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Summary. A challenge in hybrid evolutionary algorithms is to employ efficient
strategies to cover all the search space, applying local search only in actually promis-
ing search areas. The inspiration in nature has been pursued to design flexible, co-
herent and efficient computational models. In this chapter, the Clustering Search
(*CS) is proposed as a generic way of combining search metaheuristics with cluster-
ing to detect promising search areas before applying local search procedures. The
clustering process aims to gather similar information about the search space into
groups, maintaining a representative solution associated to this information. Two
applications are examined for combinatorial and continuous optimization problems,
presenting how to develop hybrid evolutionary algorithms based on *CS.

Keywords: Hybrid search metaheuristics; Combinatorial and continuous
optimization.

1 Introduction

Modern search methods for optimization consider hybrid evolutionary algo-
rithms (HEA) those employing evolutionary algorithm (EA) and local opti-
mizers working together. The hybridism comes from the balancing of global
and local search procedures. The inspiration in nature has been pursued to
design flexible, coherent and efficient computational models. The main fo-
cuses of such models are real-world problems, considering the known little
effectiveness of canonical genetic algorithms (GAs) in dealing with them.

Investments have been made in new methods, which the evolutionary pro-
cess is only part of the whole search process. Due to their intrinsic features as
global solver, GAs are employed as a generator of search areas (subspaces),
which are more intensively inspected by a heuristic component. This scenario
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comes to reinforce the parallelism of EAs, as well a collaborative perspective
between solver components.

This chapter proposes the Clustering Search (*CS): the generalized way
of detecting promising search areas by clusters of solutions. This generalized
approach is achieved both by the possibility of employing any metaheuristic
and by also applying to combinatorial and continuous optimization problems.
The remainder of this chapter is organized as follows. Section 2 discusses
some ideas related to clustering and social behaviour inspiring hybrid meth-
ods found in literature. Section 3 describes the basic ideas and conceptual
components of *CS. Section 4 and 5 examine two applications for uncon-
strained continuous optimization and pattern sequencing, respectively. The
findings and conclusions are summarized in section 6.

2 Related works

Several natural processes can be simulated by evolutionary algorithms, en-
riching their capabilities, extending their applicability and enhancing their
performance. The migration of individuals between search areas can be taken
with a social behaviour interpretation. A society corresponds to a cluster of
points in the search space and the set of all societies composes a civilization.
Each society has its set of leaders that help others individuals to improve
through an intrasociety information exchange.

The intrasociety information exchange is analogous to an intensified local
search around a better performing point, resulting in the shift of points in
the cluster. Leaders of a society can improve only through an intersociety
information exchange that results in the migration of a leader from a society
to another. The intersociety information exchange is analogous to a search
around globally promising regions in the search space [2].

Another interpretation for clusters and migration of individuals comes
from the analogy with ecosystems in nature. Each search area can be seen as
a geographical region where distinct species or societies evolve at the same
time. Each group of individuals lives and reproduces in their respective region.
They search for natural resources by their particular strategy of exploration.
Sometimes, the region is inappropriate to be explored by long periods and the
resources become scarce, obliging the individuals to migrate to another region
or even to die on it. The migration of groups of individuals allows discovering
other areas, keeping inhabited the most resource-full of them.

Local search methods have been combined with metaheuristics in differ-
ent ways to solve particular problems more efficiently. Gradient as well as
direct search methods have been employed as exploitation tool in continuous
optimization. In the cases where there are no derivatives available for fitness
function, pattern search methods are useful to provide more robust conver-
gence [3].
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Hill-climbing procedures are largely employed in the so called memetic al-
gorithms (MA) as a Lamarckian learning process [4]. For example, a simple
crossover can work as a local search around the parents, hill-climbing by re-
peatedly generating some number of offspring and replacing the worst parent
[5].

The main challenge in such hybrid methods is to define efficient strate-
gies to cover all search space, applying local search only in actually promising
areas. Elitism plays an important role towards achieving this goal, since the
best solutions represent promising neighborhood. The Simplex Genetic Al-
gorithm Hybrid (SGAH), proposed in [6], applies a probabilistic version of
Nelder and Mead Simplex (NMS)[7] in the elite of population. However, such
well-evaluated solutions can be concentrated in few areas and thus the ex-
ploitation moves are not rationally applied.

More recently, a different strategy have been used, demonstrating concern
about rationally employing local search in the evolutionary solver fashion.
The evolutionary process runs normally until a promising area is detected.
The promising area is detected when the highest distance between the best
individual and the other individuals of the population is smaller than a given
radius, i.e., when population diversity is lost. Thereafter, the search domain
is reduced, an initial simplex is built inside this area and a local search based
on Nelder and Mead Simplex is started. This continuous hybrid algorithm,
called CHA, perform very well, reaching good results [8]. The exploitation
moves are started using the simplex method around the best individual found
in the exploration cycle. With respect to detection of promising areas, the
CHA has a limitation. The exploitation is started once, after diversity loss,
and the evolutionary process can not be continued afterwards, unless a new
population takes place.

