
A Constructive Genetic Algorithm
 for Gate Matrix Layout Problems

Alexandre César Muniz de Oliveira Luiz Antonio Nogueira Lorena

DEINF - Universidade Federal do Maranhão
Campus Bacanga, São Luís, MA, Brasil

acmo@deinf.ufma.br

LAC - Instituto Nacional de Pesquisas Espaciais
Jd da Granja, 12201-970, S. J. dos Campos, SP, Brasil

lorena@lac.inpe.br

Abstract - This paper describes an application of a Constructive Genetic Algorithm (CGA) to the Gate Matrix

Layout Problem (GMLP). The GMLP happens in very large scale integration (VLSI) design, and can be

described as a problem of assigning a set of circuit nodes (gates) in an optimal sequence, such that the layout

area is minimized, as a consequence of optimizing the number of tracks necessary to cover the gates

interconnection. The CGA has a number of new features compared to a traditional genetic algorithm. These

include a population of dynamic size composed of schemata and structures, and the possibility of using

heuristics in structure representation and in the fitness function definitions. The application of CGA to GMLP

uses a 2-Opt like heuristic to define the fitness functions and the mutation operator. Computational tests are

presented using available instances taken from the literature.

Key words: Constructive genetic algorithms, Gate Matrix Layout, VLSI layout design.

I. INTRODUCTION

Gate Matrix Layout problems (GMLP) are related to one-dimensional logic arrays and programmable

logic arrays folding [1,2]. In very large scale integration design (VLSI design), the goal is to arrange a set

of circuit nodes (gates) in an optimal sequence, such that the layout area is minimized, e.g., it minimizes

the number of tracks necessary to cover the gates interconnection.

Fig.1 shows an example of gate matrix, where the gates are numbered from 1 to 9 and the dots are the

connection requests (Fig.1a). A group of gates at the same connection is called net. There are 7 nets in

circuit of Fig.1 . To connect gates 1,3,4 and 7 of the net 1, it is necessary to cross gates that are not part of

this net. Moreover, non-overlapping nets can be placed at the same connection track. To compute the

number of tracks to cover all nets, it is enough to verify the maximum of overlapping nets. The number of

tracks is an important cost factor of VLSI circuits.

2

Fig.1 - Gate matrix. a) Original matrix; b) Gate matrix derived by interconnection of gates at same net

Fig.1b shows, at the bottom, the number of overlaps at each gate. A typical instance of the GMLP is

composed of an I x J binary matrix, where I and J are the numbers of nets and gates, respectively. The

original matrix is represented in the following by a matrix a where all dots are transformed in ones and

the other positions receive zeros, and the derived interconnected matrix will be denoted by b, which is

generated by transforming in ones all zeros between leftmost and rightmost ones in matrix a. Fig. 2

shows the matrices a and b related to the matrices in Fig.1 .

1 0 1 1 0 0 1 0 0
0 0 0 1 0 1 0 0 1
1 1 0 0 1 0 0 1 0
1 0 0 1 1 0 1 0 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 1

Matrix a

1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 0
0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 1 1 1

Matrix b

Fig. 2 – Derived matrices a and b.

The number of tracks (TR) is easily calculated by:

TR = ∑ =∈

I
i ijJj

b1},...,1{
max = max {3,3,3,5,6,7,7,5,3} = 7. (1.1)

Besides, there is also the cost of connection of the gates that symbolizes the amount of necessary metal to

cover the nets. In this example, the total wire length (WL) is:

WL = Ib
J

j

I
i ij −∑ ∑

=
=

1
1 = (3+3+3+5+6+7+7+5+3) – 7 = 35. (1.2)

GMLP is also a permutation problem, and considering that the initial sequence of gates is {1,2,3,4,...,J},

both TR and WL can be improved by permutated matrices that represent particular sequences of gates.

3

Fig. 3 shows a permutated gate matrix corresponding to the sequence of gates {6,9,4,8,7,5,1,2,3}. The TR

is reduced to 5 and the new WL is 22. Nets 3 and 7 can be placed at the same connection track (the same

for nets 2 and 6).

