
A Constructive Genetic Algorithm
 for the Linear Gate Assignment Problem

Alexandre César Muniz de Oliveira Luiz Antonio Nogueira Lorena

DEINF - Universidade Federal do Maranhão
Campus Bacanga, São Luís, MA, Brasil

acmo@deinf.ufma.br

LAC - Instituto Nacional de Pesquisas Espaciais
Jd da Granja, 12201-970, S. J. dos Campos, SP, Brasil

lorena@lac.inpe.br

Abstract - We present in this paper an application of the Constructive Genetic Algorithm (CGA) to the Linear Gate

Assignment Problem (LGAP). The LGAP happen in very large scaling integration (VLSI) design, and can be

described as a problem of assigning a set of circuit nodes (gates) in an optimal sequence, such that the layout area

is minimized, as a consequence of optimizing the number of tracks necessary to cover the gates interconnection.

The CGA has a number of new features compared to a traditional genetic algorithm. These include a dynamic

population size composed of schemata and structures, and the possibility of using heuristics in structure

representation and in the fitness function definitions. In our application of CGA to LGAP we use a 2-Opt like

heuristic to define the fg-fitness and local search mutation. Computational tests are presented using available

instances taken from the literature.

Key words: Constructive genetic algorithms, linear gate assignment, VLSI layout design.

I. INTRODUCTION

The Constructive Genetic Algorithm (CGA) was proposed recently as an alternative to a traditional GA

approach [1], particularly, for evaluating schemata directly. The population, initially formed only by

schemata, evolves controlled by recombination to a population of well adapted structures (schemata

instantiation) and schemata.

The CGA application can be divided in two phases, the constructive and the optimal:

• The constructive phase is used to build a population of quality solutions, composed of well adapted

schemata and structures.

 2

• The optimal phase is conducted simultaneously and transform the optimization objectives of the original

problem on an interval minimization problem, that evaluates schemata and structures in a common way.

In the same lines, Goldberg and collaborators [2,3] have introduced an alternative GA, the messy-GA, that

allows variable length strings that look for the construction and preservation of good schemata.

Linear gate assignment problems (LGAP) are related to gate matrix layout and programmable logic arrays

folding [4,5]. In very large scaling integration design (VLSI design), the goal is to arrange a set of circuit

nodes (gates) in an optimal sequence, such that the layout area is minimized, e.g., it minimizes the number of

tracks necessary to cover the gates interconnection.

Fig.1 shows an example of gate matrix, where the gates are numbered from 1 to 9 and the dots are the

connection requests (Fig.1a). A group of gates at the same connection is called net. There are 7 nets in circuit

of Fig.1 . To connect gates 1,3,4 and 7 of the net 1, it is necessary to cross gates that are not part of this net.

Moreover, non-overlapping nets can be placed at the same connection track. To compute the number of tracks

to cover all nets, it is enough to verify the maximum of overlapping nets. The number of tracks is an

important factor of the cost of VLSI circuits. The Fig.1b shows, at the bottom, the overlaps and the maximum

of them. One can see that the number of tracks in that gate matrix is 7. Besides, there is also the cost of

connection of the gates that symbolizes the amount of necessary metal to cover the nets. In this example, the

total metal length is 3+3+3+5+6+7+7+5+3=42.

Fig.1 - Gate matrix. a) Original matrix; b) Gate matrix derived by interconnection of gates at same net

This paper is organized as follows. In section 2 we present aspects of modeling that involves definitions of the

schema and structure representations and the consideration of the problems at issue as bi-objective

optimization problems. Section 3 describes the CGA operators, namely, selection, recombination and

 3

mutation, as well as a CGA pseudo-code. Section 4 shows computational results using instances taken from

the literature.

II. CGA MODELING

In this section is described the modeling phase of the CGA. The LGAP is formulated as a bi-objective

optimization problem. Two fitness functions are defined on the space of all schemata and structures that can

be obtained using a specific representation. The evolution process considers the two objectives on an adaptive

rejection threshold, which gives ranks to individuals in population and yields a dynamic population.