Another approach attempting to find out relevant areas for continuous
optimization is a parallel hill-climber, called Universal Evolutionary Global
Optimizer (UEGO) by its authors [1]. The separated hill-climbers work in
restricted search regions (or clusters) of the search space. The volume of the
clusters decreases as the search proceeds, resulting in a cooling effect similar
to simulated annealing. Each cluster center represents diversity and quality,
since it is result of hill-climbing procedures in separated search subspaces [1].
UEGO do not work so well as CHA for high dimension functions.

The scatter search (SS), proposed in [9], by another way, separates diver-
sified and improved solutions in two sets: the reference set, containing the
best solutions found so far and the diversity set, containing the solutions
most distant from the solutions of the reference set. The solutions in these
two sets are improved by local search. Thus, SS employs systematic explo-
ration/exploitation moves, combining quality and representative solutions [9].

The idea behind all these methods is to explore the most promising search
areas by strategies beyond those resulting from the regular sampling of the
fitness landscape. In EAs, promising search areas can be detected by fit or
frequency merits [10]. By fit merits, the fitness of the solutions can be used
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to say how good their neighborhoods are. On the other hand, in frequency
merits, the evolutionary process naturally privileges the good search areas by
a more intensive sampling in them. Good solutions are more frequently sam-
pled. Fig. 1 shows the 2-dimensional contour map of a test function known as
Langerman. The points are candidate solutions over fitness surface in a cer-
tain generation. One can note their agglomeration over the promising search
areas.
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Fig. 1. Convergence of typical GA into fitter areas.

Clusters of mutually close solutions hopefully can correspond to relevant
areas of attraction in the most of search metaheuristics, including EAs. Rel-
evant search areas can be treated with special interest by the algorithm as
soon as they are discovered. The clusters work as sliding windows, framing
the search areas and giving a reference point (center) to problem-specific local
search procedures. Furthermore, the cluster center itself is always updated by
a permanent interaction with inner solutions, called assimilation [11, 12].

This basic idea was employed to propose the Evolutionary Clustering
Search (ECS) early applied to unconstrained continuous optimization [11].
Posteriorly, the search guided by clustering was extended to a GRASP (Greedy
Randomized Adaptive Search Procedure[13]) with VNS (Variable Neighbor-
hood Search[14]), and applied to Prize Collecting Traveling Salesman Problem
(PCTSP) [12], a generalization of the Traveling Salesman Problem, which the
salesman collects a prize in each city visited and pays a penalty for each city
not visited [12]. The later is the first attempt of replacing the evolutionary
metaheuristic by another.



Hybrid Evolutionary Algorithms and Clustering Search 5

3 Clustering Search foundations

The Clustering Search (*CS) employs clustering for detecting promising areas
of the search space. It is particularly interesting to find out such areas as soon
as possible to change the search strategy over them. An area can be seen as
a search subspace defined by a neighborhood relationship in metaheuristic
coding space.

The *CS attempts to locate promising search areas by framing them by
clusters. A cluster can be defined as a tuple G = {c, r, s}, where c and r are
the center and the radius of the area, respectively. The radius of a search area
is the distance from its center to the edge. There can exist different search
strategies s associated to the clusters.

Initially, the center c is obtained randomly and progressively it tends to slip
along really promising points in the close subspace. The total cluster volume
is defined by the radius r and can be calculated, considering the problem
nature. It is important that r must define a search subspace suitable to be
exploited by the search strategies associated to the cluster.

For example, in unconstrained continuous optimization, it is possible to
define r in a way that all Euclidean search space is covered depending on
the maximum number of clusters[11]. In combinatorial optimization, r can be
defined as the number of movements needed to change a solution into another.
In both cases, the neighborhood is function of some distance metric related
to the search strategy s.

3.1 Components

*CS can be splitted off in four conceptually independent parts. Fig. 2 brings
its conceptual design.

1. a search metaheuristic (SM);
2. an iterative clustering (IC) component;
3. an analyzer module (AM); and
4. a local searcher (LS).

SM component works as a full-time solution generator, according to its
specific search strategy, performing independently of the remaining parts, and
manipulating a set of |P | solutions (|P | > 1 for EAs). In an evolutionary
algorithm fashion, individuals are selected, crossed over, and updated for the
next generations. This entire process works like an infinite loop, in which
solutions are generated along the iterations.

IC component aims to gather similar solutions into groups, maintaining a
representative cluster center for them. To avoid extra computational effort, IC

is designed as an online process, in which the clustering is progressively fed
by solutions generated in each regular iteration of SM. A maximum number
of clusters NC is an upper bound value that prevents an unlimited cluster
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Fig. 2. *CS components.

creation. For a n−dimensional problem, the IC complexity is, at most, O(NC ·
n) when all cluster centers are allocated. A distance metric, ℘, must be defined,
a priori, allowing a similarity measure for the clustering process.

AM component examines each cluster, in regular intervals, indicating a
probable promising cluster. A cluster density, δi, is a measure that indicates
the activity level inside the cluster i. For simplicity, δi counts the number
of solutions generated by SM (selected solutions, in the EA case[11]). When-
ever δi reaches a certain threshold, meaning that some information template
becomes predominantly generated by SM, such information cluster must be
better investigated to accelerate the convergence process on it. Clusters with
lower δi are eliminated, as part of a mechanism that will allow creating other
centers of information, keeping framed the most active of them. The cluster
elimination does not affect the set of |P | solutions in SM. Only the center of
information is considered irrelevant for the process.