Fig. 3 - Permutated (optimal) solution

This paper describes the application of a Genetic Algorithm (GA) to problem GMLP. Traditional GAs

work on a set of variables called structures. For applying them to optimization problems, the first step is

the definition of a coding scheme that allows a one-to-one mapping between solutions and structures. A

fitness function assigns a numeric value to each member of the current population (a collection of

structures). The genetic operators used are selection (like tournament or biased roulette wheel) working

together with a number of crossover and mutation operators. The best structure is kept after a predefined

number of generations [3-5].

Holland put forward the "building block" hypothesis (schema formation and conservation) as a theoretical

basis for the GA mechanism [4]. In his view, avoiding disruption of good schema is the basis for the good

behavior of a GA. Schemata can be defined as parts of the structures, where some data is missing, and a

major problem is that they are evaluated indirectly, via evaluation of their instances (structures). Goldberg

and collaborators have addressed the problem of schemata evaluation and introduced the messy-GA [6-8].

In a different approach, Lorena and Furtado [9] proposed recently the Constructive Genetic Algorithm

(CGA) as an alternative to a traditional GA approaches, particularly, for evaluating schemata directly [9].

The CGA evolves a population initially formed only by schemata, controlled by recombination, to a

population of well-adapted structures (schemata instantiation) and schemata. It was applied to clustering

4

problems [9], location problems and timetabling problems [10]. The GMLP is the first permutation like

problem modeled and solved using the CGA approach.

The CGA application can be divided in two phases, the constructive and the optimal:

• The constructive phase is used to build a population of quality solutions, composed of well-adapted

schemata and structures, through operators as selection, recombination and specific heuristics.

• The optimal phase is conducted simultaneously and transforms the optimization objectives of the

original problem on an interval minimization problem that evaluates schemata and structures in a

common way.

This paper is organized as follows. Section 2 presents the aspects of modeling for schema and structure

representations and the consideration of the GMLP as a bi-objective optimization problem. Section 3

describes the CGA operators, namely, selection, recombination and mutation, as well as a CGA pseudo-

code. Section 4 shows computational results using instances taken from the literature.

II. CGA MODELING

In this section the modeling phase of the CGA is described. The GMLP is formulated as a bi-objective

optimization problem. To attain the objective of evaluating schemata and structures in a common way,

two fitness functions are defined on the space of all schemata and structures that can be obtained using a

specific representation. An evolution process will be described in the next section. This process considers

the two objectives on an adaptive rejection threshold, which gives ranks to individuals in population and

yields a dynamic population.

Very simple structure and schema representations are implemented to the GMLP. A direct alphabet of

symbols (natural numbers) represents the gate sequence and each gate is associated to a column of binary

numbers, representing the connection request with each net. The 1 to J values are reserved to gate number

and the symbol # is used to express indetermination (# - do not care) on schemata.

Fig.4 shows the representation for the GMLP instance of Fig.1 and a permutation over it, representing

structures and an example of schema.

5

1 0 1 1 0 0 1 0 0
0 0 0 1 0 1 0 0 1
1 1 0 0 1 0 0 1 0
1 0 0 1 1 0 1 0 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 1

 si =(1 2 3 4 5 6 7 8 9)

1 0 0 0 1 1 0 1 0
0 0 0 1 0 1 1 0 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1 0
0 0 0 1 0 1 1 0 1
1 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0

 sj =(7 2 5 9 3 4 6 1 8)

1 ? 0 ? ? ? 0 1 ?
0 ? 0 ? ? ? 1 0 ?
0 ? 1 ? ? ? 0 1 ?
1 ? 1 ? ? ? 0 1 ?
0 ? 0 ? ? ? 1 0 ?
1 ? 1 ? ? ? 0 0 ?
0 ? 0 ? ? ? 1 0 ?

 sk =(7 # 5 # # # 6 1 #)

Fig.4 - a) Net-gate requirements matrix and structure s i (Fig.2a); b) Example of permutated matrix and
corresponding structure s j ; c) Example of schema.