A typical instance of the LGAP is composed of an I x J binary matrix, where I and J are the numbers of nets

and gates, respectively. The initial sequence of gates is {1,2,3,4,...,J}. Very simple structure and schema

representations are adopted to the LGAP. They use a direct alphabet of symbols representing the gate

sequence (each gate representing their connection requirements). The 1 to J values are reserved to gate

number and the symbol # is used to indetermination (# - do not care) on schemata. Fig.2 shows a LGAP

instance and a permutation over it, representing structures and an example of schema.

1 0 1 1 0 0 1 0 0
0 0 0 1 0 1 0 0 1
1 1 0 0 1 0 0 1 0
1 0 0 1 1 0 1 0 0
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 1

 si =(1 2 3 4 5 6 7 8 9)

1 0 0 0 1 1 0 1 0
0 0 0 1 0 1 1 0 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1 0
0 0 0 1 0 1 1 0 1
1 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0

 sj =(7 2 5 9 3 4 6 1 8)

1 ? 0 ? ? ? 0 1 ?
0 ? 0 ? ? ? 1 0 ?
0 ? 1 ? ? ? 0 1 ?
1 ? 1 ? ? ? 0 1 ?
0 ? 0 ? ? ? 1 0 ?
1 ? 1 ? ? ? 0 0 ?
0 ? 0 ? ? ? 1 0 ?

 sk =(7 # 5 # # # 6 1 #)

Fig.2 - a) Net-gate requirements matrix and structure si(derived from Fig.1a); b) Example of net-gate
permutated matrix and corresponding structure sj; c) Example of schema.

Let X be the space of all schemata and structures that can be formed by this representation. The CGA is

modeled as the following Bi-objective Optimization Problem (BOP) :

)}()({ kk sfsgMin −

)(ksgMax

subject to g(sk) ≥ f(sk)
 ∀ sk ∈Χ (2.1)

Function g is the fitness function that reflects the total cost of a given permutation of gates. Commonly, it is

used the formulation that considers track minimization as primary objective and wire length minimization as a

secondary one. Therefore, it is used the following cost function [6] as the fitness function g:

 4

§ (2.2)

where b is the matrix generated by transforming in ones all zeros between most left and most right ones in

nets, for all gates on the sequence corresponding to sk (structure or schema), and the I.J product is a weight to

reinforce the part of the objective considering the maximum number of tracks and to make it proportional to

the second part of the objective concerning the wire length. If sk is schema, the non-defined columns (# label)

are bypassed. The b matrix used to compute g(sk) contains only columns with information.

The other fitness function f is defined to drive the evolutionary process to a population trained by a heuristic.

The chosen heuristic is the 2-Opt neighborhood. Thus, function f is defined by:

§ (2.3)

where is a 2-Opt neighborhood of structure or schema sk.

As the 2-Opt neighborhood can grow exponentially, in our implementation, only a fixed part, randomly

chosen, of this space is used on each function call. Implementation details can be found on section 3.3.

By definition, f and g can be applied to structures and schemata, just differing in the amount of information

and consequently in the costs associated to them. More information means greater cost. In this way, the g

maximization objective in BOP drives the constructive phase of the CGA. The optimal phase is conducted by

the interval minimization g –f , which happen on structures with near local 2-Opt minimum.

III. THE EVOLUTION PROCESS

The BOP defined above is not directly considered as the set X is not completely known. Instead we consider

an evolution process to attain the objectives (interval minimization and g maximization) of the BOP. At the

beginning of the process, two expected values are given to these objectives:

• g maximization → we use a value gmax >)(max sgs Χ∈ that is an upper bound on the objective value

• interval minimization → we use a value dgmax, obtained from gmax using a real number 0<d≤ 1.

