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Abstract. This paper describes an application of a Constructive Genetic 
Algorithm (CGA) to the Minimization Open Stack Problem (MOSP). The 
MOSP happens in a production system scenario, and consists of determining a 
sequence of cut patterns that minimizes the maximum number of opened stacks 
during the cutting process. The CGA has a number of new features compared to 
a traditional genetic algorithm,  as a population of dynamic size composed of 
schemat a and structures that is trained with respect to some problem specific 
heuristic. The application of CGA to MOSP uses a 2-Opt like heuristic to define 
the fitness functions and the mutation operator. Computational tests are 
presented using available instances taken from the literature.  

1 Introduction 

Minimization of Open Stacks Problem (MOSP) appears in a variety of industrial 
sequencing settings, where distinct patterns need to be cut and each one may contain a 
combination of piece types. For example, consider an industry of wood cut where 
pieces of different sizes are cut of big foils. Pieces of equal sizes are heaped in a 
single stack that stays open until the last piece of the same size is cut.  

A MOSP consists of determining a sequence of cut patterns that minimizes the 
maximum number of opened stacks during the cutting process. Typically, this 
problem is due the limitations of physical space, so that the accumulation of stacks 
can cause the temporary need of removal of one or other stack, delaying the whole 
process. 

This paper describes the application of a Constructive Genetic Algorithm (CGA) to 
MOSP. The CGA was recently proposed by Lorena and Furtado [1] and applied to 
Timetabling and Gate Matrix Layout Problems [2-3], and differs from messy-GAs 
[4]-[6], basically, for evaluating schemata directly. It also has a number of new 
features compared to a traditional genetic algorithm. These include a population of 
dynamic size composed of schemata and structures, and the possibility of using 
heuristics in structure representation and in the fitness function definitions.  



The CGA evolves a population, initially formed only by schemata, to a population 
of well-adapted structures (schemata instantiation) and schemata. Well-adapted 
structures are solutions, which cannot be improved using a specific problem heuristic. 
In this work, it is used a 2-Opt like heuristic to train the population of structures and 
schemata.  

The CGA application can be divided in two phases, the constructive and the 
optimal: a) the constructive phase is used to build a population of quality solutions, 
composed of well-adapted schemata and structures, through operators as selection, 
recombination and specific heuristics; and b) the optimal phase is conducted 
simultaneously and transforms the optimization objectives of the original problem on 
an interval minimization problem that evaluates schemata and structures in a common 
way. In this paper, CGA is applied to MOSP and further conjectures are approached, 
as the performance of 2-Opt heuristic that is used to define the fitness functions and 
the mutation operator.  

This paper is organized as follows. Section 2 presents theoretical aspects of MOSP. 
Section 3 presents the aspects of modeling for schema and structure representations 
and the consideration of the MOSP as a bi-objective optimization problem. Section 4 
describes the some CGA operators, namely, selection, recombination and mutation. 
Section 4 shows computational results using instances taken from the literature.  

2 Theoretical Issues of MOSP 

The data for a MOSP are given by an IxJ binary matrix Pij, representing patterns 
(rows) and pieces (columns), where Pij=1, if pattern i contains piece j, and Pij=0 
otherwise. Each pattern is processed by your time, piece by piece, opening stacks 
(when a new piece type is cut) and closing stacks (when all items of a same that piece 
type were cut). The sequence of patterns  being processed determines the number of 
stacks that stays open at same time.  

Another binary matrix, here called of open stack matrix Qij, can be used to 
calculate the maximum of open stacks for a certain pattern permutation. It is derived 
from the input matrix Pij, by following rules: 
• qij = 1 if there exists x and y | π(x) ≤ i ≤ π (y) and pxj = pyj = 1 
• 0,   otherwise; where π  (b) is the position of pattern b in the permutation.  

Considering matrix Qij, the maximum of open stacks (MOS) can be easily 
computed as: 
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The matrix Qij  clarifies the stacks that are open (consecutive-ones in the columns) 
along the cutting of patterns. The Table 1 shows an example of matrix Pij, your 
corresponding matrix Qij, and MOS calculated for same example. The Qij shows the 
consecutive-ones property [7] for columns being applied to Pij. In each column, one 
can see when a stack is open (first "1"), and when it is closed (last "1"). Between first 
and last "1" 's, the stack stays opened ("1" 's sequence). 

