000000 00000000 0000000 000000 00000	0000

Lecture 2 Hyperbolic AMROC solvers

Course Block-structured Adaptive Mesh Refinement in C++

Ralf Deiterding University of Southampton Engineering and the Environment Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

0000000	000000000	00000000	000000	00000	0000
<u> </u>					

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
• 0000 00					
Basics of finite volume method	ls				

Hyperbolic Conservation Laws

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{0}, \ \ D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}^d_0\}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
•••••					
Basics of finite volume meth	ods				

Hyperbolic Conservation Laws

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = 0, \ \ D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q}=\mathbf{q}(\mathbf{x},t)\in \mathcal{S}\subset\mathbb{R}^{M}$ - vector of state, $\mathbf{f}_{n}(\mathbf{q})\in\mathrm{C}^{1}(\mathcal{S},\mathbb{R}^{M})$ - flux functions,

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References		
•000000							
Basics of finite volume methods							

Hyperbolic Conservation Laws

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x},t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M)$ - source term

Hyperbolic Conservation Laws

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x}, t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - source term

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

Hyperbolic Conservation Laws

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x}, t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - source term

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

If $\mathbf{f}_n(\mathbf{q})$ is nonlinear, classical solutions $\mathbf{q}(\mathbf{x},t) \in \mathrm{C}^1(D,S)$ do not generally exist, not even for $\mathbf{q}_0(\mathbf{x}) \in \mathrm{C}^1(\mathbb{R}^d,S)$ [Majda, 1984], [Godlewski and Raviart, 1996], [Kröner, 1997]

Example: Euler equations

Weels eel	.+:								
Basics of finite volume me	Basics of finite volume methods								
000000									
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References				

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x}$$
$$+ \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Weels eel					
Basics of finite volume m	ethods				
000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x}$$
$$+ \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

Weels eel					
Basics of finite volume m	ethods				
000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x}$$
$$+ \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \cdot \mathbf{q} + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \cdot \mathbf{f}_n(\mathbf{q}) - \varphi \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \cdot \mathbf{q}_0(\mathbf{x}) \, d\mathbf{x} = 0$$

for any test function $\varphi \in \mathrm{C}^1_0(D,S)$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
000000					
Basics of finite volume metho	ds				
Examples					

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
000000					
Basics of finite volume method	ods				
Examples					

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
000000					
Basics of finite volume method	ods				
Examples					

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume m	ethods				
Evamples	11				

Examples II

Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume metho	ds				
Examples II	l				

Navier-Stokes equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0 \end{aligned}$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

	11				
Basics of finite volume m	ethods				
0000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Examples II

Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + \rho) + q_n - \tau_{nj} u_j) = 0$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume metho	ds				
Examples II	l				

Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Type can be either hyperbolic or parabolic

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume m	ethods				
Derivatio	n				

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot,\partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Devision	_				
Basics of finite volume m	ethods				
0000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Time discretization $t_n = n\Delta t$, discrete volumes $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume m	ethods				
D 1					

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$ Time discretization $t_n = n\Delta t$, discrete volumes $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$ Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t))$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume m	ethods				
D · ·					

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$ Time discretization $t_n = n\Delta t$, discrete volumes $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$ Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} & \mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t)) \\ & \text{yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Basics of finite volume m	ethods				
D · ·					

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$ Time discretization $t_n = n\Delta t$, discrete volumes $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$ Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} & \mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t)) \\ & \text{yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

For instance:

$$\begin{split} \mathbf{Q}_{j}^{n+1} &= \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] - \\ & \frac{\Delta t}{\Delta x} \left[\mathbf{H} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] + \Delta t \mathbf{s}(\mathbf{Q}_{j}^{n}) \, dt \end{split}$$

Culitting n	n ath a da							
Splitting methods, second derivatives								
0000000								
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

Culitting	mathada				
Splitting methods, second	d derivatives				
0000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$,

Splitting	m oth o do							
Splitting methods, second derivatives								
0000000								
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} &: \quad \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} &: \quad \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
0000000					
Splitting methods, secon	d derivatives				
Splitting	mathada				

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} &: \quad \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} &: \quad \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

1st-order dimensional splitting for
$$\mathcal{H}^{(\cdot)}$$
:
 $\mathcal{X}_{1}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{1}}\mathbf{f}_{1}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_{m}) \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}^{1/2}$
 $\mathcal{X}_{2}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{2}}\mathbf{f}_{2}(\mathbf{q}) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}$
[Toro, 1999]

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
000000					
Splitting methods, second deri	ivatives				

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
000000					
Splitting methods, second der	ivatives				

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WEN0 solver
 MHD solver
 References

 00000€
 000000€
 0000000
 0000000
 000000
 00000
 00000
 00000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 000000
 00000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WEN0 solver
 MHD solver
 References

 000000
 0000000
 0000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^{n} + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \end{split}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 0000000
 0000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1 x_1}e^{ik_2 x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$
Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 0000000
 0000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1 \times_1}e^{ik_2 \times_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1 + 2C_1(\cos(k_1\Delta x_1) - 1) + 2C_2(\cos(k_2\Delta x_2) - 1)| \le 1$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 0000000
 0000000
 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1 + 2C_1(\cos(k_1\Delta x_1) - 1) + 2C_2(\cos(k_2\Delta x_2) - 1)| \le 1$$

i.e.

$$|1 - 4C_1 - 4C_2| \le 1$$

from which we derive the stability condition

$$0 \le c \left(\frac{\Delta t}{\Delta x_1^2} + \frac{\Delta t}{\Delta x_2^2}\right) \le \frac{1}{2}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Outline

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	• 000 000000				
Flux-difference splitting					

Linear upwind schemes

Consider Riemann problem

$$rac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}rac{\partial}{\partial x}\mathbf{q}(x,t) = \mathbf{0}, \ x \in \mathbb{R}, \ t > 0$$

$$\mathbf{F}(\mathbf{q}_{L},\mathbf{q}_{R}) = \mathbf{A}\mathbf{q}_{L} + \sum_{\lambda_{m} < 0} a_{m}\lambda_{m}\mathbf{r}_{m} = \mathbf{A}\mathbf{q}_{R} - \sum_{\lambda_{m} \ge 0} a_{m}\lambda_{m}\mathbf{r}_{m} = \sum_{\lambda_{m} \ge 0} \delta_{m}\lambda_{m}\mathbf{r}_{m} + \sum_{\lambda_{m} < 0} \beta_{m}\lambda_{m}\mathbf{r}_{m}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 0000000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 <

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_j^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 00000

 Flux-difference splitting

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_{j}^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{\mathbf{f}}(\bar{\mathbf{q}}) = \hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)\bar{\mathbf{q}}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 00000

 Flux-difference splitting

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_{j}^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{\mathbf{f}}(\bar{\mathbf{q}}) = \hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)\bar{\mathbf{q}}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

stability condition

$$\max_{j \in \mathbb{Z}} |\hat{\lambda}_{m,j+\frac{1}{2}}| \frac{\Delta t}{\Delta x} \leq 1 \;, \quad \text{for all } m = 1, \dots, M$$

[LeVeque, 1992]

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 00000000
 0000000
 000000
 00000
 00000
 00000

 Flux-difference splitting
 Upwind schemes
 Upwind schemes

Roe's approximate Riemann solver

Choosing $\hat{\mathbf{A}}(\mathbf{q}_{l},\mathbf{q}_{R})$ [Roe, 1981]:

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	000000000				
Flux-difference splitting					

Choosing $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ [Roe, 1981]:

(i) $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ has real eigenvalues

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	000000000				
Flux-difference splitting					

Choosing
$$\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$$
 [Roe, 1981]:
(i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues
(ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	000000000				
Flux-difference splitting					