Let X be the space of all schemata and structures that can be created by this representation. The GMLP is

modeled as the following Bi-objective Optimization Problem (BOP):

)}()({ kk sfsgMin −
)(ksgMax

subject to g(sk) ≥ f(sk)
 ∀ sk ∈Χ (2.1)

Function g is the fitness function that reflects the total cost of a given permutation of gates. Commonly, it

is used in the formulation that considers track minimization as primary objective and wire length

minimization as a secondary one. Therefore, it is defined as g(sk) = I. J.TR(sk) + WL(sk), or

 IbbJIsg
J

j

I
i ij

I
i ij

Jj
k −∑ ∑+∑=

=
==

∈ 1
11

},...,1{
max..)((2.2)

where the I.J product is a weight to reinforce the part of the objective considering the maximum number

of tracks and to make it proportional to the second part of the objective concerning the wire length. If sk

is schema, the non-defined columns (# label) are bypassed. It seems as these columns do not exist and the

b matrix used to compute g(sk) contains only columns with information. In the example of Fig. 3.c, the

track number is max {3,?,4,?,?,?,6,3,?} = 6 and the wire length is sum{3+0+4+0+0+0+6+3+0} - 7 = 9.

The other fitness function f is defined to drive the evolutionary process to a population trained by a

heuristic. The chosen heuristic is the 2-Opt neighborhood. Thus, function f is defined by:

)()(,},...,,{),()(2
21 kv

Opt
Vvvk sgsgsssssgsf ≤⊆∈= −ϕ (2.3)

where is a 2-Opt neighborhood of structure or schema sk.

As the 2-Opt neighborhood can grow exponentially, in our implementation, only a fixed part, randomly

chosen, of this space is used on each function call. Implementation details can be found in section III,

subsection C.

Opt−2ϕ

6

Considering the definition of g , the maximization objective on BOP appears to be a contradiction, but it

is needed at the constructive phase that gives distinct treatments to structures and schemata. By definition,

f and g is applied to structures and schemata, just differing in the amount of information and

consequently in the values associated to them. More information means larger values. In this way, the g

maximization objective in BOP drives the constructive phase of the CGA aiming that schemata will be

filled up to structures.

The optimal phase is conducted by the interval minimization g –f , which happens on structures near to a

local 2-Opt minimum. It is interesting to note that a direct GMLP objective of tracks and wire length

minimization is indirectly reproduced at the (g-f) minimization.

III. THE EVOLUTION PROCESS

The BOP defined above is not directly considered as the set X is not completely known. Alternatively is

considered an evolution process to attain the objectives (interval minimization and g maximization) of the

BOP. At the beginning of the process, two expected values are given to these objectives:

• g maximization:

a non-negative real number gmax > maxs∈X g(s) that is an upper bound on the objective value;

• interval minimization:

an interval length dgmax, obtained from gmax considering a real number 0<d≤ 1.

The evolution process is then conducted considering an adaptive rejection threshold, which contemplates

both objectives in BOP. Given a parameter α ≥ 0 , the expression

 g(sk) - f(sk) ≥ d gmax - α .)]([max ksggd − (3.1)

presents a condition for rejection from the current population of a schema or structure sk. The right hand

side of (3.1) is the threshold, composed of the expected value to the interval minimization d gmax , and

the measure)]([max ksgg − , that shows the difference of g(sk) and gmax evaluations.

Expression (3.1) can be examined varying the value of α. For α=0, both schemata and structures are

evaluated by the difference g-f (first objective of BOP). When α increases, schemata are most penalized

than structures by the difference gmax-g (second objective of BOP).

7

Parameter α is related to time in the evolution process. Considering that the good schemata need to be

preserved for recombination, the evolution parameter α starts from 0, and then increases slowly, in

small time intervals, from generation to generation. The population at the evolution time α , denoted by

Pα , is dynamic in size accordingly the value of the adaptive parameter α , and can be emptied during the

process. The parameter α is now isolated in expression (3.1), thus yielding the following expression and

corresponding rank to sk :

).(
)]([

)]()([

max

max
k

k

kk s
sggd

sfsgdg
δα =

−
−−

≥ (3.2)

At the time they are created, structures and/or schemata receive their corresponding rank value δ ()s k .

These ranks are compared with the current evolution parameter α. The higher the value of δ ()s k , and

better is the structure or schema to the BOP, and they also have more surviving and recombination time.

For the GMLP, the overall bound gmax is obtained at the beginning of the CGA application, by

generating a random structure and making gmax receive the g evaluation for that structure. In order to

ensure that gmax is always an upper bound, after recombination, each new structure generated snew is

rejected if gmax ≤ g(snew).

