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Abstract

Genetic Algorithms (GAs) have been accepted in recent years as powerful approaches
to solve optimization problems. It is also well accepted that building blocks construc-
tion (schemata formation and conservation) has direct influence for a good behav-
ior in GA. Schemata are usually indirectly evaluated, through a derived structure.
We introduce in this work a new approach, called Constructive Genetic Algorithm
(CGA), which allows for schemata evaluation and for the provision of other new
features to GA. Problems are modeled as bi-objective optimization problems, which
consider the evaluation of two fitness functions. This double fitness process, called fg-
fitness, evaluates schemata and structures in a common basis. The evolution process
is conducted considering an adaptive rejection threshold, which contemplates both
objectives and attributes a rank to each individual in population. The population
is dynamic in size, composed of schemata and structures. Recombination preserves
good schemata, and mutation is applied to structures to get population diversifica-
tion. The CGA is applied to two clustering problems in graphs. Representation of
schemata and structures use a binary digit alphabet, and are based on assignment
(greedy) heuristics that provide a clearly distinguished representation for the prob-
lems. The clustering problems studied are the classical p-median and the capacitated
p-median. Good results are shown for problem instances taken from the literatue.
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1 Introduction

Genetic Algorithms (GAs) have been recognized in recent years as powerful approaches
to solve optimization problems (Bäck and Schwefel, 1993; Davis,1991; De Jong,1975;
Goldberg,1989; Holland,1975; Lorena and Lopes, 1996; Lorena and Lopes, 1997;
Michalewicz, 1996; Mitchell, 1996).The underlying foundations for such algorithms are
the controlled evolution of a structured population.

The GA works on a set of variables called structures. For applying them to op-
timization problems, the first step is the definition of a coding scheme that allows a
one-to-one mapping between solutions and structures. The following string can rep-
resent a structure sk = (sk1, sk2, ..., skn), where n is the number of variables in the
problem. A fitness function assigns a numeric value to each member of the current
population (a collection of structures). The genetic operators used are selection (like
tournament or biased roulette wheel) working together with a number of crossover and

c©2000 by the Massachusetts Institute of Technology Evolutionary Computation ( ): -



LUIZ ANTONIO NOGUEIRA LORENA AND JOÃO CARLOS FURTADO

mutation operators. The best structure is kept after a predefined number of generations
(Goldberg, 1989; Holland, 1975; Michalewicz, 1996).

Holland (Holland,1975) put forward the ”building block” hypothesis (schema for-
mation and conservation) as a theoretical basis for the GA mechanism. In his view,
avoiding disruption of good schema is the basis for the good behavior of a GA. A ma-
jor problem with ”building blocks”, however, is that schemata are evaluated indirectly,
via evaluation of their instances (structures). Goldberg and collaborators (Golberg et
al.,1989, 1993; Kargupta,1995) have introduced an alternative GA, the messy-GA, that
allows variable length strings that looks for the construction and preservation of good
”building blocks”.

The Constructive Genetic Algorithm (CGA) is proposed here as an alternative to
the traditional GA approach (Holland,1975), particularly in that CGA directly evaluates
schemata. The population, initially formed only by schemata, is built, generation after
generation, by directly searching for a population of not only well adapted structures,
but also for good schemata.

Some steps in CGA are notably different from a classical GA. The CGA works with
a dynamic population, initially composed of schemata, which is enlarged after the use of
recombination operators, or made smaller along the generations, guided by an evolution
parameter. Schemata recombination diversifies the population thereby generating new
schemata or structures. At the time of its creation each schema or structure receives
a rank used in the evolution analysis. Structures represent feasible solutions, undergo
mutation and are compared to the best solution found so far, which is always retained.
Another main difference between a classical GA and a CGA is the new fg-fitness process.

The CGA will be explained in detail in sections 2 and 3. We have adopted the
principle of explaining the method with examples, based on the clustering applications.

Clustering problems generally appear in classification of data for some purpose like
storage and retrieval or data analysis. Any clustering algorithm will attempt to deter-
mine some inherent or natural grouping in the data, using ”distance” or ”similarity”
measures between individual data (Spath, 1980; Zupan, 1982). In this paper we ex-
amine the CGA application to two clustering problems in graphs, namely, the classical
p-median problem (PMP) and the capacitated p-median problem (CPMP).

