areas and extreme events that 

experience surges in their frequency, forced by climate changes. In Section four, we 
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investigate the application of machine learning approaches to improve dynamical model 

outputs in order to detect extreme events.  

Preparing the initial condition 

3.3.1 Machine Learning for Data Assimilation 

(Fangxin Fang / Maha Kaouri) 
 

Key questions:  
Can we improve the efficiency (CPU) and accuracy of the current methodology/replace 

the current methods used for modelling atmospheric-ocean dynamics?  

Can we provide new method tools and data science technology which provide real-time 

measurements and simulations to aid decisions that are needed to maintain a healthy 

environment? 

Scientific background: 
The key disadvantage of the current Data Assimilation methods is implementing and 

maintaining the adjoint – as soon as the model is changed, the adjoint must be updated. 

Due to the model complexity, solving such problems can be time consuming and 

computationally expensive.  

A widely used method is Ensemble Kalman Filter which has unrealistic mathematical and 

statistical assumptions – linearity, multivariate normality, stationary state-transition 

functions (Evensen, 2009). Furthermore, confidence in the dynamical atmospheric 

model impacts the quality of the solution of the Kalman Filter. More general approaches 

based on particle filters are already under investigation, where the Gaussian 

assumptions are relaxed. However, such filters have also a high computational effort 

(Snyder et al., 2008).  

Meteorological data is high dimensional. There are number of existing methods used to 

reduce the dimensional size of the data, for example, using super-observations (e.g. 

reducing the data by taking the average). Therefore, we propose a new approach to 

reduce the dimension by using Machine Learning – see Section 2. 

In summary, there are two main problems affecting Data Assimilation CPU: Data and 

Model size and complexity. Both will benefit from Machine Learning and Singular Value 

Decomposition - Proper Orthogonal Decomposition (SVD-POD), in the next section, we 

will outline these.  

Methodology: 
SVD-POD or Deep (machine) Learning can be used to reduce the computational effort 

on several aspects: on the dimensional size of the original model (Xiao et al., 2017, Fang 

et al., 2014) and the dataset by identifying the most important data, or as a new method 

for data assimilation (Cintra et al., 2016; Cintra and Campos Velho, 2014; Härter and 

Campos Velho, 2008). Applying this new technology to data assimilation and 

optimization methods will reduce the CPU time (Fang et al., 2009, Chen et al., 2011, Fang 

et al., 2017).  
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We will propose a new Reduced Order Model (ROM) with domain decomposition 

methods and Deep Learning (Wang et al., 2017). The Deep Learning methods will be 

used to construct a set of hypersurfaces representing the reduced fluid dynamic system 

(including linear and nonlinear fluid dynamics). We will form the ROM basis functions, 

but we will do this within each subdomain of a solution domain decomposed into 

subdomains in order to resolve the systems energy more efficiently than global basis 

function methods. In each subdomain, an adaptive number of POD expansion size will 

be determined. It also means that a ROM can be built up region by region without solving 

the full model across the whole solution domain.  

Applications: academic impact and on the society 
Having a very rapid ROM compatibility developed here will be nothing short of 

revolutionary for a large number of disciplines not least of all pollutant flow based 

disciplines.  

For all application areas, having a rapid ROM could potentially make tractable 

computationally demanding predictive problems: uncertainty analysis, data 

assimilation, optimizing monitoring/sensors/instrumentation/observations, optimal 

experimental design and control. ROM’s may be used in place of highly simplified (e.g. 

single column models or Gaussian plume dispersion modelling for air pollution) whilst 

maintaining the complexity of 3D models.  

Optimal design and sensitivity analysis can be used to identify the key parameters which 

are polluting the source (Fang et al., 2017). Therefore, we will be able to guide the 

decision makers about the pollutant sources so they can prevent/combat/mitigate this 

by identifying where the pollutant is coming from. 

The Adjoint method is the best method for uncertainty quantification (Cacuci et al., 

2005). However, it is computationally demanding. Instead of this, we propose using 

Machine Learning and ROM to get a sensitivity analysis in order to find the uncertainty 

parameters (not the initial conditions alone).  

We can use rapid response modelling to use a reduced model so that the CPU time is 

reduced. Therefore, we can generate the prediction in seconds, enabling us to link with 

the data and provide real-time predictions. This enables us to inform the public sooner, 

reducing injuries and fatalities. The decision makers and public will benefit from the 

rapid new generation of atmosphere modelling, efficient pollutant transport and 

processing as well as the rapid assessment of environmental impact.  

 

3.3.2 Data dimension reduction 

(Eugenio Almeida / Ivo Koga / Lucas Massaroppe / Vinicius Melo) 

 

During recent years, Climate Science and Natural Disasters researchers have to deal with 

an exponential growth in large and heterogeneous databases to conduct their research. 

For instance, the number of meteorological and environmental satellites have 

increased, with new sensors onboard and more spectral bands. 
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In (big) data science, there is a need of preprocessing due to data redundancy making it 

difficult to extract relevant data. These redundancies must be filtered out in order for 

techniques to be effective. 

In the next section we introduce some possible techniques of dimension reduction. 

Dimension reduction techniques 
To induce a model to explain a phenomenon, a model building technique uses a dataset  

of observations to develop a hypothesis that explains a phenomenon. Each observation 

contains one or more variables (features). As the number of features increase, finding a 

high-quality model may become exponentially harder. This is a well-known problem 

called "curse of dimensionality". 

To deal with it, many researchers have been suggesting techniques to perform 

dimensionality reduction (Xiao et al., 2017, Fang et al., 2014, Ruivo et al., 2015). The 

most popular approaches are feature subset selection and feature extraction. 