A. Initial population

The initial population is composed exclusively of schemata, considering that for each schema, a

proportion of random positions receive a unique gate number. The remaining positions receive labels #.

Along the generations, the population increases by addition of new offspring generated out of the

combination of two schemata.

B. Selection

There are two purposes on the evolution process: to obtain structures (good solutions to the g

maximization objective on the BOP), and that these structures be good ones (best solutions to the interval

minimization objective on the BOP). The selection of structures and/or schemata for recombination will

8

be conducted to attain these two objectives, selecting for recombination schemata with small number of

labels # and structures or schemata with small
)(

)()(

k

kk
k sg

sfsg
d

−
= .

The structures and schemata in population Pα are maintained on ascending order, according to the key

η/)1()(kk ds +=∆ , where η is the number of genes containing information (not #). Thus, good

individuals with more genetic information (structures or semi-complete schemata) appear in first order

places on the population.

Two structures and/or schemata are selected for recombination. The first is called the base (sbase) and is

randomly selected out of the first positions in Pα , and in general it is a good structure or a good schema.

The second structure or schema is called the guide (sguide) and is randomly selected out of the total

population. The objective of the sguide selection is the conduction of a guided modification on sbase. Fig.5

represents the base-guide selection process.

Fig.5 - Base-guide selection

C. Recombination

In the recombination operation, the current labels in corresponding positions are compared. Let snew be

the new structure or schema (offspring) after recombination. Structure or schema snew is obtained by

applying the following operations:

{ Recombination }

For i from 1 to individual length
I If sbase (i) = # and sguide (i) = # then set snew(i) = #
II If sbase (i) <> # and sguide (i) = # then set snew(i) = sbase (i) If sbase (i) it is not in snew

else set snew(i) = #
III If sbase (i) = # and sguide (i) <> # then set snew(i) = sguide (i) if sguide (i) it is not in snew

else set snew(i) = #
IV If sbase (i) <> # and sguide (i) <> # then set snew(i) = sbase (i) if sbase (i) it is not in snew

else set snew(i) = sguide if sguide (i) it is not in snew

else set snew(i) = #

9

Observe that sbase is a privileged individual to compose snew, but it is not totally predominant. There is a

small probability of the sguide gene information to be used instead of sbase one.

D. The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:

CGA { Constructive Genetic Algorithm }
Given gmax and d ; α := 0 ; ε := 0.005; { initialization of parameters }
Initialize Pα ; { initial population }
For all sk ∈ Pα do compute g(sk), f(sk), δ ()s k { evaluate Pα }
While (not stop condition) do

While (number of recombination) do
Select Base and Guide from Pα ; { selection operator }
Recombine Base and Guide { recombination operator }
Evaluate Offspring; { fg-fitness and ranking }
Update Offspring in Pα; { update Pα }

end_while
α := α + ε ;
For all sk ∈ Pα satisfying α >δ ()s k do

Eliminate sk from Pα
end_for

end_while

The ε increment is a linear step that increases the adaptive rejection threshold. Each distinct value of α

corresponds to a generation. The stop conditions occur with an emptied population (assured by a

sufficiently higher α) or at a predefined number of generations. The population increases, after the initial

generations, reaching an upper limit (in general controlled by storage conditions), and decreases for

higher values of the evolution parameter α .

The CGA algorithm begins with the recombination procedures (over schemata only) and the constructive

process builds structures (full individuals) progressively at each generation. The constructive process

repeatedly uses genetic information contained in two individuals to generate another one. However, the

constructive process can be complemented using especially designed mutation and filling heuristics,

searching for a better overall performance. This filling process is called unary-filling operator and is

applied before the recombination. It consists to fill the sbase substituting the # labels for gate numbers.

For GMLP, this feature was implemented as following:

10

{Unary-filling operator}
Select Base and Guide from Pα ; { selection operator }
If Base is a schema then

Fill Base giving filled_Base; { heuristic for filling }
Recombine Base and Guide { recombination operator }

end_if
Mutation on full Base (or filled_Base); { local search on structures only }
Evaluate Offspring; { fg-fitness and ranking }
Update Offspring in Pα; { update Pα }

This code fragment replaces the innermost while loop of the CGA pseudo-code. If the selected base is a

schema, it is combined with the guide individual (schema or structure) giving a new individual. In any

way, local search mutation is applied to a structure (full or filled base) and the offspring are updated

depending on its rank. If a best structure is found, it is kept for the end.