The PMP is a classical location problem. The objective is to locate p facilities
(medians) so as to minimize the sum of the distances from each demand vertex to its
nearest facility (Hakimi,1964; Hakimi,1965). The problem is well known to be NP-hard
(Garey and Johnson, 1979), and several heuristics have been developed for p-median
problems (Densham and Rushton, 1992; Goodchild and Noronha, 1983; Rolland et
al.,1997; Rosing and ReVelle, 1997; Rosing et al.,1998; Teitz and Bart, 1968). More
complete approaches explore a search tree (Beasley, 1993; Christofides and Beasley,
1982; Efroymson and Ray, 1966; Galvão and Raggi, 1989; Jarvinen et al.,1972; Neebe,
1978). Other approaches consider Lagrangean relaxation and subgradient optimization
in a primal-dual viewpoint (Beasley, 1993; Senne and Lorena, 2000).

The CPMP considers capacities for the service to be given by each median. The
total service demanded by vertices identified by p-median clusters can not exceed the
service capacity. Apparently, the CPMP was not so intensively studied as the classical
PMP. Similar problems appeared in the works (Klein and Aronson, 1991; Maniezzo et
al.,1998; Mulvey and Beck, 1984; Osman and Christofides, 1994).

This paper is organized as follows. The CGA description in divided in two sections.
In section 2 we present aspects of modeling to be considered when solving a problem
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using CGA. Modeling involves definitions of the schema and structure representations
and the consideration of the problems at issue as bi-objective optimization problems.
The evolution process is also described in this section. Section 3 describes the CGA
operators, namely, selection, recombination and mutation, as well as the definition of
an initial population and a CGA pseudo-code. Section 4 shows computational results
using instances from the literature. We conclude in section 5 with a summary of the
CGA performance and characteristics.

2 CGA modeling

In this section is described the modeling phase of the CGA. The clustering problems
are formulated as bi-objective optimization problems. Two fitness functions are de-
fined on the space of all schemata and structures that can be obtained using a specific
representation. The evolution process considers the two objectives on an adaptive re-
jection threshold, which gives ranks to individuals in population and yields a dynamic
population.

2.1 Structure and schema representation

Very simple structure and schema representations are adopted for problems PMP and
CPMP. They use a binary alphabet, and assignment heuristics make a clear and in-
dependent connection with the two clustering problems. The use of the same kind of
representation allows the remaining steps in CGA to be valid for both problems.

Suppose a given graph G=(V,E). A clustering problem in graphs can be stated
as the search for partitions on the vertex set V in a (generally) predefined number
of clusters, optimizing some measure on combinations of vertices and/or edge weights.
The problems considered in this paper are clustering problems in graphs.

A typical instance of the problems is composed of n demand points (vertices) V
= {1,...,n}, and a distance (weight) matrix [µjl], indicating distances between pairs of
vertices, such that µjl ≥ 0, µjj = 0 and µjl = µlj for all j, l ∈ V .

To define the representation some vertices are elected as the seeds, i. e., the initial
vertices in clusters that attract, in some way, the other vertices that participate in the
representation.

Starting with an example for the PMP, consider the following 3-median solution
for a complete graph G(V,E) instance with 10 vertices (see figure 1 ).

A partition on the index vertex set V is then made, yielding two blocks, the seed
set and the non-seed set, where the seeds are the medians. For the 3-median solution
of figure 1, V1(sk) = {1, 9, 10} is the seed set, and V0(sk) = {2, 3, 4, 5, 6, 7, 8} is the
non-seed set. Vertices 1, 9 and 10 are the medians, and the others are assigned to a
median. The 3-median structure for the example will be sk = (1, 0, 0, 0, 0, 0, 0, 0, 1, 1),
where each position skj in sk, receiving labels 1 or 0, means that vertex j belongs to
sets V1(sk) or V0(sk), respectively.

Structure sk is not completely defined, as we do not know the non-median assign-
ments. For the clustering problems, after the initial seed identification, an Assignment
Heuristic is employed to assign non-seed vertices to clusters. For the PMP each non-
median vertex is assigned to the nearest identified median. Algorithm AH1, formalizes
the assignments.