The rationale behind feature subset selection is that not all features may be useful to 

describe or explain the phenomena, meaning that the dataset may be composed of 

relevant and irrelevant features. There are several techniques for reducing the data 

dimension without losing information.  

There are basically two approaches: filter and wrapper. In the filter approach, a 

technique analyses the data and tries to identify the relevance of a feature according to 

the expected output (supervised learning) or not (unsupervised learning). The wrapper 

approach uses a technique to select a subset of features and then induces a model on 

them.  

In a classification problem, one may check if the Probability Density Function (PDF) of a 

feature can be used to discriminate the classes in the dataset. This means that each class 

has a different PDF according to a specific feature. On the other hand, if there is 

overlapping, then such feature is not useful for classification. As one may notice, in this 

approach, features are analysed individually. However, they may be complementary, 

meaning they should be evaluated together. In this case, one could use the wrapper 

approach. Using this approach, the model is then evaluated to provide a quality 

measurement for that subset. After that, a new subset can be generated and evaluated. 

An iterative process is employed to find the best feature subset that optimizes a 

specified quality criterion. As one may notice, the wrapper approach is more time 

consuming as, for each feature subset, one has to induce a model and evaluate it. Also, 

the best feature subset is tied to the model building technique, meaning that a different 

technique could have a different best feature subset because different techniques use 

different ways of selecting features based on an importance criterion. 

Some techniques automatically perform feature subset selection during the model 

building process. Algorithms that employ regularization can eliminate features by 

weighting them with zero weights (Zou, H., & Hastie, T., 2005). Decision-trees (Quinlan, 

1986) commonly use some sort of entropy measure to select the currently most 

discriminative feature to use as a decision node; thus, not all features may be necessary 
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to build a tree. In the Random Forest algorithm (Breiman, 2001), a number of trees is 

built upon randomly selected feature subsets. This way, one can calculate a feature 

importance based on how much they are used in the forest. 

In feature extraction, the idea is to build a new set of features from the original feature 

set. One may optimize the weights applied to each feature in order to create a new one. 

Notice that all original features are used in this process. This process can be repeated to 

generate other features. Examples of techniques are projection methods such as 

Empirical Orthogonal Functions (EOF) was proposed by Lorenz (Lorenz, 1956), also 

known as Principal Component Analysis (PCA), Kernel PCA (Schölkopf, 1998), Random 

Projection (Bingham and Mannila, 2001) Projection Pursuit (Huber, 1985). Statistical 

analysis methods can combine with artificial intelligence procedures to reduce the data 

dimension: p-value approach and decision trees (Ruivo et al., 2015b). 

An alternative is to use Artificial Neural Networks (ANN) (Haykin, 2009) and Deep 

Learning. In this approach, the ANN gets the original data as input and must generate 

the same data as output. However, the hidden layer has the desired number of features 

to be extracted. Thus, the ANN must condense the information into the desired number 

of features and be able to recover the original data from the reduced feature set. After 

trained, the ANN is cut to the hidden layer, so it outputs just the reduced data. Self-

Organizing Map (SOM) (Sheridan, 2011) is an ANN employed for data reduction. SOM 

can be used as a clustering technique. The idea is to map the original data into a low-

dimensional grid.  

Another approach for feature extraction is to combine some of the original features (not 

necessarily all of them) into new features. Such approach is also known as feature 

construction or generation. If done manually, it is also known as feature engineering. 

The combination can be nonlinear and any kind of transformation can be used. For 

instance, one can apply arithmetic, geometric, or conditional operations on the original 

features to obtain new features. Examples of techniques are evolutionary algorithms 

such as Genetic Programming (Sotto et al., 2016), Grammatical Evolution (Miquilini et 

al., 2016) and, more recently, Kaizen Programming (de Melo and Banzhaf, 2016). 

Our focus is on machine-learning related methods, like SOM, Kernel PCA and Kaizen 

Programming, as well as the canonical techniques, such as EOF (also called PCA or SVD), 

as pre-processing step. 

Application examples: 
● ANN for downscaling medium-range ensemble forecasts and 

probabilistic prediction of local precipitation in Japan (Ohba et al., 2016; 

Valverde et al., 2014, 2006, 2005),  

● Assessing the forecast skill of eight North American Multi Model 

Ensemble (NMME) models by improving their skill using Bayesian 

updating (BU)  (Zhang et al, 2017). 

● Comparison of two different methods (PCA and SOM) of teleconnection 

pattern recognition (Rousi et al., 2015). 
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● Evaluation of Machine Learning tools using historical flood data collected 

in the State of Iowa, the United States and associated 

hydrometeorological variables from 1948 to 2010. (Yahui et al., 2015). 

● Principal Component Analysis (PCA) in combination with two post-

processing techniques for the prediction of wind power produced over 

Sicily, and of solar irradiance measured by Oklahoma Mesonet 

measurements’ network (Frederica et al., 2016). 

● Usage of genetic programming on ensemble models (Dufek, 2017). 

● A GIS-based multi-criteria statistical methodology developed to quantify 

hazard potential and to map flood characteristics (Arpita, et al., 2016) 

 

3.3.3 Urban Air Pollution  

(David Franca / Alejandro Cholaquidis / Jeff Gomes) 

Motivation: Pollution at urban street canyons have strong impact on the health of 
communities. Assessment and prediction of pollutant dispersion at street level are not 
simple problems that can be solved with operational methods as they are strongly 
dependent on meteorological data (pluviometric, temperature, wind velocity/direction 
etc), traffic information (Garcia et al., 2011), online and in-situ monitoring etc.  
Sustainable cities rely on smart use of available data from sensors (fixed and mobile) at 

different parts of the city and optimal use of such data through integration with detailed 

and operational models. Thus the aim is to produce a Virtual City Air Pollution Fast 

Response Model (VAPOR) to help policy-makers, health and safety authorities, traffic-

controllers and rapid response teams to manage city pollution and/or to mitigate its 

impact on the general population, conceptualized in Figure 7. 