Choosing
$$\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$$
 [Roe, 1981]:
(i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues
(ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$
(iii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})\Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_{R}) - \mathbf{f}(\mathbf{q}_{L})$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	000000000				
Flux-difference splitting					

$$\begin{array}{ll} \mbox{Choosing } \hat{\mathbf{A}}(\mathbf{q}_L,\mathbf{q}_R) \mbox{ [Roe, 1981]:} \\ (i) & \hat{\mathbf{A}}(\mathbf{q}_L,\mathbf{q}_R) \mbox{ has real eigenvalues} \\ (ii) & \hat{\mathbf{A}}(\mathbf{q}_L,\mathbf{q}_R) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} \mbox{ as } \mathbf{q}_L,\mathbf{q}_R \rightarrow \mathbf{q} \\ (iii) & \hat{\mathbf{A}}(\mathbf{q}_L,\mathbf{q}_R) \Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L) \end{array}$$

For Euler equations:

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R} \quad \text{and} \quad \hat{\nu} = \frac{\sqrt{\rho_L}\nu_L + \sqrt{\rho_R}\nu_R}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for } \nu = u_n, H$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 00000000
 0000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Roe's approximate Riemann solver

Choosing
$$\hat{A}(q_L, q_R)$$
 [Roe, 1981]:
(i) $\hat{A}(q_L, q_R)$ has real eigenvalues
(ii) $\hat{A}(q_L, q_R) \rightarrow \frac{\partial f(q)}{\partial q}$ as $q_L, q_R \rightarrow q$
(iii) $\hat{A}(q_L, q_R)\Delta q = f(q_R) - f(q_L)$

For Euler equations:

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R} \quad \text{and} \quad \hat{\nu} = \frac{\sqrt{\rho_L}\nu_L + \sqrt{\rho_R}\nu_R}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for } \nu = u_n, H$$

Wave decomposition: $\Delta \mathbf{q} = \mathbf{q}_r - \mathbf{q}_l = \sum_m a_m \, \hat{\mathbf{r}}_m$

$$\begin{aligned} \mathbf{F}(\mathbf{q}_{L},\mathbf{q}_{R}) &= \mathbf{f}(\mathbf{q}_{L}) + \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} = \mathbf{f}(\mathbf{q}_{R}) - \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \\ &= \frac{1}{2} \left(\mathbf{f}(\mathbf{q}_{L}) + \mathbf{f}(\mathbf{q}_{R}) - \sum_{m} |\hat{\lambda}_{m}| \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \right) \end{aligned}$$

Harten-Lax-Van Leer (HLL) approximate Riemann solver

$$\bar{\mathbf{q}}(x,t) = \begin{cases} \mathbf{q}_L, & x < \mathbf{s}_L t \\ \mathbf{q}^*, & s_L t \le x \le s_R t \\ \mathbf{q}_R, & x > \mathbf{s}_R t \end{cases}$$

Harten-Lax-Van Leer (HLL) approximate Riemann solver

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{f}_{L} \mathbf{f}_{R} \mathbf{f$$

Harten-Lax-Van Leer (HLL) approximate Riemann solver

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{f}_{L}(\mathbf{q}_{L}) + \mathbf{s}_{R} \mathbf{f}_{R} \mathbf{f}_{R}$$

Euler equations:

$$s_L = \min(u_{1,L} - c_L, u_{1,R} - c_R), \quad s_R = \max(u_{1,L} + c_I, u_{1,R} + c_R)$$

[Toro, 1999], HLLC: [Toro et al., 1994]

Elux voct	or colitting			
Flux-vector splitting				
	000000000			
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References

Flux vector splitting

Splitting

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}^+(\mathbf{q}) + \mathbf{f}^-(\mathbf{q})$$

	or colitting			
Flux-vector splitting				
	000000000			
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References

Flux vector splitting

Splitting

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}^+(\mathbf{q}) + \mathbf{f}^-(\mathbf{q})$$

derived under restriction $\hat{\lambda}_m^+ \geq 0$ and $\hat{\lambda}_m^- \leq 0$ for all $m=1,\ldots,M$ for

$$\hat{A}^+(q) = \frac{\partial f^+(q)}{\partial q} \,, \quad \hat{A}^-(q) = \frac{\partial f^-(q)}{\partial q} \,.$$

Elux				
Flux-vector splitting				
	0000000000			
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References

Flux vector splitting

Splitting

plus reproduction of regular upwinding

$$\begin{array}{rcl} \mathbf{f}^+(\mathbf{q}) &=& \mathbf{f}(\mathbf{q})\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{0} & \text{ if } & \lambda_m \geq \mathbf{0} & \text{ for all } & m=1,\ldots,M\\ \mathbf{f}^+(\mathbf{q}) &=& \mathbf{0}\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{f}(\mathbf{q}) & \text{ if } & \lambda_m \leq \mathbf{0} & \text{ for all } & m=1,\ldots,M \end{array}$$

Then use

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{f}^+(\mathbf{q}_L) + \mathbf{f}^-(\mathbf{q}_R)$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	0000000000				
Flux-vector splitting					
Steger-Wa	arming				

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References
	0000000000			
Flux-vector splitting				
Steger-W	arming			

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

$$\lambda_m^+ = rac{1}{2} \left(\lambda_m + |\lambda_m|
ight) \qquad \lambda_m^- = rac{1}{2} \left(\lambda_m - |\lambda_m|
ight)$$

$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Storer W/	arming			
Flux-vector splitting				
	0000000000			
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References

Steger-Warming

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \, \mathbf{q}$

$$\lambda_m^+ = \frac{1}{2} \left(\lambda_m + |\lambda_m| \right) \qquad \lambda_m^- = \frac{1}{2} \left(\lambda_m - |\lambda_m| \right)$$
$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q}) = \mathsf{A}^+(\mathsf{q})\,\mathsf{q} + \mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathsf{F}(\mathsf{q}_L,\mathsf{q}_R) = \mathsf{A}^+(\mathsf{q}_L)\,\mathsf{q}_L + \mathsf{A}^-(\mathsf{q}_R)\,\mathsf{q}_R$$

Stoger Warming									
Flux-vector splitting									
	0000000000								
Conservation laws	Upwind schemes	Clawpack solver	WENO solver		References				

Steger-Warming

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \, \mathbf{q}$

$$\lambda_m^+ = rac{1}{2} \left(\lambda_m + |\lambda_m|
ight) \qquad \lambda_m^- = rac{1}{2} \left(\lambda_m - |\lambda_m|
ight)$$

$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q}) = \mathsf{A}^+(\mathsf{q})\,\mathsf{q} + \mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{A}^+(\mathbf{q}_L)\,\mathbf{q}_L + \mathbf{A}^-(\mathbf{q}_R)\,\mathbf{q}_R$$

Jacobians of the split fluxes are identical to $\mathbf{A}^{\pm}(\mathbf{q})$ only in linear case

$$rac{\partial \mathsf{f}^{\pm}(\mathsf{q})}{\partial \mathsf{q}} = rac{\partial \left(\mathsf{A}^{\pm}(\mathsf{q})\,\mathsf{q}
ight)}{\partial \mathsf{q}} = \mathsf{A}^{\pm}(\mathsf{q}) + rac{\partial \mathsf{A}^{\pm}(\mathsf{q})}{\partial \mathsf{q}}\,\mathsf{q}$$

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
	0000000000				
High-resolution methods					

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[\left(1 - \omega \right) \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + \left(1 + \omega \right) \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[\left(1 - \omega \right) \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + \left(1 + \omega \right) \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \ \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \end{split}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 0000000
 000000
 00000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 <