AH1
Read sk,
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Figure 1: A 3-median solution

V1(sk) = {ζ1, ζ2, ..., ζ|V1(sk)|},
V0(sk) = {β1, β2, ..., β|V0(sk)|};

For i = 1 to |V1(sk)| do
Ci(sk) := {ζi};

end for
For j = 1 to |V0(sk)| do

r := index
[
Min{i=1,...,|V1(sk)|}{µζiβj}

]
;

Cr(sk) := Cr(sk) ∪ {βj};
end for

After the application of AH1, exactly p = |V1(sk)| clusters are identified (for the
example in figure 1, C1(sk) = {1, 8}, C2(sk) = {2, 4, 5, 9},and C3(sk) = {3, 6, 7, 10}),
corresponding to the median set V1(sk) = {1, 9, 10}.

The CGA works directly with schemata. A 3-median schema for the example can
be sk = (1, #, 0, 0, 0, #, 0, 0, 1, 1), as figure 2 clarifies. The defined sets are: V1(sk) =
{1, 9, 10}, V0(sk) = {3, 4, 5, 7, 8} and the new set V#(sk) = {2, 6}. V#(sk) = V −
(V1(sk) ∪ V0(sk)) is formed by vertices not considered by the 3-median schema. The
”do not care” label # will be used herein to distinguish this condition. Observe that
the number of medians is the same on schemata and structures, determining the name
p-median schema (a condition that can be relaxed).

The same heuristic AH1 is then used here to make the assignments, giving a clearly
and unique representation. The clusters identified in figure 2 are C1(sk) = {1, 8},
C2(sk) = {4, 5, 9}, and C3(sk) = {3, 7, 10}.

The structure and schema sk defined above can also be used on the CPMP rep-
resentation. The only modification is that now the clusters have capacities. Heuristic
AH2 is the corresponding assignment heuristic in this case. Assume, for instance, that
the cluster capacities are the same (a condition that can also be relaxed).

Each non-median vertex is assigned to their nearest median if the cluster capacity
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Figure 2: A 3-median solution

is not violated.

AH2
Read sk,

Q,
V1(sk) = {ζ1, ζ2, ..., ζ|V1(sk)|},
V0(sk) = {β1, β2, ..., β|V0(sk)|};
αβj , j = 1, ..., |V0(sk)|,
αζi , i = 1, ..., |V1(sk)|,

For i = 1 to |V1(sk)| do
Qi := Q − αζi ,
Ci(sk) := {ζi};

end for
For j = 1 to |V0(sk)| do

r := index
[
Min{i=1,...,|V1(sk)|}{µζiβj |Qi − αβj | ≥ 0}];

Qr := Qr − αβj ,
Cr(sk) := Cr(sk) ∪ {βj};

end for

Define X as the set of all structures and schemata that can be generated by the
0 − 1 − # string representation. For the PMP, the assignment heuristic AH1 allows
completeness to X, in the sense that an optimal solution to the problem is always in X.
The same is not true on heuristic AH2 for CPMP (the capacity constraints may not be
correctly represented).

The assignment heuristics can be defined in various ways, and more elaborated
they are, probably better solutions they found to the clustering problems (although,
generally increasing computational times).
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2.2 The bi-objective optimization problem

The CGA is proposed to address the problem of evaluating schemata and structures in
a common basis. While in the other evolutionary algorithms, evaluations of individuals
are based on a single function (the fitness function), in CGA this process relies on two
functions, mapping the space of structures and schemata onto <+.

LetX be the set of all structures and schemata that can be generated by the 0−1−#
string representation of section 2.1., and consider two functions f and g, defined as
f : X → <+ and g: X → <+ such that f(sk) ≤ g(sk) , for all sk ∈ X . We define
the double fitness evaluation of a structure or schema sk, due to functions f and g, as
fg-fitness.

The CGA optimization problem implements the fg-fitness with the following two
objectives:

1. (interval minimization) Search for sk ∈ X of minimal {g(sk) − f(sk)}.
This objective can be accomplished by schemata or structures. The response to
the evolutionary search is given on a very adapted structure, then, a further op-
timization objective is needed to guide the search to find structures. This second
objective is then:

2. (g maximization) Search for sk ∈ X of maximal g(sk).