 

 

FIGURE 7: CONCEPTUAL ILLUSTRATION OF THE VAPOR MODEL FOR PASSIVE-TRACER RELEASE 

AND DISPERSION IN CITY STREET-CANYONS. ADAPTED FROM PAVLIDIS ET AL. (2010). 
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Science Questions: Prediction of pollution dispersion in urban street canyons is a 
complex inter-disciplinary topic which involves: 

● coupled detailed models of pollutant flows through street canyons (i.e., turbulent 
CFD models), traffic models (different pollutant sources: vehicles, industries, 
people movement, and other considerations), and meteorological models 
(Pavlidis et al., 2010); 

● movement of people in the urban landscape, which may be affected by pollution. 
It can be predicted using a number of anthropology-based methods (e.g., mobile 
methods, Elliot et al., 2017); 

● detailed simulations: they  can be computationally very expensive as the number 
of potential degrees of freedom increases (contaminants + velocity + pressure + 
temperature + chemistry + radiation + density); thus, the reduction of problem 
dimensionality is a potential strategy to make such models running in a feasible 
time-scale; 

● data produced by models: they need to be continuously updated with existing 
data from city sensors (data assimilation); 

● data management from sensors and models (Stingone et al., 2017; Keller, 2014; 
Xi et al., 2015; Kalapanidas & Avouris, 1999). 

During our discussion we identified two key science questions that we should address: 

◦ How to best classify and identify potential pollutant sources (spatial and time 
distribution) from fixed and mobile data sensors using Machine Learning 
technologies (ML, hybrid methods, e.g., ANN + decision trees);   

◦ How to use this information to mitigate the impact of 
pollutants/contaminants on street canyons during rush hours or extreme 
events (e.g., terrorist attack, accidental release of chemicals etc). Rapid 
response models (i.e., based on reduced-order models) through coupled 
models and ML may be an efficient way to help predict 
pollutants/contaminants pathways and concentrations in the urban canopy 
at such events.   

 

3.3.4 Addressing Extreme Events by Machine Learning 

(Alber Sánchez, Christopher Cunningham, Thiago Carvalho) 

Reasoning 
Currently, records are showing the increasing frequency of severe weather (IPPC, 2014). 
Extreme weather events are known to trigger natural disasters and this is a warning call 
to scientists to refine their forecasting tools to help government agencies to better 
deploy their resources (Editorial NM (2017), IPCC (2014)). 

Not only is it well known that extreme events will become more frequent in future 
decades (IPCC, 2014), but also there is an increasing demand on operational prediction 
and applications communities for forecasts that fill the gap between medium-range 
weather (up to two weeks) and long-range or seasonal (3-6 months). 

Current modeling is limited by the spatio-temporal resolution level required by society 
under a changing climate. Modeling the sub-seasonal level is better suited to tackle the 
challenges that a changing environment poses to humankind. 
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Despite the fact that climate projections and sub-seasonal predictions produce large 
amounts of data, the signal of extreme events is frequently hidden in the midst of the 
dataset. The projections fail to account for the nonlinear interactions among the 
components of the climate system. 

Specifically, we would like to address the following research question: How can Machine 
Learning enhance dynamic model outputs to improve the recognition of extreme events, 
considering the sub-seasonal and climate change time scales? 

Extreme events 
Extreme weather events deeply affect society, since they can trigger socio-

environmental disasters. During the period 1995-2015, the majority (90%) of disasters 

have been caused by floods, storms, heatwaves and other weather-related events 

(Wahlstrom and Guha-Sapir, 2015). 

Due to the chaotic nature of the atmosphere, small imperfections in models' initial 

conditions and parameters cause huge differences in the predictions as the forecast 

horizon becomes longer. In other words, very similar initial conditions can make a model 

diverge, increasing the prediction uncertainty. In order to overcome this issue, scientists 

use ensemble predictions to quantify their uncertainty. Hence, predictions beyond a 

week can only be probabilistic. 

Prediction of extreme events is addressed differently for climate change and sub-

seasonal time scales. On the latter case, the goal is to obtain a better anticipation of dry 

spells, wet spells, and heat weaves. This anticipation is on a probabilistic sense, i.e., to 

predict more reliable chances for the forthcoming dry/wet spell, and heat wave. In the 

climate change scale, we are interested in shifts in probability distribution of extreme 

events (Coumou and Rahmstorf, 2012, Sippel and Otto, 2014) during relevant seasons 

in future decades. For instance, the increase in frequency of extreme wet spells during 

the monsoon season. 

Machine Learning Methods Applied to Extreme Events Detection 
For extreme events detection, one of the goals is to improve numerical modeling a 

posteriori in order to determine the precursors of extreme subseasonal weather events. 

To address this goal, it is possible to adopt Machine Learning approaches, which have 

been used to solve similar problems. 

Chauhan and Vig (2015) propose the use of Long-Short Term Memory (LSTM) networks 

for an anomaly detection approach towards analyzing Electrocardiogram (ECG) signals. 

Addressing a different problem that also involves time-series, Filonov et al. (2016) adopt 

an approach based on an LSTM neural network to monitor and detect faults in industrial 

multivariate time series data. The authors validate their approach applying it into a part 

of a real gas-oil plant, where the system was responsible by fault-detections. Ahmad and 

Purdy (2016) address the problem of detecting anomalies in streaming data (a kind of 

time-series data problem) based on an on-line sequence memory algorithm called 

Hierarchical Temporal Memory (HTM). 
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Similar to previously mentioned approaches, when analyzing time-series data produced 

by environmental models, the presence or absence of extreme events is a difficult task 

to perform. This project intends to investigate the possibility of designing and using 

Machine Learning solutions (e.g., Deep Learning, decision trees, random forests) to 

address the problem of detecting extreme events in environmental data generated by 

different models. 