For filling schemata it is used an algorithm based on neighborhood minimization. The principle is that a

schema sk must be filled with a good sequence of gate columns that do not belong to it yet.

Fig.5 - Rule for filling schemata

In the example on Fig.6, there are 4 candidate gate columns (on right) to include in a partially showed

schema at the marked position (# position). For each # position will be tested all candidate gate columns.

It will be chosen the gate column that minimizes the bit-to-bit xor relation, considering, in matrix, the

immediate neighbors gate columns to the left and to the right (if exists) of the # point. The bit-to-bit xor

sum of first candidate column is 2, and is the smaller sum. This mechanism intends to decrease the

possibility of zeros between ones at the included gate columns.

The local search mutation is always applied to structures, no matter how they are created (after

recombination or after the filling process). The search at 2-Opt neighborhood of the structure (like the f

definition on expression 2.3) avoids that the computational effort increases defining a constant number of

neighbors to be inspected until the best is found. The neighbors are generated by all the 2-move changes

in a constant length part of the structure. A position is chosen at random and starting from there an

iterative process that inspects all possible 2-move changes in the structure.

11

The example of 2-move change is showed in Fig.7 . The marks in positions of the structures mean

reference points to be changed. Non-consecutive references cause the first change type, as showed in

Fig.7a. Consecutive points cause the second change type in Fig.7b. Inspecting all or part of 2-Opt

neighborhood needs several moves (catching 2-to-2 points). The number of 2-move changes

(neighborhood width) on each local search mutation is a CGA parameter of execution to be tuned. This

and all the others settings will be described in next section.

The offspring is included in Pα if its rank value δ is greater than the adaptive rejection threshold α and

also it is not equal to any other individual in Pα.

Fig.7 - Examples of one-move in 2-Opt neighborhood; a) non-consecutive reference points change; b)
consecutive reference points change.

IV. COMPUTATIONAL RESULTS

The CGA for GMLP was coded in ANSI C and it was run on Intel Pentium II (266Mhz) hardware. For the

computational tests, some CGA parameters were adjusted. The d parameter was set to 0.15 (usually

between 0.10 and 0.20 values, for others applications [9]). This configures the interval d.gmax ,

establishing the survival time of each individual, once the expected δ values are proportional to this

interval. The ε was set to 0.005 and also contributes to the survival time of each individual in Pα. In this

case, it is set to slow the increase on α. These parameters avoid the premature termination with an empty

population.

Each schema of the initial population received 50% of # genes (indetermination percentage), and 10% up

to 20% of population were considered base individuals for base-guide selection, determining a small

degree of diversification in selection process. In this case, 10% up to 20% of better individuals of the

population are considered for the selection of individuals base.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
I N I T I A L

1 2 3 4 5 6 7 8

1 2 3 6 5 4 7 8C H A N G E D

1 2 3 4 5 6 7 8

4 5 6 7 8 1 2 3

a) b)

12

Local search mutation rate was fixed in 100%, which means a constant improvement of individuals. The

number of individuals initially generated was proportional to problem length (at least the number of

gates). Other important parameter to be tuned is the neighborhood width (nw) to each local search

mutation. After some simulations the better results set nw = 20. The ideal situation would be to use

greater values for nw, but this would turn the mutation very slow.

The CGA was applied to several instances taken from the literature. Previous tests showed that CGA did

not found any difficulties on small problems (smaller than v4090 problem), and the tests for some small

problems are not reported in this work.

Table I presents the problem circuits considered, along with the corresponding number of nets and gates,

a lower bound to the number of tracks, the previous best-known number of tracks (solution) and its

reference. Chosen problems were the largest ones found in the literature and others for which authors

have obtained recent improvements in results. The lower bound is computed by the maximum column

sum of the original matrix. Most of the best previous results comes of Microcanonical Optimization

(MCO) approach [11], but other ones with same best results were included as in references: GM_Learn

[12] and GM_Plan [13]. The MCO overcame (or match) all the other approaches and it was chosen for

comparison with the results of CGA.