At last, the LS component is an internal searcher module that provides
the exploitation of a supposed promising search area, framed by cluster. This
process can happen after AM having discovered a target cluster or it can be a
continuous process, inherent to IC, being performed whenever a new point is
grouped. LS can be considered as the particular search strategy s associated
with the cluster, i.e., a problem-specific local search to be employed into the
cluster.
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3.2 The clustering process

The clustering process described here is based on Yager’s work, which says
that a system can learn about an external environment with the participation
of previously learned beliefs of the own system [15, 16]. The IC is the *CS’s
core, working as a classifier, keeping in the system only relevant information,
and driving search intensification in the promising search areas. To avoid
propagation of unnecessary information, the local search is performed without
generating other intermediary points of search space.

Solutions sk generated by SM are passed to IC that attempts to group
as known information, according to ℘. If the information is considered suffi-
ciently new, it is kept as a center in a new cluster, cnew. Otherwise, redun-
dant information activates the closest center ci (cluster center that minimizes
℘(sk, cj=1,2,···,)), causing some kind of perturbation on it. This perturbation
means an assimilation process, in which the previously learned knowledge
(center of the cluster) is updated by the received information. Considering
Gj (j=1,2,···) as all current detected clusters:

• cnew = sk, if ℘(sk, cj) > rj ,∀Gj ; or
• c′i = assimilation of sk by ci, otherwise.

3.3 Assimilation

The assimilation process is applied over the closest center ci, considering the
new generated solution sk. The general assimilation form is [10]:

c′i = ci ⊕ β(sk ⊖ ci) (1)

where ⊕ and ⊖ are abstract operations over ci and sk meaning, respectively,
addition and subtraction of solutions. The operation (sk⊖ci) means the vector
of differences between each one of the n variables compounding the solutions
sk and ci, considering the distance metric. A certain percentage β of the vector
is the update step for ci, giving c′i. According to β, the assimilation can assume
different forms. The three types of assimilation are shown in Fig. 3.

Simple assimilation

In simple assimilation, β ∈ [0, 1] is a constant parameter, meaning a deter-
ministic move of ci in the direction of sk. Only one internal point is generated
more or less closer to ci, depending on β, to be evaluated afterwards. The
greater β, the less conservative the move is. This type of assimilation can be
employed only with real-coded variables, where percentage of intervals can be
applied to. Its specific form is:

c′i = ci + β(sk − ci) (2)



8 Alexandre C. M. Oliveira and Luiz A. N. Lorena

                                                         

                                                    

                                                      C’i2            C’i1     

             C’i3       Sk                                                  Ci

                            C’i                 Ci

Sk

 ( Sk - Ci )

                         C’i            Ci

  Sk

Fig. 3. Simple, path and crossover assimilations, respectively.

Crossover assimilation

Despite its name, crossover assimilation is not necessarily associated with
an evolutionary operator. In a general way, it means any random operation
between two candidate solutions (parents), giving other ones (offsprings),
similarly as a crossover operation in EAs. In this assimilation, β is an
n−dimensional random vector and c′i can assume a random point inside the
hyper plane containing sk and ci. The crossover assimilation can be rewritten
by:

c′i = ci +
−→
β · (sk − ci) (3)

Since the whole operation is a crossover or other binary operator between
sk and ci, it can be applied to any type of coding or even problem (combi-

natorial or continuous one). The
−→
β parameter is resulting from the type of

crossover employed, not the crossover parameter itself. For example, in con-
tinuous optimization, a blend crossover (BLX-α) [17] can be usually inserted

in (3), giving a final form to
−→
β :

−→
β = −blxα +

−→
β′(1 + 2blxα) (4)

where the random
−→
β′ ∈ [0, 1], blxα is the BLX-α parameter and hence the

random resulting
−→
β ∈ [−blxα, 1 + blxα].

Path assimilation

Simple and crossover assimilations generate only one internal point to be
evaluated afterwards. Path assimilation, instead, can generate several internal
points or even external ones, holding the best evaluated one to be the new
center. It seems to be advantageous, but clearly costly. These exploratory
moves are commonly referred in path relinking theory [18].
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In this assimilation, β is a η−dimensional vector of constant and evenly
spaced parameters, used to generate η samples taken in the path connecting
ci and sk. Since each sample is evaluated by the objective function, the path
assimilation itself is an intensification mechanism inside the clusters. The new
center c′i is given by:

c′i = c′V , f(c′V ) = min
{

f(c′1), f(c′2), · · · , f(c′η)
}

c′j = ci + βj(sk − ci)
βj ∈ {β1, β2, · · · , βη}

(5)

where βj ∈ {]0, 1[
⋃

]1,∞]}, f(c′V ) is the objective function of the best eval-
uated solution sampled in the path and min is concerned to minimization
problems.

With respect to the infinite interval in (5), it means that external points
can be sampled indefinitely while there are well-succeeded points beyond sk. A
well-succeeded point has an objective function value better than the previous
point sampled, in a way that an evaluated worse point stops the sampling. In
the Fig. 3, one can see the point ci3 evaluated after sk. Such extrapolation
move is suitable for path relinking [18] and it can intentionally shift the center
cluster to a new promising search area.