But Machine Learning methods not only need to be precise but also fast. And their speed 

is a function of the amount of data processed.  

The number of Earth observation satellites is increasing. As time passes, satellite 

technology gets smaller and cheaper and more countries are putting their own sensors 

into orbit. Accordingly, we need more efficient tools (hardware and software) in order 

to process terabytes of data (Belward, 2015, Gottfried, 2004).  

Regarding hardware, the main approaches are High Performance Computing (HPC) and 

Grid computing (Berman, 2003, Dowd, 1993, Pordes, 2007). Traditionally, HPC is 

prefered in fields such as meteorology and Grid computing in physics where institutions 

such as CERN leads the development of new Grid technologies. However, which of those 

fits better machine learning for detecting extreme  event detection is still an open 

question. 

Regarding data, the principal approaches are Map Reduce and array databases. In 

particular, array databases seem to better fit our analysis requirements because they 

join the experience of almost 50 years of relational databases to a well-known 

mathematical abstraction, the array. For example, atmospheric data is collected by 

static sensors which build long time series. This data is interpolated or simulated into 

regular dynamic grids which are simple to represent as multidimensional arrays, that is, 

arrays of 3 spatial dimensions and one temporal. Handling these array as linear (array) 

algebra is a well known and understood field on mathematics (Baumann 1999, Camara 

2014). The same way relational databases are based on relational calculus, array 

databases are founded in array algebra. This sound foundation on mathematics allow 

users of array databases to express complex analysis queries in terms of abstract 

functions. For example, the array database SciDB is known to efficiently handle 

petabytes of data. It eases data management of large datasets but more importantly, 

SciDB can re-use R code because it separates data management from modeling through 

the use of high level programming languages such as MATLAB, R, Python, or an array 

functional language (Stonebraker (2009), Stonebraker (2013)). 
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3.4 Working Group VI - Disaster Risk Reduction 

 

Group: Luciana R Londe, Leonardo Santos, Francesco Ferrulli, Matthew Brown, Luiz 

Carvalho, Andres Sosa, Jair Koiller, Guillermo Obregón Párraga, Walter Mendes Filho, 

Viviana Aguilar Muñoz, Alice Nardoni Marteli and Selma Santos 

The risk of disasters can be understood through indices based on spatial-temporal 

models, with the difficult objective to preview their scales of magnitude and intensities. 

For floods, for instance, it is possible to adjust prediction systems using observational 

data, such as rainfall, soil moisture, vegetation and geology. We can also compare the 

cost/benefit of preventive measures with the economic and social costs for remediation 

of impacts. One of our challenges is to link models on a global scale and those on local 

scales. Infectious diseases often happen in sequence of an impact (floods, landslides).  

Innovative research must be done in a way that links mathematics and the different 

themes related to the study of disasters, to develop improved risk models.  

 

3.4.1 Modelling rainfall with applications to flood risk and food insecurity 

 

Floods are an important factor threatening food security around the globe. We aim at 

developing an effective precipitation estimator that could be useful in assessing the risk 

of flooding at a global scale. 

Flooding is arguably the weather-related hazard that is most widespread around the 

globe. It is an important factor affecting living condition in terms of health and economic 

stability. It heavily influences the whole agricultural sector as well as it is responsible for 

epidemic outbreak and shortages in drinking water.  
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Atmospheric events and in particular exceptional precipitations are believed to be the 

leading causes for floods. So far, little attention in literature has been given to the 

interaction between the amount of precipitation and the moisture level of the soil. 

The development of a global indicator of flood risk when combined with other climatic 

variables would help gauge the overall vulnerability to floods in across the globe. 

Furthermore, an improved indicator could find use in larger models such as of food 

insecurity Richardson (2017) developed at the Met office in UK. 

The main challenges in this project are (i) combining the data at different scales (ii) 

developing optimal weighting schemes for the precipitation series and (iii) developing 

and validating an index for floods at the appropriate scale. 

Data 

• Daily rainfall:  observations and model output  

• Vegetation: MODIS Land Cover;  

• Disaster databases (for calibration): Emergency Events Database - EM-DAT (of 

the Centre for Research on Epidemiology of Disasters – CRED) ; NatCatSERVICE 

Natural catastrophe statistics online 

Methods 

In order to account for incomplete drainage of rainfall, we need an autoregressive model 

that relates rainfall at day i, pi  , with rainfall in previous days. The idea is to use a 

smoothed estimator of rainfall, Pi such that: 

Pi  = ∑364
j=0 wij pi−j  (1) 

The formulation in (1) suggests an autoregressive structure for the corrected 

(smoothed) precipitation estimator. One methodological challenge is to choose a 

weighting scheme (wij ) that allows for the correct representation of the effective 

quantity of retained rainfall at any given day. We propose a first stage of exploratory 

analysis with the use of semi-variograms to compare spatial correlation at several time 

points and also the application of autoregressive models to understand the temporal 

autocorrelation structure. 

At a later stage in the project, we intend to calibrate our index against flood occurrence 

data using artificial neural networks (ANNs). ANNs are a robust and computationally 

affordable technique that has been very successful in many applications in several areas 

including climate, hydrology and epidemiology. 