Considering the schema representation, the fg-fitness evaluation increases as the
number of labels # decreases, and therefore structures have higher fg-fitness eval-
uation than schemata.

To attain these purposes, a problem to be solved using CGA is modeled as the following
Bi-objective Optimization Problem (BOP):

Min{g(sk) − f(sk)}
Max g(sk)

subject to g(sk) ≥ f(sk),sk ∈ X
Functions f and g must be properly identified to represent the optimization objec-

tives of the problems at issue. The fg-fitness process is particularized in the following
for the clustering problems.

Consider a structure or schema sk ∈ X . For PMP and CPMP, after the application
of the assignment heuristics AH1 or AH2, p = |V1(sk)| clusters Ci(sk) are identified,
corresponding to the median set V1(sk) = {ζ1, ζ2, ..., ζp}.

Function g is defined by g(sk) =
∑p

i=1

∑
j∈Ci(sk) µζij , and function f is defined

by f(sk) =
∑p

i=1 λi.[|Ci(sk)| − 1], where λi = Minj∈Ci(sk){µζij} is the minimum cost
(distance) assigned in cluster i, and |Ci(sk)| is the cardinality of the set Ci(sk).

For the schema (1,#,0,0,0,#,0,0,1,1) represented in figure 2, we have
f(1, #, 0, 0, 0, #, 0, 0, 1, 1) = 2 ∗ 1 + 1 ∗ 2 + 3 ∗ 2 = 10, and g(1, #, 0, 0, 0, #, 0, 0, 1, 1) =
2 + 1 + 2 + 3 + 4 = 12.

Clearly f(sk) ≤ (sk), for all sk ∈ X . The objective in BOP of minimizing the
interval g(sk)−f(sk) is directly related to the optimizing objectives on PMP and CPMP.
The evaluation of function f gives an ”ideal” evaluation for the distances of assigned
vertices in clusters, while function g gives the actual evaluation for the distances of the
assigned vertices. If sk is a structure, g(sk) gives the solution value for the respective
problem, and the best (minimum) value is retained in the process.
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Figure 3: A random structure (0,1,0,0,0,1,1,0,0,0)

2.3 The evolution process

The evolution process in CGA is conducted to accomplish the objectives (interval mini-
mization and g maximization) of the BOP. At the beginning of the process, the following
two expected values are given to these objectives:

1. (expected value to g maximization)

A non-negative real number gmax > Maxsk∈Xg(sk), that is an upper bound to
g(sk), for each sk ∈ X .

2. (expected value to interval minimization)

The interval length dgmax, obtained from gmax using a real number 0 ≤ d ≤ 1.

For the clustering problems, the overall bound gmax is obtained at the beginning of
the CGA, by generating a random complete structure and making gmax receive the g
evaluation for that structure.

For the 3-median example of section2.1., the random structure of figure 3 gives
gmax = g(0, 1, 0, 0, 0, 1, 1, 0, 0, 0) = 32, and for d = 0.1, the expected interval length is
dgmax = (0.1).(32) = 3.2. In order to ensure that gmax is always an upper bound, after
recombination, each new structure generated snew is rejected if gmax ≤ g(snew).

The evolution process is then conducted considering an adaptive rejection threshold,
which contemplates both objectives in BOP. Given a parameter α ≥ 0,the expression

g(sk) − f(sk) ≥ dgmax − α.d[gmax − g(sk)] 2.3.1
presents a condition for rejection from the current population of a schema or struc-

ture sk.
The right hand side of (2.3.1) is the threshold, composed of the expected value

to the interval minimization dgmax, and the measure [gmax − g(sk)], that shows the
difference of g(sk) and gmax evaluations.

For α = 0, (2.3.1) is equivalent to comparing the interval length obtained by sk

and the expected length dgmax. Schemata or structures are discarded if expression
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(2.3.1) is satisfied. When α > 0, schemata are penalized and have higher possibility
of being discarded than structures, as structures present, in general, smaller differences
[gmax − g(sk)] than schemata.