4 ECS for unconstrained continuous optimization

The *CS was first applied to unconstrained continuous optimization, employ-
ing a steady-state genetic algorithm as SM component. The evolutionary al-
gorithm acts as a generator of search points. Several other approaches can
be connected to *CS. A detailed investigation must have place further. For a
while, the next sections are still devoted to the evolutionary metaheuristic.

An evolutionary algorithm, employed as SM component in Clustering
Search, is called ECS. A real-coded version of ECS for unconstrained contin-
uous optimization was proposed in [11]. Here, some relevant aspects of that
application are briefly explained to clarify the subsequent application.

The unconstrained continuous optimization problem can be presented by:

min / max f(x), x = (x1, x2, x3, . . . , xn)T ∈ Rn where Li < xi < Ui (6)

In test functions, the upper Ui and lower Li bounds are defined a pri-
ori and they are part of the problem, bounding the search space over the
challenger areas in function surface. Some of well-known test functions, such
as Michalewicz, Langerman, Shekel [19], Rosenbrock, Sphere [20], Schwefel,
Griewank, and Rastrigin [21] were used in the tests.
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4.1 Implementation

The component SM was instanced by a steady-state real-coded genetic algo-
rithm employing the well-known genetic operators: roulette wheel selection
[22], blend crossover (BLX0.25) [17], and non-uniform mutation [23]. Briefly
explaining, in each generation, a fixed number of individuals NS are selected,
crossed over, mutated and updated in the same original population, replac-
ing the worst individual (steady-state updating). Parents and offspring are
always competing against each other and the entire population tends to con-
verge quickly.

A maximum number of clusters, NC, was defined a priori. The ith cluster
has its own center ci, but a common radius rt.

rt =
xsup − xinf

2 · n

√

|Ct|
(7)

where |Ct| is the current number of clusters (initially, |Ct| = NC), xsup and
xinf are, respectively, the known upper and lower bounds of the domain of
variable x, considering that all variables xi have the same domain.

Whenever a selected individual sk was far away from all centers (a dis-
tance above rt), then a new cluster is created. NC works as a bound value
that prevents the creation of an unlimited number of clusters. The simple
assimilation was employed in [11] with β = 0.05, keeping the centers more
conservative to new information. Tests with the other assimilation types for
unconstrained continuous optimization can be found in [10].

At the end of each generation, the component AM has performed the cool-
ing of all clusters, resetting the accounting of δi. Remembering that a cluster
is considered inactive when no activity has occurred in the last generation.
This mechanism is used to eliminate clusters that have lost the importance
along the generations, allowing that other search areas can be framed.

The component LS has been activated, at once, if

δi ≥ PD ·
NS

|Ct|
(8)

The pressure of density, PD, allows controlling the sensibility of the compo-
nent AM.

The component LS was implemented by a Hooke and Jeeves direct search
(HJD) [24]. The HJD is an early 60’s method that presents some interesting
features: excellent convergence characteristics, low memory storage, and re-
quiring only basic mathematical calculations. The method works by two types
of move. At each iteration, there is an exploratory move with one discrete step
size per coordinate direction. Supposing that the line gathering the first and
last points of the exploratory move represents an especially favorable direc-
tion, an extrapolation is made along it before the variables are varied again
individually. Its efficiency decisively depends on the choice of the initial step
sizes SS. In [11], SS was set to 5% of initial radius.
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4.2 Results

The ECS was coded in ANSI C and it was run on Intel AMD (1.33 GHz)
platform [11]. In the three experiments, ECS was compared with other ap-
proaches, taken from the literature, as the well-known Genocop III [23], the
OptQuest Callable Library (OCL)[25] and the Continuous Hybrid Algorithm
(CHA) [8]. The ECS has found promising results for unconstrained continuous
optimization which have stimulated further applications [11].

Some results extracted of [11] are shown in Table 1. The average of function
calls (FC) was considered to measure the algorithm performance. The average
of execution time in seconds (ET) is only illustrative. The GAP of 0.001 was
reached a certain number of times, giving the success rate (SR) obtained
for each test function. The worst performance happens for Michalewicz and
Langerman’s functions (SR about 65%).

Table 1. ECS results for some test functions.

Function var ET GAP FC SR Function var ET GAP FC SR
Griewank 50 0.053 0.00010 5024.550 100.00 Rastrigin 10 0.100 0.00060 26379.950 100.00
Griewank 100 0.432 0.00000 24344.450 100.00 Rastrigin 20 0.339 0.00078 71952.667 90.00

Langerman 5 0.023 0.00000 5047.684 95.00 Schwefel 20 0.211 0.00035 39987.950 100.00
Langerman 10 0.075 0.00000 17686.692 65.00 Schwefel 30 0.591 0.00029 90853.429 70.00

Michalewicz 5 0.054 0.00035 12869.550 100.00 Michalewicz 10 0.222 0.00038 37671.923 65.00

The Fig. 4 depicts a sequence of contour maps taken at each 5 generations
for ECS. The points are candidate solutions, the circles show the search areas
framed by the clusters.