The sum of "1" 's by rows, computes the number of open stacks when each pattern 
is processed. For the example of Table 1, when pattern 1 is cut there are 2 open 



stacks, then pattern 2 is cut opening 5 stacks, and so on. One can note that, at most, 5 
stacks (MOS=5) are need to process the permutation of patterns ρ0={1, 2, 3, 4, 5}. 

Table 1. Example of matrices P ij and Qij  

In MOSP, the objective is to find out the optimal permutation of patterns that 
minimizes the MOS value. The Table 2 shows Qij  of the optimal permutation, 
ρ1={5,3,1,2,4}, for the example of Table 1.  

Table 2. Optimal solution  

Other permutations with MOS=4 can exist, for example ρ2={2,3,1,5,4}, but ρ1 
holds an advantage to the others: the time that the stacks stay open (TOS). The TOS 
can be calculated by the sum of all "1" 's in Qij. It comes from the distance, in the 
permutation, between the pattern that opens and the pattern that closes each stack. 
This would be a second objective in MOSP: to close the stacks as soon as possible, 
allowing that the customer’s requests be available.  

A more detailed introduction to MOSP can be found in Becceneri [8] and practical 
applications in [9]. With respect to complexity of MOSP, some works approaching 
the NP-hardness of MOSP have been published in the last decade. Andreatta et al. 
(1989) formulated the cutting sequencing problem as a minimum cutwidth problem 
on a hypergraph and showed that it is NP-Complete [10]. Recently, Linhares (2002) 
presented several aspects of MOSP and other related problems, like the GMLP (Gate 
Matrix Layout Problem), including the NP-hardness of them [11].  

The GMLP is a known NP-hard problem and arises on VLSI design [12-13]. Its 
goal is to arrange a set of circuit nodes (gates) in an optimal sequence, such that the 
layout area is minimized, i.e., it minimizes the number of tracks necessary to cover 
the gates interconnection. The relationship between MOSP and GMLP resides in the 
consecutive-ones property: a) a stack is open at moment that the first piece of a type is 
cut and stays open until the cut of the last piece of this same type, occupying a 

pieces 1 2 3 4 5 6 7 8 ∑
pattern 5 0 0 1 0 0 0 1 0 2
pattern 3 1 0 1 0 0 0 0 0 2
pattern 1 1 0 1 0 1 0 0 0 3
pattern 2 1 1 0 0 1 1 0 0 4
pattern 4 0 0 0 1 1 0 0 1 3

MOS = max {2,2,3,4,3} = 4

pieces 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ∑
pattern 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 2

Pij = pattern 2 1 1 0 0 1 1 0 0 Qij = 1 1 1 0 1 1 0 0 5
pattern 3 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 3
pattern 4 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 4
pattern 5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 2

MOS= max {2,5,3,4,2} = 5



physical space during this time; at same way, b) a metal link is begun from the 
leftmost gate requiring connection in a net and passes by all gates in circuit until the 
rightmost gate requiring connection, occupying a physical space inside of a track. 
Concerning input matrix Pij  of MOSP, this property occurs in columns, differently of 
GMLP that occurs in rows. 

 1  2   3   4   5   6   7   8   9   1   2   3   4   5   6   7   8   9   

3   3  3  5   6   7  7  5   3   
Fig. 1. Example of an input matrix in GMLP. a) Original gate matrix; b) Gate matrix derived 
by consecutive-ones property applied on rows and, in bottom, the number of track overlaps.  

3 CGA Modeling  

Very simple structure and schema representations are implemented to the MOSP. A 
direct alphabet of symbols (natural numbers) represents the pattern permutation and 
each pattern is associated to a row of binary numbers, representing the piece type 
presence in each pattern. The symbol # is used to express indetermination (# - do not 
care) on schemata. Fig.2 shows the representation for the MOSP instance of Table 1, 
and examples of structures and a schema. The symbols ‘?’ mean there is no 
information in this row, once the pattern number is an indetermination ‘#’. 