∑ ∑+∑=
=

==
∈

J

j

I
i ij

I
i ijJjk bbJIsg

1
11

},...,1{
max..)(

)()(,},...,,{),()(2
21 kv

Opt
Vvvk sgsgsssssgsf ≤⊆∈= −ϕ

Opt−2ϕ

 5

The evolution process is then conducted considering an adaptive rejection threshold, which contemplates both

objectives in BOP. Given a parameter α ≥ 0 , the expression

g(sk) - f(sk) ≥ d gmax - α .)]([max ksggd − (2.4)

presents a condition for rejection from the current population of a schema or structure sk.

The right hand side of (2.4) is the threshold, composed of the expected value to the interval minimization

d gmax , and the measure)]([max ksgg − , that shows the difference of g(sk) and gmax evaluations.

Parameter α is related to time in the evolution process. Considering that the good schemata need to be

preserved for recombination, the evolution parameter α starts from 0 , and then increases slowly, in small

time intervals, from generation to generation. The population at the evolution time α , denoted by Pα , is

dynamic in size accordingly the value of the adaptive parameter α , and can be emptied during the process.

The parameter α is now isolated in expression (2.4) , thus yielding the following expression and

corresponding rank to sk :

)]([
)]()([

max

max

k

kk

sggd
sfsgdg

−
−−≥α . (2.5)

The right hand side of expression (2.5) gives a rank value to sk :

 δ ()sk =
)]([

)]()([

max

max

k

kk

sggd
sfsgdg

−
−− . (2.6)

At the time they are created, structures and/or schemata receive their corresponding rank value δ ()s k . The

rank of each schema or structure is compared with the current evolution parameter α. At the moment a

structure or schema is created, it is then possible to have some figure of its survivability. The higher the value

of δ ()s k
, and better is the structure or schema to the BOP, and they also have more surviving and

recombination time.

 6

For the LGAP, the overall bound gmax is obtained at the beginning of the CGA application, by generating a

random structure and making gmax receive the g evaluation for that structure. In order to ensure that gmax is

always an upper bound, after recombination, each new structure generated snew is rejected if gmax ≤ g(snew).

A. Initial population

The initial population is composed exclusively of schemata, considering for each schema, a proportion of

random positions receiving a unique gate number. The remaining positions receive label #. Along the

generations, the population can increase by addition of new offspring generated out of the combination of two

schemata.

B. Recombination

There are two purposes on the evolution process: to obtain structures (good solutions to the g maximization

objective on the BOP), and that these structures be good ones (best solutions to the interval minimization

problem on the BOP). The selection of structures and/or schemata for recombination will be conducted to

attain these two objectives. The first one is attained by selecting for recombination schemata with small

number of labels # , and the second considering structures or schemata with small
)(

)()(

k

kk
k sg

sfsg
d

−
= .

The structures and schemata in population Pα are maintained on ascending order, according to the key

η/)1()(kk ds +=∆ , where η is the number of genes containing information (not #). Thus, individuals

with more genetic information (structures or semi-complete schemata) appear in first order places on the

population.

Two structures and/or schemata are selected for recombination. The first is called the base (sbase) and is

randomly selected out of the first positions in Pα , and in general it is a good structure or a good schema. The

second structure or schema is called the guide (sguide) and is randomly selected out of the total population. The

objective of the sguide selection is the conduction of a guided modification on sbase . Fig.3 represents the base-

guide selection process.

 7

Fig.3 - Base-guide selection

The current labels in corresponding positions are compared. Let snew be the new structure or schema

(offspring) after recombination. Structure or schema snew is obtained by applying the following operations:

{ Recombination }
For i from 1 to individual length

i If sbase (i) = # and sguide (i) = # then set snew(i) = #
ii If sbase (i) <> # and sguide (i) = # then set snew(i) = sbase (i) if sbase (i) it is not in snew

 else set snew(i) = #
iii if sbase (i) = # and sguide (i) <> # then set snew(i) = sguide (i) if sguide (i) it is not in snew
 else set snew(i) = #

iv if sbase (i) <> # and sguide (i) <> # then set snew(i) = sbase (i) if sbase (i) it is not in snew
 else set snew(i) = sguide if sguide (i) it is not in snew
 else set snew(i) = #

Observe that sbase is a privileged individual to compose snew, but it is not totally predominant. There is a small

probability of sguia gene information is used instead of.