5 ECS for pattern sequencing

Now, *CS for combinatorial optimization is focused. A version of ECS for pat-
tern sequencing problem is first presented in this chapter. Pattern sequencing
problems may be stated by a matrix with integer elements where the ob-
jective is to find a permutation (or sequencing) of rows or patterns (client
orders, or gates in a VLSI circuit, or cutting patterns) minimizing some ob-
jective function [26]. Objective functions considered here differ from traveling
salesman-like problems because the evaluation of a permutation can not be
computed by using values that only depend on adjacent patterns.

There are two similar pattern sequencing problems found in the litera-
ture: Minimization of Open Stacks Problem (MOSP) and Gate Matrix Lay-
out Problem (GMLP) [27]. Theoretical aspects are basically the same for both
problems. The difference between them resides only in their enunciation. Sev-
eral test instances can be found in literature related to such problems [28, 27].
The ECS was tested only for GMLP instances once they are the large scale
ever found in the literature.
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a) b)

c) d)

Fig. 4. Contour map of Schwefel function after a)2, b)7, c)12 and d)17 generations.

5.1 Theoretical issues of the GMLP

Gate matrix layout problems are related to one-dimensional logic arrays and
programmable logic arrays folding [29, 30]. In very large scale integration
design (VLSI design), the goal is to arrange a set of circuit gates (vertical
wires) in an optimal sequence, such that the layout area is minimized, i.e., the
number of tracks necessary to cover the gates interconnection is minimized.
This can be achieved by placing non-overlapping nets in the same track.

A group of gates at the same connection is called a net (horizontal wires).
Moreover, non-overlapping nets can be placed at the same connection track.
To compute the number of tracks to cover all nets, it is enough to verify
the maximum of overlapping nets. The number of tracks is an important cost
factor of VLSI circuits. Therefore, this problem is due to limitations of physical
space. A GMLP consists of determining a sequence of gates that minimizes
the maximum of tracks (MOT) in the circuit.

The data for a GMLP are given by an I×J binary matrix P, representing
gates (rows) and nets (columns), where Pij = 1, if gate i belongs to net j, and
Pij = 0 otherwise. The sequence of gates determines the number of tracks
necessary to produce the VLSI circuit. Another binary matrix, here called
matrix Q, can be used to calculate the MOT for a certain gate permutation.
It is derived from the input matrix P, by the following rules:

• Qij = 1 if there exist x and y|π(x) ≤ i ≤ π(y) and Pxj = Pyj = 1;
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• Qij = 0, otherwise;

where π(b) is the position of gate b in the permutation.
The Q shows the consecutive-ones property [31] applied to P: in each

column, 0’s between 1’s are replaced by 1’s. The sum of 1’s, by row, computes
the number of open stacks when each pattern is processed. Fig. 5 shows an
example of matrix P, its corresponding matrix Q, and the number of tracks
in the circuit. At most, 7 tracks (MOT = max{3, 3, 3, 5, 6, 7, 7, 5, 3} = 7) are
needed to manufacture a circuit with permutation π0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Fig. 5. GMLP (or MOSP) instance: matrix P and corresponding Q.

Several aspects of the sequencing problems have been presented, including
the NP-hardness of them [29, 30, 32]. The same example of Fig. 5 can be seen
as a MOSP instance. The number of overlapping nets means the number of
open stack in the MOSP context [27].

5.2 Implementation

The component SM is also a steady-state GA employing well-known genetic
operators as roulette wheel selection [22], block-order crossover (BOX) [33],
and 2-swap mutation [34]. In BOX, the parent(A) and parent(B) are mixed
into only one offspring, by copying blocks of both parents, at random. Pieces
copied from a parent are not copied from other, keeping the offspring feasible
(Fig. 6a).

The component LS was implemented by a local search mutation which is
applied to the center of promising cluster. The local search mutation explores
a search tree, considering several 2-Opt neighborhoods as one can see in Fig.
6b). The best neighbor from a level (bold circle) is taken as starting point to
the next, respecting a maximum width l (maximum number of 2-swap at each
level) and height m (maximum number of levels).

Concerning to component IC, in the continuous optimization case, the ra-
dius of the cluster was calculated in the Euclidean space, considering the
whole search space. In sequencing problems, one can employ the 2-swap dis-
tance metric, i.e., the number of 2-swap needed to move a point (solution),
along the search space, to another. Identical solutions need no changes to
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Fig. 6. a) Block order crossover and b) local search mutation tree.

turn one into other. By the other side, completely distinct solutions may need
about I−1 2-swap moves to lead a point to another. The radius of a cluster
could be given by:

rt =

⌈

I − 1

2 I

√

|Ct|

⌉

(9)

where |Ct| is the current number of clusters, I is the number of patterns of
the problem at hand which is taken to estimate the greater 2-swap distance
found in the search space.

Examining (9), with |Ct| = 20 and 20 < I < 140 (common values found
in the problem instances tested in this application), one can calculate that
rt ≃ 0.5I. In other words, a point sk belongs to the cluster ci where the half
of pattern sequencing matches. However, (9) have not performed well, causing
over clustering. Hence, the radius becomes:

rt = ⌈0.9I⌉ (10)

i.e., a relatively greater radius, because it requires only 10% of labels matching
for a sequencing to be considered sufficiently close to a cluster center, belong-
ing to it. Whenever a selected individual sk is far away from all centers (a
distance above rt), then a new cluster must be created.