 
1 0 0 1 0 1 0 0 0  
2 1 1 0 0 1 1 0 0  
3 1 0 1 0 0 0 0 0  
4 0 0 0 1 1 0 0 1  
5 0 0 1 0 0 0 1 0 

2 1 1 0 0 1 1 0 0  
5 0 0 1 0 0 0 1 0 
3 1 0 1 0 0 0 0 0  
1 0 0 1 0 1 0 0 0  
4 0 0 0 1 1 0 0 1  

# ? ? ? ? ? ? ? ?  
5 0 0 1 0 0 0 1 0 
# ? ? ? ? ? ? ? ?  
# ? ? ? ? ? ? ? ?  
4 0 0 0 1 1 0 0 1 

si =  (1 2 3 4 5) sj =  (2 5 3 1 4) sk =  (# 5 # # 4) 

Fig. 2. Examples of structures (Si and Sj) and schema (Sk)  

To attain the objective of evaluating schemata and structures in a common way, 
two fitness functions are defined on the space X of all schemata and structures that 
can be obtained this representation. The MOSP is modeled as the following Bi-
objective Optimization Problem (BOP): 

)}()({ kk sfsgMin −  
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Subject to  g(sk) ≥ f(sk)  ∀ sk ∈Χ 

(2) 

Function g is the fitness function that reflects the total cost of a given permutation 
of patterns. To increase the fitness differentiation among the individuals of the 
population, it is used in the formulation that considers the MOS minimization as 
primary objective and TOS minimization as a secondary one. Therefore, it is defined 
as g(sk) = I⋅ J⋅MOS(sk) + TOS(sk), or  
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where the I⋅J product is a weight to reinforce the part of the objective considering the 
maximum number of open stacks and to make it proportional to the second part of the 
objective concerning the time of open stacks. If sk is schema, the non-defined columns 
(# label) are bypassed. It seems as these columns do not exist and the Qij  matrix used 
to compute g(sk) contains only columns with information. In the example of Fig 2, the 
MOS is max{?, 2, ?, ?, 3} = 3 and the TOS is sum{0+2+0+0+3} =5.  

The other fitness function f  is defined to drive the evolutionary process to a 
population trained by a heuristic. The chosen heuristic is the 2-Opt neighborhood. 
Thus, function f is defined by:  
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where ϕ2-Opt is a 2-Opt neighborhood of structure or schema sk. 
By definition, f and g are applied to structures and schemata, just differing in the 

amount of information and consequently in the values associated to them. More 
information means larger values. In this way, the g maximization objective in BOP 
drives the constructive phase of the CGA aiming that schemata will be filled up to 
structures.  

4 Evolution Process 

The BOP defined above is not directly considered as the set X is not completely 
available. Alternatively is considered an evolution process to attain the objectives 
(interval minimization and  g maximization) of the BOP . At the beginning of the 
process, two expected values  are given to these objectives: 
• g maximization: a non-negative real number gmax > maxs∈X{g(s)} that is an upper 

bound on the objective value; 
• interval minimization: an interval length d⋅gmax, obtained from gmax considering a 

real number 0<d≤  1. 
The evolution process is then conducted considering an adaptive rejection 

threshold, which contemplates both objectives in BOP. Given a parameter α ≥ 0, the 
expression  

g(sk ) - f(sk ) ≥   d⋅gmax - α⋅d⋅[gmax - g(sk)] (5) 

presents a condition for rejection from the current population of a schema or structure 
sk. The right hand side of (5) is the threshold, composed of the expected value to the 
interval minimization d⋅gmax, and the measure gmax - g(sk), that shows the difference of 
g(sk) and gmax  evaluations.  

Expression (5) can be examined varying the value of α. For α=0, both schemata 
and structures are evaluated by the difference g-f  (first objective of BOP). When α 
increases, schemata are most penalized than structures by the difference gmax - g 
(second objective of BOP). 