C. The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:

CGA { Constructive Genetic Algorithm }

Given gmax and d ; α := 0 ; ε := 0.05; { initialization of parameters }
Initialize Pα ; { initial population }
A. For all sk ∈ Pα do compute g(sk), f(sk), δ ()s k {Evaluate Pα }
While (not stop condition) do

While (number of recombination) do
 Select Base and Guide from Pα ; {selection operator }
 Recombine Base and Guide { recombination operator }
 Evaluate Offspring; { fg-fitness and ranking }

Update Offspring in Pα; { update Pα }
 end_while

α := α + ε ;
For all sk ∈ Pα satisfying α > δ ()s k do

 Eliminate sk from Pα
end_for

end_while

 8

The ε increment is a linear step that increases the adaptive rejection threshold. The stop conditions occur with

an emptied population (assured by a sufficiently higher α) or at a predefined number of generations. The

population increases , after the initial generations, reaching an upper limit (in general controlled by storage

conditions), and decreases for higher values of the evolution parameter α .

The CGA algorithm begins with the recombination procedures (over schemata only) and the constructive

process builds structures (full individuals) progressively, on each generation. By this way, the constructive

process, repeatedly, uses genetic information contained in two individuals to generate another one. However,

the constructive process can be complemented using especially designed mutation and filling heuristics,

searching for a better overall performance. This filling process is called unary filling operator and is applied

before the recombination. It consists to fill the sbase substituting the # labels for gate numbers. For LGAP, this

feature was implemented as following:

{Unary filling operator}

Select Base and Guide from Pα ; {selection operator }
If Base is a schemata then
 Fill Base giving filled_Base; {heuristic for filling}

Recombine Base and Guide { recombination operator }
end_if
Mutation on full Base (or filled_Base); {local search on structures only}
Evaluate Offspring; { fg-fitness and ranking }
Update Offspring in Pα; { update Pα }

The code fragment before replaces the more internal while loop of CGA. If the selected base is a schema, it is

combined with the guide individual (schema or structure) giving a new individual. In any way, local search

mutation is applied to a structure (full or filled base) and the offspring are updated depending on its rank. If a

best structure is found, it is kept for the end. For filling schemata it is used an algorithm based on

neighborhood minimization. Given a schema sk to be filled in a good sequence with gate columns that still not

belong to it at # possible positions.

 9

Fig.4 - Rule for filling schemata

In the example on Fig.4 , there are 4 candidate gate columns (on right) to include in a partially showed schema

at the marked position (# position). For each # position will be tested all candidate gate columns. It will be

chosen the gate column that minimizes the bit-to-bit xor relation considering the neighbors gate columns (left

and right of the # point, if exists). The bit-to-bit xor sum of first candidate column is 2, and is the smaller sum.

This mechanism intends to decrease the possibility of zeros between ones at the included gate columns.

The local search mutation is always applied to structures, no matter how they are created (after recombination

or after the filling process). The search at 2-Opt neighborhood of the structure was used (like the f definition

on expression 2.3). To avoid the computational effort growing proportional to problem length caused by 2-

Opt procedure, a constant pre-defined number of neighbors is inspected until the best is found. The neighbors

are generated by all the 2-move changes in a constant length part of the structure. It is chosen a position at

random and starting from there an interactive process that inspect all possible 2-move changes in the

structure.

The example of 2-move change is showed in Fig.5 . The marks in positions of the structures mean reference

points to be change. Non consecutive references cause the first change type, as showed in Fig.5a.

Consecutive points cause the second change type in Fig.6b. Inspecting all or part of 2-Opt neighborhood

needs several moves (catching 2-to-2 points).

The amount of 2-move changes (neighborhood width) on each local search mutation is a CGA parameter of

execution to be tuning. This and all the others settings will be describes in next section.