Parameter α is related to time in the evolution process. Considering that the good
schemata need to be preserved for recombination, the evolution parameter α starts from
0, and then increases slowly, in small time intervals, from generation to generation. The
population at the evolution time α, denoted by Pα, is dynamic in size accordingly the
value of the adaptive parameter α, and can be emptied during the process.

The parameter α is now isolated in expression (2.3.1), thus yielding the following
expression and corresponding rank to sk:

α ≥ dgmax−[g(sk)−f(sk)]
d[gmax−g(sk)] 2.3.2

1. (rank)

The right hand side of expression (2.3.2) gives a rank value to sk:

δ(sk) = dgmax−[g(sk)−f(sk)]
d[gmax−g(sk)]

At the time they are created, structures and/or schemata receive their correspond-
ing rank value δ(sk). The rank of each schema or structure is compared with the
current evolution parameter α. At the moment a structure or schema is created, it is
then possible to have some figure of its survivability. The higher the value of δ(sk), and
better is the structure or schema to the BOP, and they also have more surviving and
recombination time.

Analyzing the ratio δ(sk) it is possible to isolate the effects of d and gmax in
population size. It is clear that, for small d, the population presents slow increase
and maintains of small dimension. A large d may give the storage problems of a large
population, but eventually with good structures. An undesired effect of gmax is that,
when gmax � g(sk) for a large number of sk ∈ X , they all have δ(sk) ∼= 1, thus
entailing the possibility of being eliminated, from a generation to the next (after α =
1). Naturally, the effect can be an enormous reduction in population size in a few
generations. Then the definition of parameters d and gmax must be the result of a
careful study.

3 The CGA operators

In this section is described the operators that works on the evolution process in the
CGA. The CGA initial population will be formed only by schemata. Recombination
will create new schemata and structures.

Recombination can produce more adapted structures and/or schemata. The best
structure needs to be kept in the process, generating a best feasible solution to the
problem under consideration. Structures can be improved by mutation. After some
generations the population is composed of good schemata and probably good structures
representing improved feasible solutions.

3.1 Initial population

The initial population is composed exclusively of schemata, and for a sequence of gen-
erations, the population can increase by addition of new offspring generated out of the
combination of two schemata.
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Let P0 be the initial population. For each schema, a proportion of random positions
receives label 0, and p (number of clusters) random positions receive label 1. The
remaining positions receive label #.

The schemata in P0 will be (re)combined to produce offspring with some of the
labels # substituted by labels 1 or 0 , seeking for structures. For the case of # to
1 substitution, some original position with label 1 are modified to 0, maintaining the
pre-fixed number of clusters.

The proportion of labels # have direct influence on the evolution process. Schemata
with a small number of labels # have higher possibility of generating structures as
offspring than those with large number of labels #, but it is difficult to have good
schemata generated at random. On the other side, schemata with large number of
labels # have small possibility of generating a structure as an offspring.

For the computational tests of section four, 20% of n random positions received
label 0, where n is the size of P0. The following can be an initial population for the
3-median example (n = 10):

s1 = (1, 0, #, 1, 1, #, 0, #, #, #), s2 = (#, 1, 0, 0, #, 1, #, #, #, 1),
s3 = (#, #, 1, 0, #, 1, 1, #, #, 0), s4 = (0, #, #, 1, 0, #, #, 1, #, 1),
s5 = (1, #, 0, #, #, 1, 0, 1, #, #), s6 = (#, 0, #, #, 1, 1, 1, 0, #, #),
s7 = (#, #, #, 0, 1, 0, 1, #, #, 1), s8 = (#, 1, 0, 0, #, #, 1, 1, #, #),
s9 = (0, 0, #, #, #, 1, #, 1, 1, #), s10 = (0, 1, 0, 1, #, #, #, 1, #, #).

3.2 Recombination

We have two purposes on the evolution process: to obtain structures (good solutions
to the g maximization objective on the BOP), and that these structures be good ones
(best solutions to the interval minimization problem on the BOP). The selection of
structures and/or schemata for recombination will be conducted to attain these two
objectives. The first one is attained by selecting for recombination schemata with small
number of labels #, and the second considering structures or schemata with small
dk = g(sk)−f(sk)

g(sk) .
The structures and schemata in population Pα are maintained on ascending order,

according to the key ∆(sk) = 1+dk

|V1(sk)|+|V0(sk)| . Structures (V#(sk) = ∅), schemata with
|V#(sk)| small, and structures and/or schemata presenting small dk are better and
appear in the initial positions.