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[(1-\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + (1+\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] , \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[(1-\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + (1+\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \, \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \\ \Phi^{+} &= \Phi \left(r^{+} , \cdot \right) \qquad \Phi^{-} &:= \Phi \left(r^{-} , \cdot \right) \quad \text{with} \quad r^{+} , := \frac{\Delta_{j+\frac{1}{2}}}{2} - r^{-} , := \frac{\Delta_{j-\frac{1}{2}}}{2} \end{split}$$

$$\Phi_{j-\frac{1}{2}}^{+} := \Phi\left(r_{j-\frac{1}{2}}^{+}\right) , \quad \Phi_{j+\frac{1}{2}}^{-} := \Phi\left(r_{j+\frac{1}{2}}^{-}\right) \quad \text{with} \quad r_{j-\frac{1}{2}}^{+} := \frac{J+\frac{2}{2}}{\Delta_{j-\frac{1}{2}}} , \quad r_{j+\frac{1}{2}}^{-} := \frac{J-\frac{2}{2}}{\Delta_{j+\frac{1}{2}}}$$

and slope limiters, e.g., Minmod

 $\Phi(r) = \max(0,\min(r,1))$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 00000000
 000000
 00000
 0000
 0000

 High-resolution methods
 Upwind schemes
 Upwind schemes

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[(1-\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + (1+\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] , \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[(1-\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + (1+\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \, \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \\ \Phi^{+} , := \Phi \left(r^{+} , \cdot \right) , \quad \Phi^{-} , := \Phi \left(r^{-} , \cdot \right) \quad \text{with} \quad r^{+} , := \frac{\Delta_{j+\frac{1}{2}}}{2} , \quad r^{-} , := \frac{\Delta_{j-\frac{1}{2}}}{2} \end{split}$$

$$\Phi_{j-\frac{1}{2}}^{+} := \Phi\left(r_{j-\frac{1}{2}}^{+}\right) , \quad \Phi_{j+\frac{1}{2}}^{-} := \Phi\left(r_{j+\frac{1}{2}}^{-}\right) \quad \text{with} \quad r_{j-\frac{1}{2}}^{+} := \frac{J+\frac{1}{2}}{\Delta_{j-\frac{1}{2}}} , \quad r_{j+\frac{1}{2}}^{-} := \frac{J-\frac{1}{2}}{\Delta_{j+\frac{1}{2}}}$$

and slope limiters, e.g., Minmod

$$\Phi(r) = \max(0,\min(r,1))$$

Using a midpoint rule for temporal integration, e.g.,

$$Q_j^{\star} = Q_j^n - \frac{1}{2} \frac{\Delta t}{\Delta x} \left(F(Q_{j+1}^n, Q_j^n) - F(Q_j^n, Q_{j-1}^n) \right)$$

and constructing limited values from Q^* to be used in FV scheme gives a TVD method if

$$\frac{1}{2}\left[\left(1-\omega\right)\Phi(r)+\left(1+\omega\right)r\Phi\left(\frac{1}{r}\right)\right]<\min(2,2r)$$

is satisfied for r > 0. Proof: [Hirsch, 1988]

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{I}, \mathbf{q}_{R})\Delta \mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \, \mathcal{W}_{m} \, , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \, \mathcal{W}_{m}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 00000000
 0000000
 00000
 00000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 000000

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{I},\mathbf{q}_{R})\Delta\mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \mathcal{W}_{m} , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \mathcal{W}_{m}$$

Wave Propagation 1D:

$$\mathbf{Q}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^{-} \Delta_{j+\frac{1}{2}} + \mathcal{A}^{+} \Delta_{j-\frac{1}{2}} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{\mathbf{F}}_{j+\frac{1}{2}} - \tilde{\mathbf{F}}_{j-\frac{1}{2}} \right)$$

with

$$\tilde{\mathsf{F}}_{j+\frac{1}{2}} = \frac{1}{2} \left| \mathcal{A} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \mathcal{A} \right| \right) \Delta_{j+\frac{1}{2}} = \frac{1}{2} \sum_{m=1}^{M} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \right) \tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 00000000
 0000000
 00000
 00000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 000000

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{I},\mathbf{q}_{R})\Delta\mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \mathcal{W}_{m} , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \mathcal{W}_{m}$$

Wave Propagation 1D:

$$\mathbf{Q}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^{-} \Delta_{j+\frac{1}{2}} + \mathcal{A}^{+} \Delta_{j-\frac{1}{2}} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{\mathbf{F}}_{j+\frac{1}{2}} - \tilde{\mathbf{F}}_{j-\frac{1}{2}} \right)$$

with

$$\tilde{\mathsf{F}}_{j+\frac{1}{2}} = \frac{1}{2} \left| \mathcal{A} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \mathcal{A} \right| \right) \Delta_{j+\frac{1}{2}} = \frac{1}{2} \sum_{m=1}^{M} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \right) \tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m}$$

and wave limiter

$$\tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m} = \Phi(\Theta_{j+\frac{1}{2}}^{m}) \, \mathcal{W}_{j+\frac{1}{2}}^{m}$$

with

$$\Theta_{j+\frac{1}{2}}^{m} = \begin{cases} a_{j-\frac{1}{2}}^{m}/a_{j+\frac{1}{2}}^{m}, & \hat{\lambda}_{j+\frac{1}{2}}^{m} \ge 0, \\ a_{j+\frac{3}{2}}^{m}/a_{j+\frac{1}{2}}^{m}, & \hat{\lambda}_{j+\frac{1}{2}}^{m} < 0 \end{cases}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 0000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <t

Wave Propagation Method in 2D

Writing $\tilde{\mathcal{A}}^{\pm}\Delta_{j\pm 1/2} := \mathcal{A}^{+}\Delta_{j\pm 1/2} + \tilde{\mathbf{F}}_{j\pm 1/2}$ one can develop a truly two-dimensional one-step method [Langseth and LeVeque, 2000]

$$\begin{split} \mathbf{Q}_{jk}^{n+1} &= \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x_{1}} \left(\tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k} - \frac{1}{2} \frac{\Delta t}{\Delta x_{2}} \left[\mathcal{A}^{-} \tilde{\mathcal{B}}^{-} \Delta_{j+1,k+\frac{1}{2}} + \mathcal{A}^{-} \tilde{\mathcal{B}}^{+} \Delta_{j+1,k-\frac{1}{2}} \right] + \\ & \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k} - \frac{1}{2} \frac{\Delta t}{\Delta x_{2}} \left[\mathcal{A}^{+} \tilde{\mathcal{B}}^{-} \Delta_{j-1,k+\frac{1}{2}} + \mathcal{A}^{+} \tilde{\mathcal{B}}^{+} \Delta_{j-1,k-\frac{1}{2}} \right] \right) \\ & - \frac{\Delta t}{\Delta x_{2}} \left(\tilde{\mathcal{B}}^{-} \Delta_{j,k+\frac{1}{2}} - \frac{1}{2} \frac{\Delta t}{\Delta x_{1}} \left[\mathcal{B}^{-} \tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k+1} + \mathcal{B}^{-} \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k+1} \right] + \\ & \tilde{\mathcal{B}}^{+} \Delta_{j,k-\frac{1}{2}} - \frac{1}{2} \frac{\Delta t}{\Delta x_{1}} \left[\mathcal{B}^{+} \tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k-1} + \mathcal{B}^{+} \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k-1} \right] \right) \end{split}$$

that is stable for

$$\left\{\max_{j\in\mathbb{Z}}|\hat{\lambda}_{m,j+\frac{1}{2}}|\frac{\Delta t}{\Delta x_1},\max_{k\in\mathbb{Z}}|\hat{\lambda}_{m,k+\frac{1}{2}}|\frac{\Delta t}{\Delta x_2}\right\}\leq 1\;,\quad\text{for all }m=1,\ldots,M$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 0000

 High-resolution methods
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

FCT: 2nd order [Oran and Boris, 2001]

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 0000

 High-resolution methods
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 0000