Parameter α  is related to time in the evolution process. Considering that the good 
schemata need to be preserved for recombination, the evolution parameter  α starts 
from 0, and then increases slowly, in small time intervals, from generation to 
generation. The population at the evolution time α, denoted by Pα, is dynamic in size 
accordingly the value of the adaptive parameter α, and can be emptied during the 
process. The parameter α is now isolated in expression (6), thus yielding the 
following expression and corresponding rank to sk: 
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At the time they are created, structures and/or schemata receive their corresponding 

rank value δ(sk). These ranks are compared with the current evolution parameter α. 
The higher the value of δ(sk), and better is the structure or schema to the BOP, and 
they also have more surviving and recombination time.  

For the MOSP, the overall bound gmax  is obtained at the beginning of the CGA 
application, by generating a random structure and making gmax  receive the g 
evaluation for that structure. In order to ensure that gmax is always an upper bound, 
after recombination, each new structure generated snew  is rejected if gmax ≤ g(snew).  

4.1 Selection and Recombination 

The structures and schemata in population Pα are maintained in ascending order, 
according to the key: 
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where η is the number of genes containing information (not #). Thus, well-adapted 
individuals (small g(sk) – f(sk)) with more genetic information (higher η) appear in 
first order places on the population.  

Two structures and/or schemata are selected for recombination. The first is called 
the base (sbase) and is randomly selected out of the first positions in Pα, and in general 
it is a good structure or a good schema. The second structure or schema is called the 
guide (sguide ) and is randomly selected out of the total population. The objective of the 
sguide selection is the conduction of a guided modification on sbase.  

In the recombination operation, the current labels in corresponding positions are 
compared. Let snew  be the new structure or schema (offspring) after recombination. 
Structure or schema snew  is obtained by applying only one of the following operations: 

 
 
 
 
 
 
 



{ Recombination }  
For i from 1 to individual length  

1) if  sBASE(i)=# and sGUIDE(i)= # 
  set sNEW(i)= # 
 

2) if sBASE(i) = # and sGUIDE(i)<> #  
  if sGUIDE(i)is not in sNEW  
   set sNEW(i)= sGUIDE(i) 
  else  set sNEW(i)= #  

3) if  sBASE(i)<># and sGUIDE(i)= #  
  if sBASE(i)is not in sNEW  
   set sNEW(i)= sBASE(i) 
  else set sNEW(i)= # 

 

4) if sBASE(i)<> # and sGUIDE(i)<> # 
  if sBASE(i)is not in sNEW  
   set sNEW(i)= sBASE(i) 
  else  
   if sGUIDE(i)is not in sNEW 
   set sNEW(i)= sGUIDE 
   else set sNEW(i) = # 

Observe that sbase is a privileged individual to compose snew , but it is not totally 
predominant. There is a small probability of the sguide gene information to be used 
instead of sbase one. More detailed information about CGA features to permutation 
problems can be found in [3]. 

4.2 The 2-Opt Heuristic 

The 2-Opt like heuristic is used to train the population by the fitness function f . The 
well-adapted individuals have better ranking and are maintained in the population for 
more generations. Another application to 2-Opt is to run a local search mutation that 
is always applied to structures (not to schemata).  

To avoid the increasing of computational efforts, only a constant number of 
neighbors around the structure is inspected, looking for the best. The neighbors are 
generated by all the 2-move changes in a constant length part of the structure. An 
initial position is chosen at random and an iterative process starts from it, inspecting 
all possible 2-move changes in the structure until a maximum length previously 
established. Each 2-move generates a neighbor structure that will be evaluated and the 
best one will be hold on. 

1    2    3    4    5    6    7    8 1    2    3    4    5    6    7    8
I N I T I A L

1    2    3    4    5    6    7    8

1    2    3    6    5    4    7    8C H A N G E D

1    2    3    4    5    6    7    8

4    5    6    7    8    1    2    3

a) b)

 
Fig. 3. Examples of one-move in 2-Opt neighborhood; a) non-consecutive reference points 

change; b) consecutive reference 

The example of 2-move change is showed in Fig.3. The marks in positions of the 
structures mean reference points to be changed. Non-consecutive references cause the 
first change type, as showed in Fig.3a. Consecutive points cause the second change 
type in Fig.3b. For example, inspecting 4 neighbors, from first position in Fig.3, 
generates 6 pairs of reference points: {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}, i.e., 
0.5*nw*(nw-1) pairs, where nw is the neighborhood width and, together with other 
parameter settings, will be described in next section. 