Two structures and/or schemata are selected for combination. The first is called
the base (sbase ) and is randomly selected out of the n first positions in Pα; in general it
is a good structure or a good schema (dbase is small). If it turns out to be a schema, the
following recombination process tries to preserve labels 1 or 0 already assigned in sbase.
The second structure or schema is called the guide (sguide) and is randomly selected
out of the total population. The objective of the sguide selection is the conduction
of a guided modification on sbase. The current labels in corresponding positions are
compared. Let snew be the new structure or schema (offspring) after recombination.

Structure or schema snew is obtained by applying the following operations (in this
order):
{Recombination}
(i) For each j ∈ {1, ..., n} presenting sbasej = # and sguidej = # set snewj = #;
(ii) For each j ∈ {1, ..., n} presenting sbasej = 1 and sguidej = 1 set snewj = 1;
(iii) For each j ∈ {1, ..., n} presenting sbasej = 0 and sguidej = 0 set snewj = 0;
(iv) For each j ∈ {1, ..., n} presenting sbasej = 1 and sguidej = # set snewj = 1;

Evolutionary Computation Volume , Number 9
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(v) For each j ∈ {1, ..., n} presenting sbasej = 0 and sguidej = # set snewj = 0;
(vi) For each j ∈ {1, ..., n} presenting sbasej = # and sguidej = 0 set snewj = 0;
(vii) For each j ∈ {1, ..., n} presenting sbasej = # or 0 and sguidej = 1 then two cases
are possible:

1. set snewj = 1, also if |V1(snew)| = p, set snewl = 0 for l ∈ {1, ..., n} presenting
snewl = 1 (randomly selected),

2. set snewj = 1, also if |V1(snew)| = p, set snewl = 0 for each l ∈ {1, ..., n} presenting
snewl = 1 generating p new structures and/or schemata,

(viii) For each j ∈ {1, ..., n} presenting sbasej = 1 and sguidej = 0 then two cases are
possible:

1. set snewj = 0 and snewl = 1 for l ∈ {1, ..., n} presenting snewl = 0 (randomly
selected),

2. set snewj = 0 and snewl = 1 for each l ∈ {1, ..., n} presenting snewl = 0 generating
|V0(sbase)| new structures and/or schemata.

For each offspring generated, operations (i)-(v) preserve in snew the labels which are
present in sbase (schema information). Operations (vi)-(viii) produce different offspring.
Operation (vi) produces one snew that is sbase with some additional labels 0. Operations
(vii) and (viii) can be seen as a mutation operator generating, in the second case, p or
|V0(sbase)| new offspring. These mutation like phases on recombination (operations (vii)
and (viii)) are imposed by the number of clusters in snew (the number of 1’s is fixed on
schemata and structures).

When sbase is a structure (V#(sbase) = ∅), the following interchange heuristic is
performed as a local search mutation:

IH {Interchange Heuristic}
For each j ∈ V1(sbase) do

For each l ∈ V0(sbase) do
Interchange j and l and generating an offspring snew;

{offspring generation}
Interchange l and j;

End for
End for

The application of the local search mutation IH produces p.|V0(sbase)| new struc-
tures. For each α value, n new structures and/or schemata are generated, their ranks
computed and compared with α, and included or not in the new population.

3.3 The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:

CGA {Constructive Genetic Algorithm }
Given gmax and d;
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α:=0;
ε := 0.05; { time interval }
Initialize Pα; { initial population }
Evaluate Pα; { fg-fitness }
For all sk ∈ Pα compute δ(sk) { rank computation }
end for
While (not stop condition) do

For all sk ∈ Pα satisfying α < δ(sk) do { evolution test }
α := α + ε;
Select Pα from Pα−ε; { reproduction operator }
Recombine Pα; { recombination operators }
Evaluate Pα; { fg-fitness }

end for
For all new sk ∈ Pα compute δ(sk) { rank computation }
end for

end while

The CGA algorithm begins with the recombination procedures (schemata) and
no local search mutation. After a sequence of generations, the number of structures
increases and so does the consequent application of IH mutations. At final generations
only IH mutations are performed.