 High-resolution methods
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 00000

 High-resolution methods
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta methods [Gottlieb et al., 2001] for time integration that use a multi-step update

$$\begin{split} \tilde{\mathbf{Q}}_{j}^{\upsilon} &= \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{j+\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) - \mathbf{F}_{j-\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) \right) \\ \text{with } \tilde{\mathbf{Q}}^{0} &:= \mathbf{Q}^{n}, \ \alpha_{1} = 1, \ \beta_{1} = 0; \text{ and } \mathbf{Q}^{n+1} := \tilde{\mathbf{Q}}^{\Upsilon} \text{ after final stage } \Upsilon \end{split}$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 00000
 00000

 High-resolution methods
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Further high-resolution methods

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta methods [Gottlieb et al., 2001] for time integration that use a multi-step update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{\prime\prime} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{j+\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) - \mathbf{F}_{j-\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) \right)$$

with $\tilde{\mathbf{Q}}^0 := \mathbf{Q}^n$, $\alpha_1 = 1$, $\beta_1 = 0$; and $\mathbf{Q}^{n+1} := \tilde{\mathbf{Q}}^{\Upsilon}$ after final stage Υ Typical storage-efficient SSPRK(3,3):

$$\begin{split} \tilde{\mathbf{Q}}^1 &= \mathbf{Q}^n + \Delta t \mathcal{F}(\mathbf{Q}^n), \quad \tilde{\mathbf{Q}}^2 = \frac{3}{4} \mathbf{Q}^n + \frac{1}{4} \tilde{\mathbf{Q}}^1 + \frac{1}{4} \Delta t \mathcal{F}(\tilde{\mathbf{Q}}^1), \\ \mathbf{Q}^{n+1} &= \frac{1}{3} \mathbf{Q}^n + \frac{2}{3} \tilde{\mathbf{Q}}^2 + \frac{2}{3} \Delta t \mathcal{F}(\tilde{\mathbf{Q}}^2) \end{split}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Outline

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
		•••••			
AMR examples					

SAMR accuracy verification

Gaussian density shape

$$\rho(x_1, x_2) = 1 + e^{-\left(\frac{\sqrt{x_1^2 + x_2^2}}{R}\right)^2}$$

is advected with constant velocities $u_1=u_2\equiv 1$, $p_0\equiv 1,\ R=1/4$

- Domain [-1,1] × [-1,1], periodic boundary conditions, t_{end} = 2
- Two levels of adaptation with r_{1,2} = 2, finest level corresponds to N × N uniform grid

AMR examples					
		•••••			
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

SAMR accuracy verification

Gaussian density shape

$$\rho(x_1, x_2) = 1 + e^{-\left(\frac{\sqrt{x_1^2 + x_2^2}}{R}\right)^2}$$

is advected with constant velocities $u_1=u_2\equiv 1$, $p_0\equiv 1,~R=1/4$

- Domain [-1,1] × [-1,1], periodic boundary conditions, t_{end} = 2
- Two levels of adaptation with r_{1,2} = 2, finest level corresponds to N × N uniform grid

Use *locally* conservative interpolation

$$\mathbf{\check{Q}}_{v,w}' := \mathbf{Q}_{ij}' + f_1(\mathbf{Q}_{i+1,j}' - \mathbf{Q}_{i-1,j}') + f_2(\mathbf{Q}_{i,j+1}' - \mathbf{Q}_{i,j-1}')$$

with factor $f_1 = \frac{x_{1,l+1}^v - x_{1,l}^i}{2\Delta x_{1,l}}$, $f_2 = \frac{x_{2,l+1}^w - x_{2,l}^j}{2\Delta x_{2,l}}$ to also test flux correction

This prolongation operator is not monotonicity preserving! Only applicable to smooth problems.

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 0000000
 00000
 00000

 AMR examples

 <

SAMR accuracy verification: results

N	Unigrid		SAMF	R - fixup		SAMR - no fixup		
/ 1	Error	Order	Error	Order	$\Delta \rho$	Error	Order	$\Delta \rho$
20	0.10946400							
40	0.04239430	1.369						
80	0.01408160	1.590	0.01594820		0	0.01595980		2e-5
160	0.00492945	1.514	0.00526693	1.598	0	0.00530538	1.589	2e-5
320	0.00146132	1.754	0.00156516	1.751	0	0.00163837	1.695	-1e-5
640	0.00041809	1.805	0.00051513	1.603	0	0.00060021	1.449	-6e-5

Fully two-dimensional Wave Propagation Method, Minmod limiter

N	Unigri	d	SAMR - fixup			SAMR - no fixup		
	Error	Order	Error	Order	$\Delta \rho$	Error	Order	$\Delta \rho$
20	0.10620000							
40	0.04079600	1.380						
80	0.01348250	1.598	0.01536580		0	0.01538820		2e-5
160	0.00472301	1.513	0.00505406	1.604	0	0.00510499	1.592	5e-5
320	0.00139611	1.758	0.00147218	1.779	0	0.00152387	1.744	7e-5
640	0.00039904	1.807	0.00044500	1.726	0	0.00046587	1.710	6e-5

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 00000000
 0000000
 000000
 00000
 00000

 AMR examples
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Benchmark run: blast wave in 2D

- 2D-Wave-Propagation Method with Roe's approximate solver
- Base grid 150 × 150
- 2 levels: factor 2, 4

Task [%]	P=1	P=2	P=4	P=8	P = 16
Update by $\mathcal{H}^{(\cdot)}$	86.6	83.4	76.7	64.1	51.9
Flux correction	1.2	1.6	3.0	7.9	10.7
Boundary setting	3.5	5.7	10.1	15.6	18.3
Recomposition	5.5	6.1	7.4	9.9	14.0
Misc.	4.9	3.2	2.8	2.5	5.1
Time [min]	151.9	79.2	43.4	23.3	13.9
Efficiency [%]	100.0	95.9	87.5	81.5	68.3

After 38 time steps

After 79 time steps

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 0000000
 000000
 00000
 00000

 AMR examples
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V

Benchmark run: blast wave in 2D

- 2D-Wave-Propagation Method with Roe's approximate solver
- Base grid 150 × 150
- 2 levels: factor 2, 4

Task [%]	P=1	P=2	P=4	P=8	P = 16
Update by $\mathcal{H}^{(\cdot)}$	86.6	83.4	76.7	64.1	51.9
Flux correction	1.2	1.6	3.0	7.9	10.7
Boundary setting	3.5	5.7	10.1	15.6	18.3
Recomposition	5.5	6.1	7.4	9.9	14.0
Misc.	4.9	3.2	2.8	2.5	5.1
Time [min]	151.9	79.2	43.4	23.3	13.9
Efficiency [%]	100.0	95.9	87.5	81.5	68.3

After 38 time steps

After 79 time steps

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
		000000000			
AMR examples					

Benchmark run 2: point-explosion in 3D

- Benchmark from the Chicago workshop on AMR methods, September 2003
- Sedov explosion energy deposition in sphere of radius 4 finest cells
- 3D-Wave-Prop. Method with hybrid Roe-HLL scheme
- Base grid 32³
- Refinement factor $r_l = 2$
- Effective resolutions: 128³, 256³, 512³, 1024³
- Grid generation efficiency $\eta_{tol} = 85\%$
- Proper nesting enforced
- Buffer of 1 cell

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Benchmark run 2: point-explosion in 3D

- Benchmark from the Chicago workshop on AMR methods, September 2003
- Sedov explosion energy deposition in sphere of radius 4 finest cells
- 3D-Wave-Prop. Method with hybrid Roe-HLL scheme
- Base grid 32³
- Refinement factor $r_l = 2$
- Effective resolutions: 128³, 256³, 512³, 1024³
- Grid generation efficiency $\eta_{tol} = 85\%$
- Proper nesting enforced
- Buffer of 1 cell