As there already have been said, the cluster assimilation is a foreseen step
that can be implemented by different techniques. In this application, the path
assimilation was chosen. This is a typical assimilation process for combinato-
rial problems. The more distance ℘(ci, sk), the more potential solutions exist
between ci and sk. The sampling process, depending on the number of instance
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variables, can be costly, since each solution must be evaluated by objective
function. In Table 2, a completely 2-swap path between two solutions, ci and
sk, can be seen.

Table 2. Example of full path between center ci and new point sk.

ci= 1 2 3 4 5 6 7 8 9 comparison swap evaluation

1) 4 2 3 1 5 6 7 8 9 1 1 1
2) 4 8 3 1 5 6 7 2 9 1 1 1
3) 4 8 5 1 3 6 7 2 9 1 1 1
4) 4 8 5 9 3 6 7 2 1 1 1 1
5) 4 8 5 9 1 6 7 2 3 1 1 1
6) 4 8 5 9 1 7 6 2 3 1 1 1
7) 4 8 5 9 1 7 6 2 3 1
8) 4 8 5 9 1 7 6 2 3 1

sk= 4 8 5 9 1 7 6 2 3 8 6 6

Each comparison means one iteration in the assimilation algorithm. Be-
sides, a swap and evaluation of the intermediary solutions can occur. At last,
the center will be shifted to the best point evaluated in this path. Actually,
there have been occurred 6 pattern swaps and, consequently, 6 objective func-
tion calls.

The distance ℘(ci, sk) is not necessarily 6. Other paths with distance less
than 6 could be found. However, ECS requires computing such distance to
associate the point with a particular center during the clustering process.
Therefore, ℘(ci, sk) is estimated considering the number of patterns in differ-
ent positions in each permutation (variables that do not match). This value is
still decremented by one, because even if all I patterns were in different posi-
tions in each permutation, it would be generated at most I − 1 intermediary
solutions.

In Fig. 7, some paths from the center {1, 2, 3, 4} are shown. The solutions
in white boxes are candidates to be assimilated in a possible path. The arrows
form examples of patches. Solutions in gray belong to the 2-swap neighbor-
hood (only one swap) of the center. The implemented algorithm for path
assimilation is a non-deterministic one, since it chooses random positions to
make swaps. The maximum number of intermediary points evaluated may be
bounded by a running parameter.

The component AM manages the clusters that must be investigated by
the component LS and remove the inactive ones alike previously mentioned
application.

5.3 Computational experiments

The ECS was coded in ANSI C and it was run on Intel AMD (1.33 GHz)
platform. Table 3 presents the instance problems considered, along with the
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   2 1 4 3          
                

1 3 4 2             
       2 1 3 4      

1 2 4 3       3 2 1 4
       1 2 3 4     

1 4 3 2       4 2 3 1
       1 3 2 4      

3 4 1 2             
       4 3 2 1      

Fig. 7. Examples of 2-swap paths in a 4−pattern instance.

corresponding number of nets/gates and the best-known number of tracks
(expected solution). Chosen problems were the largest ones found in the lit-
erature [28].

Table 3. GMLP instances.

instance gates nets best-known solution

v4090 27 23 10

x0 48 40 11

v4470 47 37 9

w2 33 48 14

w3 70 84 18

w4 141 202 27

The results were examined from two viewpoints: the best setting for ECS

and comparison against other approaches. Several settings of NC/|P | were
tested to achieve the best performance. The number of clusters (NC) was
varied from 10 to 40 clusters. The population size (|P |) was varied between
100 and 1300 individuals.

Best setting

Each test consists of 20 trials, allowing ECS to perform 10, 000, 000 objective
function calls (bound for failed search) in each trial, at most. It is especially
interesting high success rate (SR) with low number of objective function calls
(FC). Such tuning performance had not been considered in early work [11].

The results for each problem instance are summed up in tables 4-6. The
tables show the following information: the tried setting NC/|P |, the number
of well-succeeded runnings (WS), as well its percentage (SR) in 20 trials,
the average of objective function calls for well-succeeded trials (WS-FC), and
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the average of the maximum of tracks found (MOT), as well the equivalent
error percentage (ER). One can note the ill-succeeded trials were not taken
in account for calculating the average of function calls.

Table 4. Results for x0 and v4090 instances.

x0 v4090
NC / |P | WS (%SR) WS-FC MOT (%ER) WS (%SR) WS-FC MOT (%ER)

10/100 15 75 32,985 11.3 2.3 20 100 2,288 10.0 0.0
10/500 15 75 100,272 11.4 3.2 20 100 7,446 10.0 0.0
10/900 15 75 165,851 11.3 2.3 20 100 9,940 10.0 0.0

10/1300 17 85 279,504 11.3 2.3 20 100 16,554 10.0 0.0
20/300 16 80 78,367 11.4 3.2 20 100 7,525 10.0 0.0
20/500 17 85 101,012 11.2 1.4 20 100 9,104 10.0 0.0
20/700 16 80 185,515 11.2 1.8 20 100 16,130 10.0 0.0
20/900 14 70 163,723 11.4 3.2 20 100 17,739 10.0 0.0
30/500 20 100 119,296 11.0 0.0 20 100 10,887 10.0 0.0
30/700 18 90 146,819 11.1 0.9 20 100 18,459 10.0 0.0
30/900 17 85 195,685 11.2 1.8 20 100 19,417 10.0 0.0
40/100 15 75 37,376 11.4 3.6 20 100 6,277 10.0 0.0
40/300 18 90 63,472 11.1 0.9 20 100 8,875 10.0 0.0
40/500 15 75 100,096 11.3 2.3 20 100 14,736 10.0 0.0
40/700 17 85 123,973 11.2 1.4 20 100 21,626 10.0 0.0
40/900 17 85 237,124 11.2 1.4 20 100 21,690 10.0 0.0

