Block-structured Adaptive Mesh Refinement in C++

The AMROC Framework for Parallel AMR

Short course at INPE, 30th June to 1st July 2016

Supported by Fapesp grants 2015/50403–0 and 2015/25624–2

Ralf Deiterding
University of Southampton
Engineering and the Environment
Highfield Campus, Southampton SO17 1BJ, UK
E-mail: r.deiterding@soton.ac.uk
Structure of the lectures

1. Structured adaptive mesh refinement
 ▶ Background and available SAMR software
 ▶ The recursive SAMR algorithm
 ▶ Overview of the AMROC software system
 ▶ Distributed memory parallelization
Structure of the lectures

1. Structured adaptive mesh refinement
 ▶ Background and available SAMR software
 ▶ The recursive SAMR algorithm
 ▶ Overview of the AMROC software system
 ▶ Distributed memory parallelization

2. Hyperbolic AMROC solvers
 ▶ Shock-capturing schemes for gas dynamics
 ▶ Higher-order discretizations
 ▶ Magneto-hydrodynamics
 ▶ Code snippets for interfacing with AMROC
Structure of the lectures

1. Structured adaptive mesh refinement
 - Background and available SAMR software
 - The recursive SAMR algorithm
 - Overview of the AMROC software system
 - Distributed memory parallelization

2. Hyperbolic AMROC solvers
 - Shock-capturing schemes for gas dynamics
 - Higher-order discretizations
 - Magneto-hydrodynamics
 - Code snippets for interfacing with AMROC

3. Discussion session
 - Demo of AMROC
 - Installation on student computers
 - Running examples, etc.
4. Complex hyperbolic SAMR applications
 - Consideration of non-Cartesian geometries
 - Shock-induced combustion simulation with AMROC
 - Fluid-structure interaction with the Virtual Test Facility
 - Compressible turbulence simulation
4. Complex hyperbolic SAMR applications
 ▶ Consideration of non-Cartesian geometries
 ▶ Shock-induced combustion simulation with AMROC
 ▶ Fluid-structure interaction with the Virtual Test Facility
 ▶ Compressible turbulence simulation

5. Advanced topics
 ▶ Adaptive lattice Boltzmann methods with AMROC
 ▶ Large eddy simulation of subsonic problems
 ▶ Using SAMR for geometric multigrid methods
Useful references I

Finite volume methods for hyperbolic problems

Structured Adaptive Mesh Refinement

Useful references II

Lattice-Boltzmann methods

Adaptive multigrid (finite difference and finite element based in textbooks)

Useful references III

Implementation, parallelization

Applications (from my own work only)

Useful references IV

Useful references V