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 00000000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Benchmark run 2: point-explosion in 3D

- Benchmark from the Chicago workshop on AMR methods, September 2003
- Sedov explosion energy deposition in sphere of radius 4 finest cells
- 3D-Wave-Prop. Method with hybrid Roe-HLL scheme
- Base grid 32³
- Refinement factor $r_l = 2$
- Effective resolutions: 128³, 256³, 512³, 1024³
- Grid generation efficiency $\eta_{tol} = 85\%$
- Proper nesting enforced
- Buffer of 1 cell

Benchmark run 2: visualization of refinement

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 000000000
 000000
 000000
 00000

 AMR examples

Benchmark run 2: performance results

	Number of glids and cells											
1	$I_{max} = 2$		$I_{max} = 3$		l _m	$_{ax} = 4$	$I_{\rm max}=5$					
'	Grids	Cells	Grids	Cells	Grids	Cells	Grids	Cells				
0	28	32,768	28	32,768	33	32,768	34	32,768				
1	8	32,768	14	32,768	20	32,768	20	32,768				
2	63	115,408	49	116,920	43	125,680	50	125,144				
3			324	398,112	420	555,744	193	572,768				
4					1405	1,487,312	1,498	1,795,048				
5							5,266	5,871,128				
Σ		180,944		580,568		2,234,272		8,429,624				

Number of grids and cells

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 000000000
 000000
 000000
 00000

 AMR examples

Benchmark run 2: performance results

1	$I_{\rm max}=2$		$I_{max} = 3$		l _m	$_{ax} = 4$	$I_{\rm max}=5$					
'	Grids	Cells	Grids	Cells	Grids	Cells	Grids	Cells				
0	28	32,768	28	32,768	33	32,768	34	32,768				
1	8	32,768	14	32,768	20	32,768	20	32,768				
2	63	115,408	49	116,920	43	125,680	50	125,144				
3			324	398,112	420	555,744	193	572,768				
4					1405	1,487,312	1,498	1,795,048				
5							5,266	5,871,128				
Σ		180,944		580,568		2,234,272		8,429,624				

Number of grids and cells

Breakdown of CPU time on 8 nodes SGI Altix 3000 (Linux-based shared memory system)

Task [%]	$I_{\rm max} = 2$		$I_{max} = 3$		$I_{max} = 4$		$I_{\rm max}=5$	
Integration	73.7		77.2		72.9		37.8	
Fixup	2.6	46	3.1	58	2.6	42	2.2	45
Boundary	10.1	79	6.3	78	5.1	56	6.9	78
Recomposition	7.4		8.0		15.1		50.4	
Clustering	0.5		0.6		0.7		1.0	
Output/Misc	5.7		4.0		3.6		1.7	
Time [min]	0.5		5.1		73.0		2100.0	
Uniform [min]	5.4		160		${\sim}5,000$		$\sim \! 180,000$	
Factor of AMR savings	11		31		69		86	
Time steps	15		27		52		115	

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 000000000
 000000000
 000000
 000000
 00000

 AMR examples

Benchmark run 2: performance results

1	l _{ma}	_× = 2	l _{ma}	$I_{max} = 3$		$I_{\rm max}=4$		$I_{\rm max}=5$	
'	Grids	Cells	Grids	Cells	Grids	Cells	Grids	Cells	
0	28	32,768	28	32,768	33	32,768	34	32,768	
1	8	32,768	14	32,768	20	32,768	20	32,768	
2	63	115,408	49	116,920	43	125,680	50	125,144	
3			324	398,112	420	555,744	193	572,768	
4					1405	1,487,312	1,498	1,795,048	
5							5,266	5,871,128	
Σ		180,944		580,568		2,234,272		8,429,624	

Number of grids and cells

Breakdown of CPU time on 8 nodes SGI Altix 3000 (Linux-based shared memory system)

Task [%]	I _{max} :	$I_{\rm max} = 2$		= 3	$I_{\rm max}=4$		$I_{\rm max}=5$	
Integration	73.7		77.2		72.9		37.8	
Fixup	2.6	46	3.1	58	2.6	42	2.2	45
Boundary	10.1	79	6.3	78	5.1	56	6.9	78
Recomposition	7.4		8.0		15.1		50.4	
Clustering	0.5		0.6		0.7		1.0	
Output/Misc	5.7		4.0		3.6		1.7	
Time [min]	0.5		5.1		73.0		2100.0	
Uniform [min]	5.4		160		${\sim}5,000$		$\sim \! 180,000$	
Factor of AMR savings	11		31		69		86	
Time steps	15		27		52		115	

code/amroc/doc/html/apps/clawpack_2applications_2euler_23d_2Sedov_2src_2Problem_8h_source.html

Components							
Software construction							
		0000000000					
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References		

Components

Directory amroc/clawpack/src contains generic Fortran functions:

?d/integrator_extended: Contains an extended version of Clawpack 3.0 by R. LeVeque. The MUSCL approach was added, 3d fully implemented, interfaces have been adjusted for AMROC. These codes are equation independent.

code/amroc/doc/html/clp/files.html

- ?d/equations: Contains equation-specific Riemann solvers, flux functions as F77 routines.
- ?d/interpolation: Contains patch-wise interpolation and restriction operators in F77.

Directory amroc/clawpack contains the generic C++ classes to interface the F77 library from ?d/integrator_extended with AMROC:

ClpIntegrator<VectorType, AuxVectorType, dim >: Interfaces the F77 library from ?d/integrator_extended to Integrator<VectorType, dim>. Key function to fill is CalculateGrid().

 $\verb|code/amroc/doc/html/clp/classClpIntegrator_3_01VectorType_00_01AuxVectorType_00_012_01_4.html/clp/classClpIntegrator_3_01VectorType_00_01AuxVectorType_00_012_01_4.html/clp/classClpIntegrator_3_01VectorType_00_01AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType_00_0AuxVectorType$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References
		000000000		
Software construction				
Component	s - 11			

ClpFixup<VectorType, FixupType, AuxVectorType, dim >: The conservative flux correction is more complex in the waves of the flux difference splitting schemes. This specialization of AMRFixup<VectorType, FixupType, dim>considers this.

code/amroc/doc/html/clp/classClpFixup.html

A generic main program amroc/clawpack/mains/amr_main.C instantiates Integrator<VectorType, dim>, InitialCondition<VectorType, dim>, BoundaryConditions<VectorType, dim>

code/amroc/doc/html/clp/amr__main_8C.html

Problem.h: Allows simulation-specific alteration in class-libary style by derivation from predefined classes specified in ClpStdProblem.h

code/amroc/doc/html/clp/ClpStdProblem_8h.html

 ClpProblem.h: General include before equation-specific C++ definition file is read that defines VectorType and provides Fortran function names required by amroc/amr/F77Interfaces classes

code/amroc/doc/html/clp/ClpProblem_8h_source.html code/amroc/doc/html/clp/euler2_8h.html

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 00000000
 0000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Functions to link in Makefile.am

Interface objects from amroc/amr/F77Interfaces are used to mimic the interface of standard Clawpack, which constructs specific simulations by linking F77 functions. Required functions are:

- **init.f**: Initial conditions.
- **physbd.f**: Boundary conditions.
- **combl.f**: Initialize application specific common blocks.
- \$(EQUATION)/rp/rpn.f and rpt.f: Equation-specific Riemann solvers in normal and transverse direction.
- \$(EQUATION)/rp/flx.f, \$(EQUATION)/rp/rec.f: Flux and reconstruction for MUSCL slope limiting (if used), otherwise dummy-routines/flx.f and dummy-routines/rec.f may be used.
- \$(EQUATION)/rp/chk.f: Physical consistency check for debugging.
- src.f: Source term for a splitting method., otherwise dummy-routines/src.f can be linked.
- setaux.f: Set data in an additional patch-wise auxiliary array, otherwise dummy-routines/saux.f can be linked.