Our stop conditions occur with an emptied population (assured by a sufficiently
higher α) or at a predefined number of generations. The population increases, after the
initial generations, reaching an upper limit (in general controlled by storage conditions),
and decreases for higher values of the evolution parameter α (see figure 4 in section 4.).
The structure corresponding to the best problem solution must be kept in the process.

4 Computational results

The CGA was initially tested using a partial sample of the p-median data drawn from
the OR-library (Beasley,1990). The sizes are 100, 200, 300, 400, and 500 vertices. The
number of medians varies from 5 to 67.

The computational tests are reported in table 1. The Lagrangean heuristic results
appeared in the paper (Senne and Lorena, 2000); it uses local search and an iterative
location-allocation procedure to obtain feasible solutions. It was programmed in C,
running on an IBM Risc/6000 model 3AT workstation (compiled using xlc compiler
with -O2 optimization option). The CGA feasible solution is the g(sk) evaluation for
the best structure kept, using the simple AH1 heuristic for the assignments. The gap
is calculated as [(Feasible Solution - Optimal solution)*100]/(Feasible Solution).

The CGA results are slightly worse than the Lagrangean ones, but all gaps are
inferior to 0.73% and null for nine instances. For all the CGA results presented in
this section, the algorithm was coded in C, running on a Pentium 166 Mhz. The
computational times (table 1 ) for both algorithms are not comparable due to the use
of different machines, although the IBM Risc/6000 could be considered faster than a
Pentium 166 Mhz.

It can be seen in table 1 that a large number of medians increase the CGA com-
putational times. This is easy to explain as the local search mutation is used more
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intensively on these cases. For all CGA results presented in this section d = 0.1, and
the evolution control (time interval) used is: ε = 0.05 for 0 ≤ α ≤ 1 and ε = 0.025 for
α > 1.

We examine in the following graphical representations of the running test with
problem pmed1. Figure 4 shows the population evolution by generation. A maximum
population size is obtained at generation 25 (P1.25) with approximately 2000 structures
and/or schemata. The population decreases after α = 1.25, showing that the number of
new structures and/or schemata by generation is smaller than the number that do not
pass the evolution test. The procedure stopped with an empty population at α = 4.5.

Table 1: Computational results (OR-library instances)

Problem Vertices Medians Optimal Lagrangean Lagrangean CGA CGA
(n) (p) Solution heuristic heuristic gap times

gap(%) times(sec.) (%) (sec.)
pmed1 100 5 5819 0 0.93 0 28
pmed2 100 10 4093 0 1.34 0 37
pmed3 100 10 4250 0 1.79 0 34
pmed4 100 20 3034 0 1.58 0 230
pmed5 100 33 1355 0 2.07 0.36 375
pmed6 200 5 7824 0 4.75 0 172
pmed7 200 10 5631 0 5.45 0 238
pmed8 200 20 4445 0 5.03 0.20 1055
pmed9 200 40 2734 0 10.6 0.73 3331
pmed10 200 67 1255 0 17.4 0.15 4325
pmed11 300 5 7696 0 10.0 0 369
pmed12 300 10 6634 0 11.7 0.04 677
pmed13 400 5 8162 0.012 19.11 0 555
pmed14 500 5 9138 0 20.60 0 1875

Figure 5 shows the maximum number of vertices for each structure or schema
generated out of recombination and local search mutation. Only after generation 13 a
structure is obtained. Even with a population mostly with structures, schemata form
a representative part of it; after all, a schema may receive a better fg-fitness than a
structure.

Figure 6 shows the improvements on the best dk by generation and finally figure
7 shows the best g function evaluation for a structure (p-median solution) at each
generation.