Expected results 

We expect to have an informative global flood  index at grid point resolution 0.5º .The 

major implication of working on such resolution is that it enables future projections by 

mean of climate model simulations. The precipitation index that we want to develop will 

be a cumulative index which will play the role of a proxy for a soil moisture indicator. 
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3.4.2 Leptospirosis phylodynamics in an outbreak after a flooding event 
 

Natural disasters can often create favourable conditions for the onset of infectious 

diseases outbreaks (e.g. cholera, leptospirosis and dengue). New integrative approaches 

are needed in order to explore the interplay between the impact of floods, landslides 

and tornadoes on infectious diseases reservoirs. We aim to recover a phylogenetic tree 

from a leptospirosis outbreak after a flood in the Amazon region, and to incorporate 

hydrological measurements in a descriptive model of Leptospirosis epidemics. 

Introduction 

Some Brazilian states are severely affected by floods (EM-DAT, 2014, TOMINAGA et al., 

2009). As consequences for public health, there is frequently a raise in the number of 

cases of diarrheas, hepatitis-a, hepatitis-e and leptospirosis - a disease caused by 

Leptospira bacteria. These microorganisms are scattered in environment through 

rodent’s urine and transmission occurs through contact between skin and contaminated 

water, soils, vegetation (such as sugarcane) and mud. Leptospirosis in urban places is 

often associated to sanitation characteristics, especially concerning the accumulation of 

garbage and contact with sewages. (KO et al, 1999; BARCELLOS & SABROZA, 2000). As 
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floodwaters can contain trash and sewage, the scattering of Leptospira bacteria is often 

raised. 

Leptospirosis impacts many sectors with expressive socioeconomic importance, 

because it raises the financial cost for hospitalizations. 

Most authors stress the synergy of factors triggering leptospirosis cases: poor sanitation 

services, mud and garbage accumulation, large populations of mice, environment and 

housing characteristics, low socioeconomic levels and work activities (Barcellos and 

Sabroza, 2000; Costa et al., 2001; Oliveira et al., 2012; Pelissari et al., 2011).  Although 

many factors relate to leptospirosis transmission, there are particularities: post-flood 

situations may favor the appearance (or increasing) of outbreaks of this disease (Londe 

et al., 2016). 

Scientific question 

Can we associate hydrological predictors with the spread and maintenance of 

Leptospirosis as revealed by phylodynamics? 

Data and Method 

• Amazon region: the flooding time-scale can last many months 

• Leptospirosis data: data concerning leptospirosis cases in Brazil will be retrieved 

from “DataSUS” website (www.datasus.gov.br/). 

• Rainfall: precipitation data will be downloaded from INMET - Brazilian Institute 

of Meteorology - website.  

• Phylogenetic data: complete genome sequences from environmental and clinical 

samples. 

• Hydrological data: Based in a Digital Elevation Model (DEM, from SRTM project) 

it is possible to determine the Height Above Nearest Drainage (HAND) matrix. 

Expected Results 

A statistically principled reconstruction of the temporal and spatial dynamics of 

Leptospirosis and an assessment of the relative importance of several hydrological 

predictors on disease spread and maintenance. 

Researchers  

PI: Luciana Londe (Cemaden), Luiz Carvalho (Edinburgh), Leonardo Santos (Cemaden), 

Alice Marteli (Cemaden), Jair Koiller (INMETRO) 

Collaborators: Francesco Ferruli, Matthew Brown, Andrés Sosa, Guilhermo Obregón, 

Walter Mendes Filho, Viviana Aguilar Muñoz 
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3.4.3 Soil Moisture - interaction with the group from Cemaden (Matt, Sheila, Chris) 
 

Abstract 

The Tropical Applications of Meteorology using SATellite and ground-based 

observations (TAMSAT) group at the University of Reading have developed a prototype 

decision-support tool for early warnings of drought - TAMSAT-ALERT (TAMSAT-

AgricuLtural dEcision suppoRT). Currently, TAMSAT-ALERT relies upon accurate 

diagnosis of the current soil moisture state to make accurate sub-seasonal to seasonal 

assessments of drought risk in certain African countries. CEMADEN uses local data from 

farmers/children to drive predictive crop/weather models on sub-seasonal time scales 

in semi-arid regions. By combining the two methods and sharing data it should be 

possible to improve drought risk assessments for both Africa and Brazil. 

The question we are asking is: Can soil moisture persistence, locally collected data and 

predictive models be combined to improve drought risk estimates? 

The question TAMSAT-ALERT addresses is Given the current state of the land surface and 

the historical climatology, what is the likelihood of agricultural drought? 

Specifically, it uses observed meteorological data - such as that from satellites, reanalysis 

datasets or local weather stations, and a climatology of the area and a land surface 
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model to determine the current state of the land surface - e.g. the soil moisture. From 

this state the climatological data is used to project forward what the soil moisture could 

do in the future, and a distribution of possible soil moisture averages for a certain time 

period (such as the growing season) is produced. As the land surface takes time to 

respond to rainfall, and agricultural drought is a function of past and future soil 

moisture, it is possible to predict an agricultural drought in this way. For more details 

see http://onlinelibrary.wiley.com/doi/10.1002/wea.3033/full 

The exact details of how the soil moisture persistence drought risk estimates of TAMSAT 

will be integrated with the drought risk products produced by CEMADEN depends on 

the details of the two individual products. A meeting is being set up on the 4th 

September to discuss said details. 

Currently, the TAMSAT-ALERT system has only been trialled in a few African countries. 

However the method is quite general, in that it can be applied to various meteorological 

and land-surface parameters. It can also be used in countries in or near the tropics that 

have one or more rainy/growing seasons in a 365-day span with little additional 

configuration.  

The TAMSAT-ALERT method relies upon the accuracy of land surface models to produce 

accurate drought risk assessments. The accuracy of these models is largely dependent 

on the accuracy of the soil properties and crop parameters used in the model. This 

information could be obtained using the framework that CEMADEN have set up to 

collect local data via apps used by the communities most affected by drought/flood. 