40/1300 20 100 239,983 11.0 0.0 20 100 32,551 10.0 0.0

The Table 4 shows the results for instances x0 and v4090. All ECS settings
were able to solve instance v4090. Although, the computational effort has
varied from few 2, 288.30 to 32, 550.70 FCs. Hence, the setting NC = 10/|P | =
100 was enough to obtain good results for this instance probably because the
instance size.

For the instance x0, the best result (SR = 100 %) was obtained with
NC = 30/|P | = 500, performing about 119, 296 FCs. Another good result was
obtained with NC = 40/|P | = 1300, but a considerable computational effort
(about 239, 983.3 FCs, in average) was needed, especially when compared with
other WS-FC, as 63, 472.2 for setting NC = 40/|P | = 300, for example.

The Table 5 shows the results for instances w2 and w3. ECS was able to
solve instance w2 performing about WS-FC= 8, 757.06 (SR= 90%). To obtain
(SR= 100%), the best setting was NC = 20/|P | = 300, performing WS-
FC= 26, 185.20. The ECS setting NC = 30/|P | = 500 has needed about twice
function evaluations. For instance w3, ECS has obtained at most SR= 60%
(NC = 40/|P | = 700) with WS-FC= 583, 429.33. This instance appears to be
more difficult for ECS.

The Table 6 shows the last two instance problems: v4470 and w4. In the
best setting, it was possible to achieve the best known solution in a half
of trials (SR about 50) for both. Together w3, these are good instances to
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Table 5. Results for w2 and w3 instances.

w2 w3
NC / |P | WS (%SR) WS-FC MOT (%ER) WS (%SR) WS-FC MOT (%ER)

10/100 18 90 8,757 14.1 0.7 10 50 445,116 19.3 7.2
10/500 19 95 61,332 14.1 0.4 6 30 270,106 20.0 10.8
10/900 20 100 58,685 14.0 0.0 8 40 398,604 19.5 8.3

10/1300 20 100 58,685 14.0 0.0 4 20 645,862 19.7 9.2
20/300 20 100 26,185 14.0 0.0 10 50 745,618 19.5 8.3
20/500 20 100 40,909 14.0 0.0 6 30 464,372 19.5 8.3
20/700 20 100 79,751 14.0 0.0 8 40 340,648 19.3 7.2
20/900 20 100 76,747 14.0 0.0 7 35 902,890 19.5 8.1
30/500 20 100 50,938 14.0 0.0 10 50 540,893 19.2 6.4
30/700 20 100 63,769 14.0 0.0 6 30 364,486 19.7 9.2
30/900 20 100 89,137 14.0 0.0 8 40 818,991 19.1 6.1
40/100 17 85 23,860 14.2 1.1 5 25 867,674 19.9 10.6
40/300 19 95 33,255 14.1 0.4 8 40 213,753 19.3 6.9
40/500 20 100 39,389 14.0 0.0 5 25 278,447 20.0 10.8
40/700 20 100 65,893 14.0 0.0 12 60 583,429 19.2 6.4
40/900 20 100 70,831 14.0 0.0 11 55 535,272 18.8 4.2

40/1300 20 100 123,245 14.0 0.0 5 25 696,676 19.6 8.9

Table 6. Results for v4470 and w4 instances.

v4470 w4
NC / |P | WS (%SR) WS-FC MOT (%ER) WS (%SR) WS-FC MOT (%ER)

10/100 4 20 51,961 10.1 12.2 2 10 1,947,715 29.4 8.7
10/500 9 45 140,951 9.7 7.8 7 35 1,678,860 28.2 4.4
10/900 5 25 169,861 10.0 10.6 5 25 1,513,475 28.9 6.9

10/1300 7 35 303,022 9.8 8.3 3 15 1,161,946 28.8 6.5
20/300 2 10 59,704 10.2 12.8 7 35 1,971,477 28.1 4.1
20/500 4 20 129,967 10.2 12.8 8 40 1,334,679 28.3 4.8
20/700 2 10 137,840 10.1 12.2 8 40 1,554,822 28.3 4.6
20/900 4 20 184,022 10.0 11.1 4 20 2,415,212 28.8 6.7
30/500 12 60 169,136 9.5 5.6 11 55 1,695,924 27.9 3.1
30/700 2 10 170,157 10.1 12.2 2 10 2,560,380 28.6 5.9
30/900 3 15 227,527 10.2 13.3 5 25 1,799,301 28.1 3.9
40/100 7 35 109,720 9.9 10.0 4 20 2,099,928 28.3 4.8
40/300 6 30 561,623 10.0 11.1 4 20 1,250,663 28.2 4.3
40/500 4 20 129,457 10.0 10.6 7 35 1,632,453 28.4 5.2
40/700 5 25 233,898 10.2 13.3 8 40 2,167,944 27.9 3.1
40/900 3 15 288,405 10.1 11.7 7 35 1,557,529 28.3 4.6

40/1300 8 40 345,202 9.8 8.9 4 20 1,144,752 28.8 6.5

estimate an efficient setting for the algorithm. One can note that the best
setting was NC = 30/|P | = 500 only for v4470 and w4. For instance w3, this
setting has obtained the third best SR, but still good. Hence, for the 3 hardest
instances in this work, there have been found the best known solution at least



Hybrid Evolutionary Algorithms and Clustering Search 19

in SR= 50% of the trials, setting the algorithm with 30 maximum clusters
and 500 individuals.