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Outline

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			00000		
Large-eddy simulation					

Favre-averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{\rho} - \tilde{\tau}_{kn} + \sigma_{kn}) &= 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} + \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{\rho}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) &= 0 \end{aligned}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			00000		
Large-eddy simulation					

Favre-averaged Navier-Stokes equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_n \right) = 0\\ \frac{\partial}{\partial t} \left(\bar{\rho} \tilde{u}_k \right) &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{\rho} - \tilde{\tau}_{kn} + \sigma_{kn} \right) = 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e \right) = 0\\ &\frac{\partial}{\partial t} \left(\bar{\rho} \tilde{Y}_i \right) + \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i \right) = 0 \end{split}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n}$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			00000		
Large-eddy simulation					

Favre-averaged Navier-Stokes equations

$$\begin{split} \frac{\partial \bar{\rho}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_n \right) = 0 \\ \frac{\partial}{\partial t} \left(\bar{\rho} \tilde{u}_k \right) &+ \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn} \right) = 0 \\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} &+ \frac{\partial}{\partial x_n} \left(\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e \right) = 0 \\ &\frac{\partial}{\partial t} \left(\bar{\rho} \tilde{Y}_i \right) + \frac{\partial}{\partial x_n} \left(\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i \right) = 0 \end{split}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n} ,$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

Favre-filtering

$$ilde{\phi} = rac{
ho\phi}{ar{
ho}} \quad ext{with} \quad ar{\phi}(\mathbf{x},t;\Delta_c) = \int_{\Omega} G(\mathbf{x}-\mathbf{x}^{'};\Delta_c)\phi(\mathbf{x}^{'},t)d\mathbf{x}^{'}$$

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

- ▶ Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - > 2nd order conservative centered differences for diffusion

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - 2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability

- Sinusoidal interface between two gases hit by shock wave
- Objective is correctly predict turbulent mixing
- Embedded boundary method used to regularize apex
- AMR base grid $95 \times 95 \times 64$ cells, $r_{1,2,3} = 2$
- $\blacktriangleright~\sim$ 70,000 h CPU on 32 AMD 2.5GHZ-quad-core nodes

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30

code/amroc/doc/html/apps/weno_2applications_2euler_23d_2RM_ AirSF6 2src 2Problem 8h source.html

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30

code/amroc/doc/html/apps/weno_2applications_2euler_23d_2RM_ _AirSF6_2src_2Problem_8h_source.html

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
			000000		
Large-eddy simulation					

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_\nu$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 000000000
 0000
 00000
 00000
 00000

 Large-eddy simulation
 Upwind schemes
 Upwind schemes
 00000
 00000000
 00000000

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_\nu$$

Flux correction to be used [Pantano et al., 2007]

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^0), \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\upsilon=2}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^{\upsilon-1})$$

2.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{m=0}^{r_{l+1}-1} \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{\nu+\frac{1}{2},w+m}^{1,l+1} \left(\mathbf{\tilde{Q}}^{\upsilon-1}(t+\kappa\Delta t_{l+1}) \right)$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 000000
 000000000
 00000000
 0000
 0000
 0000
 0000

 Large-eddy simulation
 Upwind schemes
 Upwind schemes
 00000
 00000
 00000

Flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{k}} \Delta \mathbf{F}^{k} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n - \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \frac{\Delta t}{\Delta x_k} \Delta \mathbf{F}^k(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_{\upsilon} = \gamma_{\upsilon} \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_{\nu}$$

Flux correction to be used [Pantano et al., 2007]

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^0), \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\nu=2}^{\Upsilon} \varphi_{\nu} \mathbf{F}_{i-\frac{1}{2},j}^{1,l}(\tilde{\mathbf{Q}}^{\nu-1})$$

2.
$$\delta \mathbf{F}_{l-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{l-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{m=0}^{r_{l+1}-1} \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{\nu+\frac{1}{2},w+m}^{1,l+1} \left(\mathbf{\tilde{Q}}^{\upsilon-1}(t+\kappa\Delta t_{l+1}) \right)$$

Storage-efficient SSPRK(3,3):

C					
Software construction					
			000000		
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Components

Directory amroc/weno/src contains the Fortran-90 solver library:

 generic: Implements the hybrid WENO-TCD method for Euler and Navier-Stokes equations, characteristic boundary conditions. Code uses F90 modules.

code/amroc/doc/html/weno/files.html

equations: Contains routines that specify between LES and laminar flow, the criterion for scheme hybridization, source terms handled by splitting.

Directory amroc/weno contains the generic C++ class to interface the F90 library with AMROC:

WENOIntegrator<VectorType, dim >: Interfaces the F90 solver to Integrator<VectorType, dim>. CalculateGrid() is called separately for each stage of the Runge-Kutta time integrator.

code/amroc/doc/html/weno/classWEN0Integrator.html

WENOFixup<VectorType, FixupType, dim >: A specialized conservative flux correction that accumulates the correction terms throughout the stages of the Runge-Kutta time integrator.

code/amroc/doc/html/weno/classWENOFixup.html

Conservation laws	Upwind schemes	Clawpack solver	WENO solver		References		
			00000				
Software construction							
Component	Components - II						

WENOInterpolation
VectorType, InterpolationType, OutputType, dim >: Is a quite elaborate data collection class based on AMRInterpolation
VectorType, dim>geared toward statistics processing typical for turbulent simulations. Has run-time function parser.

code/amroc/doc/html/weno/classWENOStatistics.html

The interface otherwise follows the Clawpack integration closely:

- ► Generic main program amroc/clawpack/mains/amr_main.C is re-used.
- Problem.h: simulation-specific alteration of the C++ predefined classes specified in WENOStdProblem.h

code/amroc/doc/html/weno/WENOStdProblem_8h.html

► WENOProblem.h: Include required C++ class definitions definitions, all Fortran function names defined in WENOStdFunctions.h

 $\verb|code/amroc/doc/html/weno/WENOProblem_8h_source.html code/amroc/doc/html/weno/WENOStdFunctions_8h.html code/amroc/doc/html code/amroc/html code/amroc/html code/amroc/doc/html code/amroc/html code/amr$

Interface objects from amroc/amr/F77Interfaces re-used and functions linked in Makefile.am as with Clawpack integrator
Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References

Outline

Conservation laws

Basics of finite volume methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Clawpack solver

AMR examples Software construction

WENO solver

Large-eddy simulation Software construction

MHD solver

Ideal magneto-hydrodynamics simulation Software design

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References			
				• 00 00				
Ideal magneto-hydrodynamics	Ideal magneto-hydrodynamics simulation							

Governing equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \left[\rho \mathbf{u}^{\mathsf{t}} \mathbf{u} + \left(p + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{I} - \mathbf{B}^{\mathsf{t}} \mathbf{B} \right] = \mathbf{0}$$
$$\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[\left(\rho E + p + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u} - (\mathbf{u} \cdot \mathbf{B}) \mathbf{B} \right] = 0$$
$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left(\mathbf{u}^{\mathsf{t}} \mathbf{B} - \mathbf{B}^{\mathsf{t}} \mathbf{u} \right) = \mathbf{0}$$

with equation of state

$$p = (\gamma - 1) \left(\rho E - \rho \frac{\mathbf{u}^2}{2} - \frac{\mathbf{B}^2}{2} \right)$$

The ideal MDH model is still hyperbolic, yet by re-writing the induction equation, one finds that the magnetic field has to satisfy at all times t the elliptic constraint

$$\nabla \cdot \mathbf{B} = 0.$$

 Conservation laws
 Upwind schemes
 Clawpack solver
 WENO solver
 MHD solver
 References