5 Computational Tests 

The CGA for MOSP was coded in ANSI C and it was run on Intel Pentium II 
(266Mhz) hardware. For the computational tests, some CGA parameters were 
adjusted. The d parameter was set to 0.15 (usually between 0.10 and 0.20 values, for 
other applications [1-2]). This configures the interval d⋅gmax, establishing the survival 
time of each individual, once the expected δ values are proportional to this interval. 
The ε was set to 0.001 and also contributes to the higher survival time of each 
individual in Pα. These parameters avoid the premature termination with an empty 
population. 

Each schema of the initial population received 50% of # genes (indetermination 
percentage), and 20% of population (the first individuals ranked by expression 7) 
were considered base individuals for base-guide selection, determining a small degree 
of diversification in selection process.  

Local search mutation rate was fixed in 100%, which means a constant 
improvement of individuals. The number of individuals initially generated was 
proportional to problem length (at least the number of patterns). Other important 
parameter to be tuned is the neighborhood width (nw) to each local search mutation. 
After some simulations the better results arise for nw = 20. The ideal situation would 
be to use greater values for nw, but this would turn the mutation very slow.  

The CGA was initially applied to 300 instances taken from the paper of Fraggioli 
and Bentivoglio [14]. These instances are grouped by number of patterns (10,15,20, 
25,30,40). Each one of these pattern groups has five piece type subgroups 
(10,20,30,40,50) and each piece type subgroup has ten instances with different 
solutions. 

In Fraggioli and Bentivoglio's work are presented six solution methods, and the 
three best are: a) an implicit enumeration method (OPT) that enhances the implic it 
search procedure of Yuen and Richardson [15], and is used to verify the optimality of 
the found solutions; b) a tabu search method (TS) based on an optimized move 
selection process; and c) a generalized local search method (GLS) that works by 
employing multiple applications of a simplified tabu search that only accepts 
improving moves. In this work, besides the three previously mentioned methods 
(OPT, TS, GLS), another two solution methods are included for comparison with 
CGA: a) the 2-Opt local search heuristic (2-Opt); and b) the collective method (COL) 
proposed recently by Linhares [11].  

The 2-Opt method employs the same heuristic used to train the population in CGA. 
Initially, a static population of 20 structures is randomly generated, and 2-Opt is 
applied for each one of them until no more improvement be found. The best solution 
is held. The 2-Opt parameter nw (neighborhood width) is set to maximum size, i.e., 
the number of patterns of the problem. This exhaustive local search demands a 
significant computational effort and the running time for large problems (above 100 
patterns) is prohibitive.  

The COL method explores distance measures among permutations to drive the 
search of an algorithm similar to the simulated annealing, where the moves in the 
search space are based on exchange in pattern positions.  

The Table 3 shows the solution averages obtained by OPT, COL, TS, GLS, CGA 
and 2-Opt for each instance group. Only the MOS minimization is compared because 



the TOS is not considered on the other works. The columns I and J refer to numbers 
of patterns and piece types of each instance group, respectively. The entries 
emphasized in gray are better than the reported OPT optimum values. Observe that 
although claimed to be optimal in [14] some entries in OPT column (instances 15x30, 
15x40, 15x50, and 40x40) have higher values than, at least, one of these methods: 
COL, CGA and 2-Opt . This may appear to be a contradiction but these are the new 
best bounds.  

Considering these new best-known solutions, the CGA found the best overall 
average of solutions for the instance groups, i.e., 100% of success. The COL appears 
with the second best performance, achieving the best average in 87% of instance 
groups (26 of 30), followed by 2-Opt (73% or 22 of 30), TS (40% or 12 of 30) and 
GLS (33% or 10 of 30) of success rate, respectively. 