For the 4 large instances, the setting NC = 30/|P | = 500 has been the more
successful. It is due to, probably, the range of size of the instances. By the early
experience with the unconstrained continuous optimization, the maximum
number of clusters could mean that no more than 30 promising search areas,
along the evolution, should be concurrently investigated, by the local searcher
(LS), once detected. The capability of concurrently detection (NC) allows
exploitation moves in such search areas before the diversity loss, commonly
observed in evolutionary algorithms, which can be properly delayed by an
adequate number of individuals. In this case, no more than 500 individuals
were enough.

Comparison against other approaches

In the second experiment, ECS is compared against other approach found in
literature that was applied to the same instances: the Parallel Memetic Al-
gorithm (PMA). Besides a parallel algorithm, employing a suitable migration
policy, PMA presents a new 2-swap local search with a reduction scheme,
which discards useless swaps, avoiding unnecessary objective function calls.
The PMA results were considered so far the best ones obtained in the litera-
ture, specifically with large GMLP instances [34].

The Fig. 8-11 gives a close up in WS-FC and SR, also showing the best
result found by PMA for the 4 hardest GMLP instances: x0, v4470, w3 and w4.
The figures show the comparison between the best PMA result, represented
by dashed lines in top and bottom of the next figures, and all ECS settings
for each hard instance. The PMA results were obtained in 10 trials, for each
instance.

Instance v4090 was not tested by PMA authors. For instance w2, the best
PMA setting was able to obtain SR= 100% with 3, 523 objective function
calls, in average, i.e., about a half of ECS function calls (8, 757.06), in its fast
setting.

According to the authors, as it is shown in Fig. 8, PMA was able to find the
best known solution for instance x0 in all 10 trials, evaluating the objective
function 43, 033, in average [34]. Best setting of ECS has reached the same
solution in all 20 trials, but evaluating about 119, 296 (NC = 30/|P | = 500), at
least. Working with smaller population (100 individuals), in general, ECS has
performed less WS-FC, but not reaching the same number of well-succeeded
runnings (about 75%).

ECS also has not surpassed PMA, neither by WS-FC nor by WS, for
instance w3, with any setting. Actually, ECS has a poor performance for this
instance (Fig. 9).

For instance v4470 and w4, ECS has reached better results (Figs. 10 and
11). For v4470, the best setting (NC = 30/|P | = 500) has obtained the same
WS percentage of PMA (60%) but with a little bit of advantage with respect
to objective function calls: 169, 136 against 176, 631 of PMA.
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Fig. 10. Best PMA result against all ECS settings for v4470 instance.
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For instance w4, the largest one found in literature, ECS has reached
meaningful results. While PMA has found the best known solution in 20%
of the trials, ECS got it in 55% of the trials, performing only 1, 695, 924 FCs
(NC = 30/|P | = 500) against 9, 428, 591 FCs, in average, by PMA.

6 Conclusion

This chapter proposes a new way of detecting promising search areas based
on clustering: the Clustering Search (*CS). The *CS can be splitted off in
four conceptually independent parts: a search metaheuristic (SM); an iterative
clustering (IC) component; an analyzer module (AM); and a local searcher
(LS). When SM is an evolutionary algorithm, the resulting approach is called
Evolutionary Clustering Search (ECS).

In a general way, *CS attempts to locate promising search areas by cluster
of solutions. The clusters work as sliding windows, framing the search areas
and giving a reference point (center) to problem-specific local search proce-
dures. Furthermore, the cluster center itself is always updated by a permanent
interaction with inner solutions, in a process called assimilation.

A real-coded version of ECS for unconstrained continuous optimization
was early proposed, however some relevant aspects of that application were
examined in this chapter, as a recipe for further applications. Besides, ECS

also was applied to pattern sequencing problems and its results were here
first presented. Pattern sequencing problems arise in scenarios involving ar-
rangement of a set of client orders, gates in VLSI circuits, cutting patterns,
etc.

The computational results were examined from two viewpoints: the best
setting for ECS and comparison against other approaches. Several algorithm
settings were tested to achieve the best performance. For the 3 hardest in-
stances in literature, there have been found the best known solution at least
SR= 50% of the trials, setting the algorithm with 30 maximum clusters and
500 individuals. In comparison against the best results so far known, ECS has
achieved similar and sometimes superior performance in both applications
here presented.

For further work, it is intended to build new algorithms based on *CS,
including other metaheuristics as Ant Colony System, Immune Systems, and
Evolution Strategies.

References
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