The expertise at CEMADEN in using crop models for the purposes of drought risk 

assessments is something that TAMSAT could make use of, as this is an obvious next 

step for the group/product. 

It is hoped that the expertise at TAMSAT in exploiting the soil moisture memory will also 

prove useful in helping CEMADEN improve their drought/flood risk assessment 

products.  

Ultimately, both CEMADEN and TAMSAT’s risk assessment products should be 

improved, with some of the CEMADEN techniques applied/trialled in conjunction with 

TAMSAT-ALERT in Africa, and TAMSAT techniques applied/trialled in Brazil in a similar 

way.  

3.4.4 Flooding damage estimation using urban mobility data - including economic 

impacts  

 

Collaborators: Leonardo, Luciana, Andres, Viviana, Guillermo 

Question: How to assess the different economic risks in floods? 

To be able to understand and evaluate the impacts of disasters, it is necessary to study 

their economics consequences, locally and globally. 
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The aim of the work is to analyze the spatial and temporal distribution of flood events 

in a particular risk zone, observing the social, economic and financial impacts that entail 

this type of event. The method can be extrapolated to different events such as drought, 

and floods in different areas where they happen. 

This type of analysis is an approach to the problem for evaluating options to mitigate 

the potential economic losses and, in case of not being able to mitigate the risks, to 

obtain the necessary capacity to adapt to the new situation. Besides it is important to 

generate capacity of transmission to the inhabitants of the highest risk regions, because 

the capacity to adapt varies considerably among regions, countries, and socioeconomic 

groups and will vary over time. 

Based on an origin and destination data from the metropolitan region of Rio de Janeiro 

and using a Google Maps based script, Santos et al. (2015) estimated the amount of 

people directly and indirectly affected in their mobility in a potential flood episode. In 

cities as Rio de Janeiro and São Paulo, for example, there is an economic impact related 

to floods that could be studied to understand where the most vulnerable regions are. A 

Complex Network approach could be applied to this task. 

The social-economic problem behind is the trade-off that exists between Climate change 

and economic globalization accused by all countries. In the phrase: "economic 

development at the cost of ..." the idea is that the challenges of climate change and 

globalization occur simultaneously and this leads to "games in the sense of Nash's 

theory" where there are winners and losers in the system. In the actuality, the Economic 

globalization develops a set of processes whereby production and consumption 

activities shift from the local or national scale to the global scale with new technologies 

that often lead to a negative situation towards the environment, such as gas emissions 

and water pollution. The policy makers should aim to allow technical progress but punish 

through taxes or prohibitions (and roughly) those who do not collaborate in the 

sustainable development of the environment. The aim is to analyze "the game" between 

growth and climate change in order to obtain some optimum to try to target. 

Our aim is to develop a mathematical model, in order to evaluate the properties of risks 

in various social, economic and financial factors. Some mathematical and statistical 

techniques can be used, such as analysis of time series, modeling via partial differential 

equations, modeling of stochastic processes, utility function.  

As expected results, we should understand the implications that floods can trigger in 

different areas. It is supposed that the study uses data from different databases such as 

hydrologic, topography, soil, vegetation. To analyze the social structure, data on the 

social-economic situation would be used to add the household level data to the model, 

and to analyze the  economic part, data on relevant macroeconomic variables that are 

influenced by these catastrophic events should be used. 

One possible application in terms of the financial aspect of the countries is to examine 

the effects of extreme events on agricultural trade. Economically, it is necessary for 

countries to evaluate the effects on yields, commodity prices, and imports and exports. 
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A clear example is the economy of developing economies, based on agriculture and the 

sale of commodities abroad, where this type of events has significant repercussions in 

the gross domestic product. 

 

3.4.5 An early warning indicator for arboviroses in urban environment 
 

Abstract 

Arboviroses (dengue, yellow fever, zika, etc)  are major health threats in Brazil and other 

developing tropical countries. Widespread epidemics occasionally overwhelm the 

healthcare system. Early warning systems give policy makers and health authorities time 

to prepare.  

The final goal of the project would be to provide a complementary tool to early warning 

systems already in use (https://info.dengue.mat.br/). 

Introduction 

Arboviroses are human diseases caused by viruses transmitted by arthropods, in special 

mosquitoes. Arboviroses are a major health threat in tropical developing countries, 

causing deaths and losses in productivity due to illness-related work absenteeism.  

During the summer, transmission rates increase dramatically, leading to widespread 

epidemics that overwhelm the healthcare system. In such a context, an early warning 

system offers policy makers and health authorities a tool to aid the best allocation of 

resources and personnel.  

Much effort has been made over the years to model and understand these diseases, but 

only recently the role of urban mobility in disease spread and maintenance has been 

realised.  

We aim at capitalising on an extensive body of work based on ordinary differential  

equations while at the same time incorporating data on human mobility data in order 

to construct an structured meta-population epidemic model.  

Methods and Data 

As a first stab, we propose a minimal deterministic meta-population model using EDOs 

(see eg. Bayley, 1975). 

 

https://info.dengue.mat.br/
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The right hand side of the equations for $\dot{I}^h_j$   are evaluated with the current 

available  data.   ${I}^h_j(t)$ is the number, at time $t$,  of infected humans living in 

district j. When the rate changes from negative to positive the red flag is  raised.  Since 

there is about a week of incubation period for the disease to manifest after the infection, 

this flag could help the policy-makers to plan health measures. Moreover, by solving the 

ODEs forward, one could make a prediction for the intensity of the disease on the 

various districts (updated daily as current data is assimilated). 