Table 3. Solution averages obtained by OPT, COL, TS, GLS, CGA and 2-Opt 

The comparison between CGA and 2-Opt procedure is meaningful, once CGA 
employs 2-Opt heuristic for fitness definition and local search mutation. The 
difference between them is the genetic constructive process that exists behind CGA. 
Selection, recombination and ranking contribute to the construction of well-adapted 
structures from an initial population of schemata. All these features seem become 
CGA more robust than other non-population approaches, like COL and 2-Opt.  

One can also suppose that 2-Opt could achieve all best solution averages after 
several trials. However, Table 3 have showed that the 2-Opt is not to be able to find 
all best solutions. Besides, 2-Opt turns to be prohibitive for large scale instances 
(above 100 patterns). This can be best verified by the following experiment. The 2-
Opt was applied to an instance of another problem type, the GMLP (Gate Matrix 
Layout Problem), already mentioned in this paper (see section 2). There is a well-
known GMLP instance (namely w4) with 141 gates and 202 nets. This is equivalent 
to a MOSP instance of 141 patterns of 202 piece types. The 2-Opt procedure was run 
10 times for w4 instance and did not achieve the best-known solution (27 tracks). The 
solution 29 was found after 198 minutes. The CGA reach the 27 tracks in 30% of 
trials and 87 minutes (average time)[3].  

I J OPT COL TS GLS CGA 2-Opt I J OPT COL TS GLS CGA 2-Opt
10 10 5.5 5.5 5.5 5.5 5.5 5.5 25 10 8.0 8.0 8.0 8.0 8.0 8.0

- 20 6.2 6.2 6.2 6.2 6.2 6.2 - 20 9.8 9.8 9.8 9.9 9.8 9.8
- 30 6.1 6.1 6.1 6.2 6.1 6.1 - 30 10.5 10.6 10.7 10.6 10.5 10.5
- 40 7.7 7.7 7.7 7.7 7.7 7.7 - 40 10.4 10.4 10.7 10.6 10.4 10.5
- 50 8.2 8.2 8.2 8.2 8.2 8.2 - 50 10.0 10.0 10.1 10.2 10.0 10.0

15 10 6.6 6.6 6.6 6.6 6.6 6.6 30 10 7.8 7.8 7.8 7.8 7.8 7.8
- 20 7.2 7.2 7.2 7.5 7.2 7.2 - 20 11.1 11.2 11.2 11.2 11.1 11.1
- 30 7.4 7.3 7.4 7.6 7.3 7.6 - 30 12.2 12.2 12.6 12.2 12.2 12.2
- 40 7.3 7.2 7.3 7.4 7.2 7.3 - 40 12.1 12.1 12.6 12.4 12.1 12.2
- 50 7.6 7.4 7.6 7.6 7.4 7.4 - 50 11.2 11.2 12.0 11.8 11.2 11.2

20 10 7.5 7.5 7.7 7.5 7.5 7.5 40 10 8.4 8.4 8.4 8.4 8.4 8.4
- 20 8.5 8.5 8.7 8.6 8.5 8.5 - 20 13.0 13.0 13.1 13.1 13.0 13.0
- 30 8.8 9.0 9.2 8.9 8.8 8.9 - 30 14.5 14.5 14.7 14.6 14.5 14.5
- 40 8.6 8.6 8.6 8.7 8.6 8.6 - 40 15.0 15.0 15.3 15.3 14.9 15.0
- 50 7.9 7.9 8.0 8.2 7.9 8.0 - 50 14.6 14.6 15.3 14.9 14.6 14.9



6. Conclusion 

This work describes an application of the Constructive Genetic Algorithm (CGA) to 
Minimization of Open Stack Problems (MOSP). The CGA adapted to work with 
MOSP uses a 2-Opt heuristic as local search mutation and on definition of the two 
fitness functions ( f  and g ). The algorithm constructs a population of well-adapted 
structures trained by the 2-Opt heuristic.  

Regarding the computational tests, the CGA reached all the best-known results for 
instances taken from the literature and presented the best results in comparison to 
other methods. It also appear to be more robust than the standalone application of 
procedure 2-Opt.  
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