 10

Fig.5 - Examples of one-move in 2-Opt neighborhood; a) non-consecutive reference points change; b)
consecutive reference points change.

IV. COMPUTATIONAL RESULTS

The CGA for LGAP was coded in ANSI C and it was run on Intel Pentium II (266Mhz) hardware. For the

computational tests, some CGA parameters were set as follows: ε and d parameters were set to 0.005 and

0.15, respectively; each schema of initial population had received 50% of # genes (indetermination

percentage), and 10% up to 20% of population were considered base individuals for base-guide selection.

Local search mutation rate was fixed in 100%. The number of individuals initially generated was proportional

to problem length (gate number equal to initial population at least). Other important parameter to tuning is

neighborhood width (nw) to each local search mutation. After several simulations, we found good results

using nw = 20. The ideal would be to use great values for nw, but this would turn the mutation very slow too.

Table I presents the problem circuits considered in this work, along with the corresponding number of nets

and gates, a lower bound to the track number, the previous best known number of tracks (solution) and its

reference. Chosen problems were the largest ones found in the literature and others for which authors have

obtained recent improvements in results. The lower bound is computed by maximum column sum of the

original matrix. Most of the best previous results comes of microcanonical optimization approach (MCO)[6],

but other ones with same best results were included as in references: GM_Learn [7] and GM_Plan [8].

 11

Table I - Chosen problems to compare

Microcanical Optimization (MCO) approach overcame (or match) all the other approaches and it was chosen

for comparison with the results of CGA. Table II presents the comparison among the best results of MCO.

Table II - CGA comparison to MCO

The MCO was run initially for 10 replications, but only after 1000 replications the authors reached their best

results for problems wli, v4000, v4470, x0, w3 and w4 . The CGA best result were obtained after 10

replications only at same hardware environment. To compare different number of replications with respect to

execution time, the total time of all the replications was computed based on one trial execution time. Thus, the

total time of CGA experiments is 10 times one trial execution. By its turn, the total time of MCO experiments

is 1000 times one trial execution. The "-" execution time, reported in [6] as close to zero, to our computations,

was turned in 0.01 seconds, that is the smallest fraction of one second with two decimal digits.

 MCO CGA
Prob tracks:10

replications
tracks:1000
replications

one trial
time

1000 trial
time

Tracks:10
replications

wire
lenght

Gen. one trial
time

10 trial
time

wli 5.00 4.00 0.01 10.00 4.00 35.00 5.00 0.50 5.00

wsn 8.00 - 0.01 10.00 8.00 115.00 7.00 1.50 15.00

v4050 5.00 - 0.01 10.00 5.00 51.00 5.00 0.50 5.00
v4000 6.00 5.00 0.01 10.00 5.00 66.00 5.00 0.50 5.00

v4470 10.00 9.00 0.70 700.00 9.00 269.00 33.00 66.50 665.00

v4090 10.00 - 0.10 100.00 10.00 132.00 13.50 2.03 20.33
x0 11.00 11.00 0.70 700.00 11.00 343.00 92.57 75.56 755.60

w1 4.00 - 0.01 10.00 4.00 57.00 5.00 1.00 10.00

w2 14.00 - 0.40 400.00 14.00 283.00 19.50 18.50 185.00
w3 21.00 18.00 3.90 3900.00 18.00 761.00 186.00 306.25 3062.50

w4 32.00 27.00 61.70 61700.00 27.00 1932.00 225.00 5224.67 52246.67

problem gate net LB best
tracks

Refs

wli 10 11 4 4 [6,8]

wsn 25 17 4 8 [6,8]

v4000 17 10 5 5 [6]
v4050 16 13 5 5 [6,7]

v4090 27 23 9 10 [6,7]

v4470 47 37 5 9 [6,7]
x0 48 40 6 11 [6,7]

w1 21 18 4 4 [6,8]

w2 33 48 14 14 [6,8]
w3 70 84 11 18 [6]

w4 141 202 18 27 [6]

 12

The number of tracks columns refer to the best result found for each problem. The CGA columns present the

wire length value, not reported in other references. Observing Table II, CGA found the same results of MCO,

but the total time of all replications to find the best results is smaller .