Questions: 

i)  How to assimilate the available data?  The number of infected  humans can be 

estimated from notifications, and of infected mosquitoes by  household  indices such as 

Breteau.   Estimating the susceptible fractions of human and mosquitoes is the major 

problem;  we propose using the technique presented in the Workshop by Nicolas Rubido 

(compressive sensing), and the method of observers, currently being developed by  Max 

Souza and A. Iggidr.  Both estimate unknown parameters and non accessible data by 

sophisticated mathematical techniques. 

Starting from the multi-scaled dengue system derived in [M.O. Souza, Multiscale analysis   

for a vector-borne epidemic model. J. Math. Biol., 68 (5), 1269–1293, 2014], the authors 

construct a pair of observers to estimate the dynamics of the disease. The nature of both 

the observers and the multi-scaled system allows to estimate both the number of 

Susceptible and Recovered hosts, as well as to provide information on the vector 

population, using only infected population data.  

ii) A related question:  disease notifications are assigned to the residence areas; 

however,  many of the infections may have happened in other nodes (city sections) of 

the graph formed by the city    districts (a mobility network - Santos et al., 2009). Can 

the inverse problem be addressed, namely finding the amount of real  infections 

occurring on a given place?  This can help authorities to decide where to apply vector 

control measures. 

Expected results 

Give to policy makers a computable threshold (updated weakly) indicating that an 

outbreak may occur at a given district  of a city.  
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aggregated system. They  are now extending their work to the metapopulation system. 

Researchers  

PI: Jair Koiller, Luiz Carvalho 

Collaborators: Luciana R. Londe 

Additional Questions 

In this section we lay out some broader scientific questions that would be worth 

investigating in the long term. 

Question 0:   Which environmental and populational cues lead to toxin production by 

cyanobacteria?  

Background: Cyanobacteria are unicellular organisms that exist in high numbers in large 

bodies of water, including those used in urban water supplies. Changes in environmental 

conditions sometimes prompt the bacteria to produce toxins that are harmful to several 

forms of life, from fish to humans. The drivers of this toxin production are poorly 

understood and mathematical modelling could be employed to describe and understand 

this phenomenon.   Quorum sensing modelling has been a topic of increasing interest to 

mathematicians. It also offers the opportunity to applying techniques of machine 

learning combining  data from bio-molecular testing with those of remote sensing, as 

well as meteorological information (winds, rain, temperature). 

As this understanding evolves, a more ambitious project that the emerging consortium 

could work on, but that would require a more substantial funding and maturation time 

is  creating a protocol for  early warning of  water supply toxicity outbreak.  Predicting 

algae bloom events, specially if toxins are about to be released  has great public health 

importance.  

For this, two  distinct operational lines exist nowadays: 

Remote sensing via satellite:  these exploit changes in  the electromagnetic spectrum 

due to  the presence of biota.  INPE has the capability to introduce this service. 

In situ, low cost microchips for real time detection of bio-molecular events  have been  

used as early warning indicators .   

https://hal.inria.fr/hal-00839351/document
http://www.dengue.mat.br/Anais2014.pdf
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5. Talks 
 

Mathematics of Climate Climate change and natural disasters 
HAROLDO CAMPOS VELHO 

 

In his talk, a description of challenges associated to the weather, climate and disasters 

were addressed. Model calibration is one topic cited. Firstly, this issue was shown as a 

multi-objective problem. Secondly, the process requires a sensitivity analysis, classifying 

into different groups the impact of those parameters in the model. In addition, the 

sensitivity analysis depends on the time-scale of prediction period. Finer model 

resolution implies higher computational cost. The tendency is to use hybrid computer 

machines. The companies are offering different types of co-processors to be linked with 

the CPU: GP-GPU (Nvidia, AMD), FPGA (Xilinx, Altera), MIC (Xeon Phi Intel). Some 

worked examples with different resolutions were shown. Data science application was 

also commented. A method combining statistical analysis (p-value) and artificial 

intelligence scheme (Decision Tree) was applied to identify extreme events: deep 

drought in the Amazon region, and intense rainfall events in the South of Brazil. 
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Research Group “Mathematics and Disaster Risk Reduction” 

Towards International collaborations in Natural Disasters prevention:  
personal experiences and contacts 
LEONARDO BACELAR LIMA SANTOS 

 

JAIR KOILLER 
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Leonardo presented the research group “Mathematics and Disaster Risk Reduction”, 

held in the Brazilian Applied Mathematic Society (SBMAC). “We are now thinking about 

internationalization”, with the group "Mathematics of Planet Earth", from Imperial 

College and University of Reading. The workshop was the first step in this direction. Jair 

Koiller described some of the results of the arbovirus diseases network he participated 

in, presented his contacts related to early warning and prevention, specially the 

connection with MPECDT, and mentioned some themes he would be interested to 

collaborate with. Besides the promotors of the workshop (ICL/Reading Math for Planet 

Earth, Cemaden/INPE, Universidad de la Republica) he suggested the following 

Institutions that could be invited for a network:  Inmetro, IMPA, FGV, Fiocruz,  UFRJ, IPRJ 

(Institutions in Rio de Janeiro), and PTI  (Itaipu Technological Park) in Iguassu, Paraná.   

Internationally, his main contacts are INRIA (France), Caltech (USA),  IST (Instituto 

Superior Tecnico. Lisbon) and  the working group “Statistics Without Borders”, from the 

American Statistical Association. 