 0000000
 00000000
 0000000
 0000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <td

Generalized Lagrangian multipliers for divergence control

Hyperbolic-parabolic correction of 2d ideal MHD model [Dedner et al., 2002]:

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho u_x}{\partial x} + \frac{\partial \rho u_y}{\partial y} = 0 \\ \frac{\partial (\rho u_x)}{\partial t} &+ \frac{\partial}{\partial x} \left[\rho u_x^2 + \rho \left(\rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) - B_x^2 \right] + \frac{\partial}{\partial y} \left(\rho u_x u_y - B_x B_y \right) = 0 \\ \frac{\partial (\rho u_y)}{\partial t} &+ \frac{\partial}{\partial x} \left(\rho u_x u_y - B_x B_y \right) + \frac{\partial}{\partial y} \left[\rho u_y^2 + \rho \left(\rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) - B_y^2 \right] = 0 \\ \frac{\partial (\rho u_z)}{\partial t} &+ \frac{\partial}{\partial x} \left(\rho u_z u_x - B_z B_x \right) + \frac{\partial}{\partial y} \left(\rho u_z u_y - B_z B_y \right) = 0 \\ \frac{\partial \rho E}{\partial t} &+ \frac{\partial}{\partial x} \left[\left(\rho E + \rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u}_x - (\mathbf{u} \cdot \mathbf{B}) B_x \right] + \frac{\partial}{\partial y} \left[\left(\rho E + \rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u}_y - (\mathbf{u} \cdot \mathbf{B}) B_y \right] = 0 \\ \frac{\partial B_x}{\partial t} &+ \frac{\partial \psi}{\partial x} + \frac{\partial}{\partial y} \left(u_y B_x - B_y u_x \right) = 0 \\ \frac{\partial B_y}{\partial t} &+ \frac{\partial}{\partial x} \left(u_x B_y - B_x u_y \right) + \frac{\partial \psi}{\partial y} = 0 \\ \frac{\partial B_z}{\partial t} &+ \frac{\partial}{\partial x} \left(u_x B_z - B_z u_x \right) + \frac{\partial}{\partial y} \left(u_y B_z - B_y u_z \right) = 0 \\ \frac{\partial \psi}{\partial t} &+ c_h^2 \left(\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} \right) = -\frac{c_h^2}{c_h^2} \psi \end{split}$$

Conservation laws	Upwind schemes	Clawpack solver 000000000	WENO solver	MHD solver 00●00	References 0000
Ideal magneto-hydrodynamics	simulation				
Orszag-Tan	g vortex				
AdaptiveInitial co	solution on 50 $ imes$ ndition	50 grid with 4 addition	onal levels refined by	$r_{l} = 2$	
$\rho(x,$	$(y,0) = \gamma^2, u_x(z)$	$x,y,0)=-\sin(y),$	$u_y(x, y, 0) = \sin(x)$	$u_z(x, y, 0) = 0$	0
<i>p</i> (<i>x</i> ,	$(y,0) = \gamma, B_x(x, y)$	$(y,0) = -\sin(y),$	$B_y(x,y,0)=2\sin(x)$	x), $B_z(x, y, 0) =$	0
time=0			time=0		
6.0		6.0			
5.0-		5.0			
4.0		4.0			
3.0-		3.0			
2.0		2.0			
1.0-		1.0			
1.0	2.0 3.0 4.0	5.0 6.0	1.0 2.0	3.0 4.0 5.0	6.0

Scaled gradient of ho

Multi-resolution criterion with hierarchical thresholding

0000000	000000000	000000000	000000	00000	0000
Ideal magneto-hydrodynamic	s simulation				
Orszag-Tar	ng vortex				
 Adaptiv Initial control 	re solution on 50 $ imes$ 50 ondition	grid with 4 addition	onal levels refined by r_l	= 2	
$\rho(\lambda)$	$(x, y, 0) = \gamma^2, u_x(x, y)$	$(y,0) = -\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
p(×	$(y, 0) = \gamma, B_x(x, y),$	$0)=-\sin(y),$	$B_y(x, y, 0) = 2\sin(x),$	$B_z(x,y,0)=0$	
time=0.314159			time=0.314159		
6.0 8.0 3.0 2.0		6.0 5.0 4.0 3.0 2.0 1.0			
1.0	Scaled gradient of ρ	5.0 6.0	Multi-resolution hierarchical tl	criterion with nresholding	0

MHD solver

MHD solver

0000000	000000000	000000000	000000	0000	0000
Ideal magneto-hydrodyna	amics simulation				
Orszag-T	ang vortex				
 Adap Initia 	tive solution on 50 $ imes$ 50 l condition) grid with 4 addition	onal levels refined by r	$r_{1} = 2$	
	$\rho(x, y, 0) = \gamma^2, u_x(x, y, 0) = \gamma^2,$	$(y,0)=-\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
F	$p(x, y, 0) = \gamma, B_x(x, y)$	$(y,0) = -\sin(y),$	$B_y(x,y,0)=2\sin(x),$	$, B_z(x,y,0)=0$	
time=0.94	2478		time=0.942478		
6.0 5.0 2.0 1.0		5.0 C.0 5.0 C.			
	Scaled gradient of ρ)	Multi-resolution hierarchical t	criterion with	

MHD solver

Ideal magneto-hydrodynamics simulation Orszag-Tang vortex Adaptive solution on 50 × 50 grid with 4 additional levels refined by $r_l = 2$ Initial condition $\rho(x, y, 0) = \gamma^2$, $u_x(x, y, 0) = -\sin(y)$, $u_y(x, y, 0) = \sin(x)$, $u_z(x, y, 0) = 0$ $p(x, y, 0) = \gamma$, $B_x(x, y, 0) = -\sin(y)$, $B_y(x, y, 0) = 2\sin(x)$, $B_z(x, y, 0) = 0$	nces
Orszag-Tang vortex Adaptive solution on 50 × 50 grid with 4 additional levels refined by $r_1 = 2$ Initial condition $\rho(x, y, 0) = \gamma^2$, $u_x(x, y, 0) = -\sin(y)$, $u_y(x, y, 0) = \sin(x)$, $u_z(x, y, 0) = 0$ $p(x, y, 0) = \gamma$, $B_x(x, y, 0) = -\sin(y)$, $B_y(x, y, 0) = 2\sin(x)$, $B_z(x, y, 0) = 0$	
 Adaptive solution on 50 × 50 grid with 4 additional levels refined by r_l = 2 Initial condition ρ(x, y, 0) = γ², u_x(x, y, 0) = − sin(y), u_y(x, y, 0) = sin(x), u_z(x, y, 0) = 0 p(x, y, 0) = γ, B_x(x, y, 0) = − sin(y), B_y(x, y, 0) = 2 sin(x), B_z(x, y, 0) = 0 	
$\begin{aligned} \rho(x, y, 0) &= \gamma^2, u_x(x, y, 0) = -\sin(y), u_y(x, y, 0) = \sin(x), u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, B_x(x, y, 0) = -\sin(y), B_y(x, y, 0) = 2\sin(x), B_z(x, y, 0) = 0 \end{aligned}$	
$p(x, y, 0) = \gamma, B_x(x, y, 0) = -\sin(y), B_y(x, y, 0) = 2\sin(x), B_z(x, y, 0) = 0$	
time=1.25664 time=1.25664	

1.0-

0000000	0000000000	000000000	000000	00000	0000
Ideal magneto-hydrodynar	nics simulation				
Orszag-Ta	ang vortex				
 Adapt Initial 	tive solution on 50 $ imes$ 50 condition	grid with 4 addition	onal levels refined by r_l	= 2	
P	$p(x, y, 0) = \gamma^2, u_x(x, y) = \gamma^2$	$y,0)=-\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
p	$(x, y, 0) = \gamma, B_x(x, y)$	$(0)=-\sin(y),$	$B_y(x,y,0)=2\sin(x),$	$B_z(x,y,0)=0$	
time=1.5708	3		time=1.5708		
		5.0 5.0 5.0 5.0 5.0			
	Scaled gradient of $ ho$		Multi-resolution hierarchical th	criterion with resholding	