In [6], the author remarks the frequency of 36.3% to find the best result for wli problem (relatively small) in

1000 replications. In our experiments, this percentage is 100% in 10 replications. In CGA , smaller percentages

were found only in larger problems (w3 and w4).

Table III - Five best results and frequencies found for best tracks

The Table III shows the CGA 5 best results (wire length and tracks) obtained in 10 replications. Problems w3,

w4, x0 v4470 have less than 100% of frequency in reaching their best solution. The w4 problem appears to be

the most difficult one, but these results show that no more than 10 trials were necessary to CGA to find the

best known solutions. CGA seems to be more robust than MCO.

V. CONCLUSION

This work describes a constructive approach to genetic algorithms and an application to linear gate

assignment problems (LGAP). The CGA adapted to work with LGAP presents some new specific features,

like the filling operator and 2-Opt heuristic used at local search mutation, besides the two fitness functions (f

and g). On computational tests, the CGA reached all the best results (number of tracks) for instances taken

from the literature, but it appears to be more robust than other approaches. There is not enough information

CGA 5 best solutions % best
tracks

wsn 115 8 115 8 116 8 118 8 124 8 100.00
wli 35 4 35 4 35 4 35 4 35 4 100.00

v4050 51 5 51 5 51 5 52 5 52 5 100.00

v4000 66 5 66 5 66 5 67 5 68 5 100.00
v4470 269 9 276 9 288 9 289 9 305 9 100.00

v4090 132 10 133 10 133 10 135 10 136 10 90.00

x0 343 11 344 11 345 11 346 11 348 11 80.00
w1 57 4 57 4 57 4 57 4 61 4 100.00

w2 283 14 284 14 315 14 321 14 323 14 100.00

w3 761 18 771 18 918 18 927 18 801 18 50.00
w4 1932 27 2038 27 2051 27 1947 28 1947 28 30.00

 13

about wire length in the found literature to comparison of all the approaches completely. Applications of CGA

to other classes of problems are foreseen for future works.

References

1 L.A.N Lorena and J.C. Furtado. Constructive Genetic Algorithm for Clustering Problems.

Evolutionary Computation - to appear (2000). Available from

http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF

2 Goldberg, D.E.; Korb, B.; Deb, K. Messy genetic algorithms: Motivation, analysis, and first results.

Complex Systems v. 3: p. 493-530, 1989

3 Goldberg, D.E.; Deb, K.; Kargupta, H.; Harik, G. Rapid, accurate optimization of difficult

problems using fast messy genetic algorithms. IlliGAL Report No. 93004, Illinois Genetic

Algorithms Laboratory, Department of General Engineering, University of Illinois, Urbana, 1993.

4 R. Möhring. Graph problems related to gate matrix layout and PLA folding. Computing, Vol 7,

pp. 17-51, 1990.

5 Kashiwabara, T. and Fujisawa T., NP-Completeness of the problem of finding a minimum clique

number interval graph containing a given graph as a subgraph in Proc Symp. Circuits and Systems.

1979.

6 A. Linhares, H. Yanasse and J.R.A. Torreão. Linear Gate Assignment: a Fast Statistical Mechanics

Approach. IEEE Trans. on Computer-Aided Designed of Integrated Circuits and Systems. Vol.

18(12), pp. 1750-1758. 1999.

7 S.J. Chen and Y. H. Hu. GM_Learn: an interactive learning algorithm for CMOS gate matrix

layout. IEE Proc E, vol 137, pp 301. 1990

8 Y. H. Hu and S. J. Chen. GM_Plan: a gate matrix layout algorithm based on artificial intelligence

planning techniques . IEEE Trans. Computer-Aided Designed, Vol. 9, pp. 836-845, 1990.