Table I - Chosen problems to compare

Table II presents the comparison among the best results of MCO. The MCO was run initially for 10

replications, but only after 1000 replications the authors reached their best results for problems wli,

v4000, v4470, x0, w3 and w4 . The CGA best results were obtained after 10 replications at same hardware

environment. One replication means a complete execution over the same problem with the same

problem gate net LB best
tracks

Refs

wli 10 11 4 4 [11,13]

wsn 25 17 4 8 [11,13]

v4000 17 10 5 5 [11]

v4050 16 13 5 5 [11,12]

v4090 27 23 9 10 [11,12]

v4470 47 37 5 9 [11,12]

x0 48 40 6 11 [11,12]

w1 21 18 4 4 [11,13]

w2 33 48 14 14 [11,13]

w3 70 84 11 18 [11]

w4 141 202 18 27 [11]

13

parameters settings. For the CGA, the stop condition of one replication is when the best-known solution is

reached or at a pre-defined number of generations with no improvement.

Table II - CGA comparison to MCO

To compare different number of replications with respect to execution time, the total time of all the

replications was computed based on average of one trial execution time. Thus, the total time of CGA

experiments is 10 times the average of one trial execution. By its turn, the total time of MCO experiments

is 1000 times the average one trial execution. The "-" execution time, reported in [10] as close to zero, to

our computations, was turned to 0.01 seconds, that represents the smallest fraction of one second with two

decimal digits.

The "-" symbol in the "tracks: 1000 replications" column means that MCO was not run 1000 times.

According to the authors, for these problems, it was not necessary to improve the results obtained with 10

replications. The "gen" column is the number of generations (average) in 10 replications of CGA.

The numbers of tracks columns refer to the best result found for each problem. An additional CGA

column presents the wire length values, not reported in other references. Observing Table II, the CGA

found the same results of MCO, but the total time of all replications to find the best results is smaller.

In [10], the authors remark the frequency of 36.3% to find the best result for wli problem (relatively

small) in 1000 replications. No remarks are reported about larger problems. In our experiments, this

percentage is 100% in 10 replications. In CGA, smaller percentages of best tracks were found only in

larger problems (w3 and w4). There is no available data for a complete comparison of these two

MCO CGA
Prob tracks:10

replications
tracks:1000
replications

one trial
time
(avg)

1000 trial
time

Tracks:10
replications

wire
lenght

Gen.
(avg)

One trial
time
(avg)

10 trial
time

wli 5.00 4.00 0.01 10.00 4.00 24 5.00 0.50 5.00

wsn 8.00 - 0.01 10.00 8.00 98 7.00 1.50 15.00

v4050 5.00 - 0.01 10.00 5.00 41 5.00 0.50 5.00

v4000 6.00 5.00 0.01 10.00 5.00 53 5.00 0.50 5.00

v4470 10.00 9.00 0.70 700.00 9.00 246 33.00 66.50 665.00

v4090 10.00 - 0.10 100.00 10.00 95 13.50 2.03 20.33

x0 11.00 11.00 0.70 700.00 11.00 303 92.57 75.56 755.60

w1 4.00 - 0.01 10.00 4.00 39 5.00 1.00 10.00

w2 14.00 - 0.40 400.00 14.00 235 19.50 18.50 185.00

w3 21.00 18.00 3.90 3900.00 18.00 677 186.00 306.25 3062.50

w4 32.00 27.00 61.70 61700.00 27.00 1730 225.00 5224.67 52246.67

14

approaches, but, at least, CGA seems to be more robust than MCO in small problems, like the wli

problem.

The Table III shows the CGA 5 best results (wire length and tracks) obtained in 10 replications. Problems

w3, w4, x0 v4470 have less than 100% of frequency in reaching their best solution. The w4 problem

appears to be the most difficult one, but these results show that no more than 10 trials were necessary to

CGA to find the best-known solution.

Table III - Five best results and frequencies found for best tracks

V. CONCLUSION

This work describes an application of the Constructive Genetic Algorithm (CGA) to Gate Matrix Layout

problems (GMLP). The CGA adapted to work with GMLP presents some new specific features, like the

filling operator, and a 2-Opt heuristic used as mutation and on definition of the two fitness functions (f

and g). Regarding the computational tests, the CGA reached all the best-known results (number of tracks)

for instances taken from the literature, but it appears to be more robust than the Microcanonical

Optimization approach. There is no published information about wire length in literature to completely

compare the approaches. Applications of CGA to other classes of permutation problems are foreseen for

future works.