MUD

Conservation laws	Upwind schemes	Clawpack solver	VVENU solver	MHD solver	References
				00000	
Ideal magneto-hydrodynar	nics simulation				
Orszag-Ta	ang vortex				

Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$

Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=1.88496

time=1.88496

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
Ideal magneto-hydrodynam	nics simulation		000000	00000	0000
Orszag-Ta	ng vortex				
 Adapt Initial 	ive solution on 50 $ imes$ 5 condition	0 grid with 4 additio	nal levels refined by r_l	= 2	
ρ	$(x, y, 0) = \gamma^2, u_x(x)$	$(y,0) = -\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
p($(x, y, 0) = \gamma, B_x(x, y) = \gamma$	$(y,0) = -\sin(y), B$	$B_y(x, y, 0) = 2\sin(x),$	$B_z(x,y,0)=0$	
time=2.1991	1		time=2.19911		
5.0		6.0- 5.0-			
4.0		4.0-		36	
2.0-		2.0-			

1.0

2.0

3.0

Multi-resolution criterion with

hierarchical thresholding

4.0

5.0

6.0

code/amroc/doc/html/apps/mhd_2applications_2eglm_22d_20rszagTangVortex_2src_2Problem_8h_source.html

6.0

5.0

1.0

2.0

3.0

Scaled gradient of ρ

4.0

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
Ideal magneto-hydrodynan	nics simulation	000000000	000000	00000	0000
Orszag-Ta	ng vortex				
 Adapt Initial 	ive solution on 50 \times : condition	50 grid with 4 additic	onal levels refined by r_l	= 2	
ρ	$(x, y, 0) = \gamma^2, u_x(x)$	$(x, y, 0) = -\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
p($(x, y, 0) = \gamma, B_x(x, y) = \gamma$	$y,0)=-\sin(y),$	$B_y(x, y, 0) = 2\sin(x),$	$B_z(x,y,0)=0$	
time=2.5132	7		time=2.51327		
6.0 5.0 1.0		.0.0.0.0			

2.0

1.0

1.0

2.0

3.0

Multi-resolution criterion with

hierarchical thresholding

4.0

5.0

6.0

code/amroc/doc/html/apps/mhd_2applications_2eglm_22d_20rszagTangVortex_2src_2Problem_8h_source.html

6.0

3.0

2.0-

1.0

1.0

2.0

3.0

Scaled gradient of ρ

4.0

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References		
				00000			
Ideal magneto-hydrodynamics	deal magneto-hydrodynamics simulation						

Orszag-Tang vortex

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=2.82743

time=2.82743

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References		
				00000			
Ideal magneto-hydrodynamics	deal magneto-hydrodynamics simulation						

Orszag-Tang vortex

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=3.14159

time=3.14159

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
				00000	
Software design					
Classes					

Directory amroc/mhd contains the integrator that is in C++ throughout:

EGLM2D<DataType >: GLM method in 2d plus standard initial and boundary conditions. Internal functions for flux evaluation, MUSCL resconstruction, etc. are member functions.

code/amroc/doc/html/mhd/classEGLM2D.html

Is derived from SchemeBase<vector_type, dim >, which is designed for the C++ interface classes in amroc/amr/Interfaces.

code/amroc/doc/html/amr/classSchemeBase.html

amroc/amr/Interfaces: Provides SchemeIntegrator<SchemeType, dim >, SchemeInitialCondition<SchemeType, dim >, SchemeBoundaryCondition<SchemeType, dim > and further interfaces that use classes derived from SchemeBase<vector_type, dim > as template parameter. This provides a single-class location for new schemes in C++.

 $\verb|code/amroc/doc/html/amr/classSchemeIntegrator.html|| code/amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amroc/doc/html/amr/classSchemeInitialCondition.html|| amroc/doc/html/amroc/doc/$

Problem.h: Specific simulation is defined in Problem.h only. Predefined classes specified in MHDStdProblem.h and MHDProblem.h similar but simpler as before.

code/amroc/doc/html/mhd/MHDStdProblem_8h.html code/amroc/doc/html/mhd/MHDProblem_8h_source.html

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References
				00000	
Software design					

Further hyperbolic solvers

amroc/rim: Riemann invariant manifold method. 2d implementation in F77 with straightforward integration into AMROC.

code/amroc/doc/html/rim/files.html

 amroc/balans: 2nd order accurate central difference scheme. 2d implementation in F77 and excellent template for Fortran scheme incorporation into AMROC.

code/amroc/doc/html/balans/files.html

Conservation laws	Upwind schemes	Clawpack solver	WENO solver		References		
References							
References I							

- [Colella and Woodward, 1984] Colella, P. and Woodward, P. (1984). The piecewise parabolic method (PPM) for gas-dynamical simulations. *J. Comput. Phys.*, 54:174–201.
- [Dedner et al., 2002] Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., and Wesenberg, M. (2002). Hyperbolic divergence cleaning for the MHD equations. *J. Comput. Phys.*, 175:645–673.
- [Godlewski and Raviart, 1996] Godlewski, E. and Raviart, P.-A. (1996). *Numerical approximation of hyperbolic systems of conservation laws.* Springer Verlag, New York.
- [Gottlieb et al., 2001] Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. *SIAM Review*, 43(1):89–112.
- [Hirsch, 1988] Hirsch, C. (1988). Numerical computation of internal and external flows. John Wiley & Sons, Chichester.
- [Kröner, 1997] Kröner, D. (1997). Numerical schemes for conservation laws. John Wiley & Sons and B. G. Teubner, New York, Leipzig.

Conservation laws	Upwind schemes	Clawpack solver	WENO solver		References	
					••••	
References						
References II						

- [Laney, 1998] Laney, C. B. (1998). Computational gasdynamics. Cambridge University Press, Cambridge.
- [Langseth and LeVeque, 2000] Langseth, J. and LeVeque, R. (2000). A wave propagation method for three dimensional conservation laws. *J. Comput. Phys.*, 165:126–166.
- [LeVeque, 1992] LeVeque, R. J. (1992). Numerical methods for conservation laws. Birkhäuser, Basel.
- [LeVeque, 1997] LeVeque, R. J. (1997). Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131(2):327–353.
- [Majda, 1984] Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences Vol. 53. Springer-Verlag, New York.
- [Oran and Boris, 2001] Oran, E. S. and Boris, J. P. (2001). Numerical simulation of reactive flow. Cambridge Univ. Press, Cambridge, 2nd edition.

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	References
				••••
References				
References				

- [Pantano et al., 2007] Pantano, C., Deiterding, R., Hill, D. J., and Pullin, D. I. (2007). A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys., 221(1):63–87.
- [Roe, 1981] Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43:357–372.
- [Shu, 97] Shu, C.-W. (97). Essentially non-oscillatory and weigted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report CR-97-206253, NASA.
- [Toro, 1999] Toro, E. F. (1999). *Riemann solvers and numerical methods for fluid dynamics*. Springer-Verlag, Berlin, Heidelberg, 2nd edition.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.
- [van Leer, 1979] van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. J. Comput. Phys., 32:101–136.

Conservation laws	Upwind schemes	Clawpack solver	WENO solver	MHD solver	References		
References							
References IV							

[Wada and Liou, 1997] Wada, Y. and Liou, M.-S. (1997). An accurate and robust flux splitting scheme for shock and contact discontinuities. *SIAM J. Sci. Comp.*, 18(3):633–657.