 

Adaptivity in geophysical flows 
TRISTAN PRYER 

 

In Meteorological simulations, as computational capacity grows, one typically invests in 

increased resolution, more ensemble runs, addition of PDEs governing new physical 

processes. This has a massive impact on the computational complexity. Indeed, a new 

problem arising in simulations is the power cost of the total ensemble runs. The next 

generation of dynamical cores will require considerable innovation for them to be 

viable. Adaptivity is crucial in the success of algorithms for geophysical multiscale 

problems. One of the novelties introduced in this talk is the idea of 'model adaptivity', 

the automatic switching between models of different complexity in real time as and 

when required. 
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Evolutionary Epidemiology 
LUIZ MAX FAGUNDES DE CARVALHO 

 

Evolutionary Epidemiology (phylodynamics) is an emerging field of scientific enquiry 

that combines phylogenetics (genomic data) with epidemiological, environmental and 

socio-economical data in order to understand the driving factors of pathogen evolution, 

spread, virulence and maintenance. In my talk I motivate the use of phylodynamic 

methods with two examples on Ebola virus spread and virulence, respectively. I show 

that approaches that combine several sources of data in a principled way can give deep 

insight into the driving factors behind disease dynamics. I also discuss the 

methodological and data acquisition challenges that we face in the 21st century. I argue 

that we need better, more realistic models as well as more (and better data). I also argue 

that addressing the methodological challenges is the most pressing problem due to the 

exponential growth in data availability over the past decade. 
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Next Generation Multiscale Adaptive Mesh Atmospheric Modelling, Rapid 
Response and Data Assimilation 
JEFF GOMES 

 

FANGXIN FANG 

 

A multiscale adaptive mesh fluid model (Fluidity) for general multi-physical problems 

has been presented. The innovative and novel features of this model include anisotropic 
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adaptive mesh technology library, user-friendly GUI (Graphical User Interface) and a 

Python interface for model setup (initial and boundary conditions and diagnostic test 

fields). The model has been successfully applied to simulate natural disaster problems, 

e.g., air pollution in urban street canyons, atmospheric cyclones, Tsunami events, dust 

storms during Asian Monsoon and urban flooding. Predictive modelling methods 

(combination of data analysis and management and flow simulation) embedded in 

Fluidity were also presented to: (a) introduce uncertainty analysis; (c) demonstrate 

improvement of accuracy of numerical predictions and; (c) reduce computational costs. 

Among the methods, data assimilation, reduced order modelling with deep learning and 

optimized sensor locations have been further discussed here. 

Brazilian Centre for Monitoring and Early Warnings of Natural Disasters 
LUCIANA LONDE 

 

In Brazil hurricanes and earthquakes are not common. On the other hand, droughts, 

floods, flash floods and landslides are frequent and may cause many problems. The flash 

floods are more common in the South and Southeast regions, wild fires in the north and 

west central, droughts in the Southeast and Northeast, landslides in the South and 

Southeast and floods basically all over the country. The highest mortality rates due to 

disasters in Brazil occur in the southeast region. The droughs in the brazilian semi-arid 

are responsible for severe long term impacts to the local people.  The landslides in Rio 

de Janeiro state in 2011, which caused over 900 fatalities, motivated the creation of 

Cemaden, the Brazilian center for monitoring and early warnings of natural disasters. It 

is a center located in São José dos Campos, which works 24 hours every day, 7 days a 

week, for a permanent monitoring of hazards in the country. Disasters are signs of 

failures - failures of preparedness, response, and recovery.  Most often they are failures 

of long-term development and risk reduction planning. They grow on underlying societal 

challenges such as inequality or poverty, termed "root causes" and "unsafe conditions". 

We need investigations that assume that the goal is to increase development 
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sustainability, not only to reduce losses and damages from poor development in the 

past, although this is already part of the equation. We need research that works from 

the positive side of the action in an innovative way. The final goal is a sustainable and 

fair development and not the management of risks and disasters, built on an unfair and 

bewildering development model. 

 

Compressive Sensing in Non-linear Dynamics 
NICOLÁS RUBIDO 

 

Compressive Sensing (CS) is a rather novel method to efficiently acquire and reconstruct 

signals from solving indeterminate linear systems of equations. CS requires sparsity, 

namely, few data points suffice. Hence, its results are counter-intuitive, since the 

sampling requirement apparently violates the well-known minimum sampling frequency 

established by the Shannon-Nyquist theorem. Despite its linear nature and apparently 

odd requirements, its application goes far beyond linear systems. In this talk, I review 

some applications suitable for time-series analysis. Particularly, in the cases when the 

objective is to predict the trajectory of a chaotic system from few measurements or 

when the intention is to model the equations of motion from time-series measurements 

to predict catastrophes. 
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Interacting Networks in Climate 
MARCELO BARREIRO 

 

The talk titled "Interacting networks in climate" presented the use of complex networks 

for the study of several climate phenomena. A brief description of the methodology was 

first introduced, followed by three examples that cover the different climatic time 

scales. In the first example we showed how climate networks can improve our 

understanding of global teleconnections on intraseasonal to interannual time scales. In 

the second example the use of a directionality measure to construct the climate network 

allowed to study the impact of the equatorial Pacific on other regions of the world, as 

well as to uncover the extratropical atmospheric dynamics that dominate on different 

time scales. In the last example, we constructed a network with nodes including the 

climate modes that dominate the tropical oceans and rainfall over southeastern South 

America (SESA) to study the evolution of their collective behavior during the 20th 

century and how it will change in the future under a scenario of anthropogenic forcing. 

We found that the collective influence of the oceans in rainfall in SESA varies on 

interannual and interdecadal time scales and that the response to radiative forcing is 

nonlinear. 
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Earth System Science Center 
JEAN PIERRE OMETTO 

 

The presentation explored the different lines of research carried out by the Center for 

Earth System Science, of the National Institute for Space Research, from environmental 

monitoring networks to climate change modeling and future scenarios. The goal was to 

expose the audience to the opportunities for collaborations and to drawn a proposal 

among the researcher’s team from the Institutions represented at the workshop. 