ACKNOWLEDGMENTS

The first author acknowledges the Programa Institucional de Capacitação Docente e Técnica -

PICDT/CAPES for financial support. The second author acknowledges Conselho Nacional de

Desenvolvimento Científico e Tecnológico - CNPq (proc. 300837/89-5) and Fundação para o Amparo a

CGA 5 best solutions % best
tracks

wsn 104 8 104 8 105 8 107 8 113 8 100.00

wli 18 4 18 4 18 4 18 4 18 4 100.00

v4050 41 5 41 5 41 5 42 5 42 5 100.00

v4000 53 5 53 5 53 5 54 5 55 5 100.00

v4470 246 9 253 9 265 9 266 9 282 9 100.00

v4090 95 10 96 10 96 10 98 10 99 10 90.00

x0 303 11 304 11 305 11 306 11 308 11 80.00

w1 39 4 39 4 39 4 39 4 43 4 100.00

w2 235 14 236 14 267 14 273 14 275 14 100.00

w3 677 18 687 18 834 18 843 18 717 18 50.00

w4 1730 27 1836 27 1849 27 1745 28 1745 28 30.00

15

Pesquisa no Estado de S. Paulo - FAPESP (proc. 99/06954-7) for partial financial support. The authors

acknowledge the editors and the useful comments and suggestions of the three referees.

REFERENCES

1 Möhring, R. Graph problems related to gate matrix layout and PLA folding. Computing, Vol

7, pp. 17-51, 1990.

2 Kashiwabara, T. and Fujisawa T., NP-Completeness of the problem of finding a minimum

clique number interval graph containing a given graph as a subgraph in Proc Symp. Circuits

and Systems. 1979.

3 Goldberg, D.E., Genetic algorithms in search, optimization and machine learning. Addison-

Wesley, Reading, MA, p. 11-172, 1989.

4 Holland, J.H., Adaptation in natural and artificial systems. MIT Press, p. 11-147, 1975.

5 Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer-

Verlag, Berlin, 1996.

6 Goldberg, D.E.; Korb, B.; Deb, K. Messy genetic algorithms: Motivation, analysis, and first

results. Complex Systems v. 3: p. 493-530, 1989.

7 Goldberg, D.E.; Deb, K.; Kargupta, H.; Harik, G. Rapid, accurate optimization of difficult

problems using fast messy genetic algorithms. IlliGAL Report No. 93004, Illinois Genetic

Algorithms Laboratory, Department of General Engineering, University of Illinois, Urbana,

1993.

8 Kargupta, H. Search, Polynomial Complexity, and The Fast Messy Genetic Algorithm, Ph.D.

thesis, IlliGAL Report No. 95008, Illinois Genetic Algorithms Laboratory, Department of

General Engineering, University of Illinois, Urbana, 1995.

9 Lorena, L. A. N. and Furtado, J. C. Constructive Genetic Algorithm for Clustering Problems.

Evolutionary Computation 9(3): 309-327, 2001.

10 Ribeiro Filho, G. and Lorena, L. A. N. A Constructive Evolutionary Approach to School

Timetabling. In Applications of Evolutionary Computing, Boers, E.J.W., Gottlieb, J., Lanzi,

P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H., (Eds.) - Springer Lecture Notes

in Computer Science vol. 2037, pp. 130-139 - 2001

16

11 Linhares, A., Yanasse H. and Torreão J. R. A. Linear Gate Assignment: a Fast Statistical

Mechanics Approach. IEEE Trans. on Computer-Aided Designed of Integrated Circuits and

Systems. Vol. 18(12), pp. 1750-1758. 1999.

12 Chen S. J. and Hu. Y. H. GM_Learn: an interactive learning algorithm for CMOS gate matrix

layout. IEE Proc E, vol 137, pp 301-309, 1990.

13 Hu Y. H. and Chen S. J. GM_Plan: a gate matrix layout algorithm based on artificial

intelligence planning techniques. IEEE Trans. Computer-Aided Designed, Vol. 9, pp. 836-845,

1990.