A classical mathematical programming formulation for p-median problems was con-
sidered in the papers (Beasley, 1985,1993; Christofides and Beasley, 1982; Senne and
Lorena, 2000). Considering a primal-dual approach, the set of OR-Library p-median
instances can be considered that is composed of easy problems in the sense of duality
gaps. The gaps can all be closed using a Lagrangean (or Lagrangean/surrogate) ap-
proach (Beasley, 1993; Senne and Lorena, 2000). Based on that, another test suit was
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Figure 4: Population size by generation

Figure 5: Maximum number of vertices by generation

performed, now with another set of instances (Galvão and ReVelle, 1996; Senne and
Lorena, 2000), that presents large duality gaps for some values of p. A comparison
was also made with the direct application of the interchange heuristic IH on a set of
structures.

Table 2 shows the computational experiments. The mean CGA gaps for 5 repli-
cations are lower than 0.547% for all instances. The CGA results compare favorably
with the Lagrangean ones. The Lagrangean heuristic’s worst result is 3.595%, and, for
five instances, the Lagrangean heuristic gap is greater than 0.547%. To apply the IH
alone, we start with an initial set of n structures, then IH is applied on each structure.
The process is replicated with 5 initial randomly generated sets, and the best solution
reported in table 2. The direct application of IH yields gaps varying from 3.57% to
14.88%. The comparison is included to accentuate the concept that CGA works with a
population that retains adapted structures after the constructive phase.

The CGA was also tested on instances of the CPMP. Two sets of 10 instances are
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Figure 6: Best dk by generation

Figure 7: Best g evaluation by generation

considered, with (50x5) and (100x10) vertices and medians, respectively. They appeared
in the paper (Osman and Christofides, 1994). The results are shown in table 3, which
columns are composed of the problem identification, the best known solution, results
for some heuristics (H.OC, H1+F1, H1+B1, HSS.OC, HSS.C and TS1+FBA) used in
(Osman and Christofides, 1994), and at the last column, the CGA solution.

Heuristic H.OC is a simple constructive heuristic, while H1+F1 and H1+B1 begin
with the H.OC solution and make some permutations using ”first improve” and ”best
improve” strategies. Algorithm TS1+FBA is a tabu search implementation. Simulated
annealing is implemented with algorithms HSS.OC and HSS.C, which use distinct cool-
ing schedules. The best results are obtained using the algorithm HSS.OC, where the
simulated annealing probabilistic acceptance was improved in three ways. It makes use
of a non-monotonic cooling schedule, a systematic neighborhood search, and a termina-
tion condition based on the number of temperature resets performed without improving
the best solution.

Table 4 presents the gaps to the best solution reached by the 7 heuristics, as well
as the times for heuristic HSS.OC and the mean times for 5 replications of the CGA.
The times for HSS.OC are reported in the paper (Maniezzo et al., 1998), where the
authors have implemented the heuristic in Fortran 77, also running on a Pentium 166
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Mhz. Tables 3 and 4 show that the CGA results were as good as TS1+FBA, and little
worse than HSS.OC and HSS.C (i. e., their best results are comparable).

Table 2: Problems presenting large duality gaps.

Number of Number of Duality Optimal Lagrangean IH CGA
vertices medians gap solution heuristic gap gap

(n) (p) (%) gap(%) (%) (%)
100 5 0.346 5703 0 6.36 0
100 10 3.728 4426 2.553 10.72 0
100 15 0.895 3893 0.745 8.20 0.136
100 20 0.093 3565 0.084 6.07 0.299
100 25 0.067 3291 0 4.10 0.243
100 30 0.056 3032 0.066 3.73 0.425
100 40 0 2542 0 3.57 0.432
100 50 0 2083 0 4.11 0.096
150 5 1.404 10839 0 4.24 0
150 10 3.158 8729 0.252 8.21 0
150 15 4.906 7390 0.731 12.15 0.184
150 20 2.975 6454 3.595 14.88 0.547
150 25 1.009 5875 2.060 13.20 0.204
150 30 0.208 5495 0.564 12.59 0.345
150 40 0.068 4907 0.143 8.40 0.346
150 50 0.062 4374 0 6.24 0.137

The CGA results can be considered good, spending small computer times. Con-
sidering effective implementations of Lagrangean relaxation heuristics and Simulated
Annealing, the CGA results are comparable, and even better in some cases.

5 Conclusion

This work describes a constructive approach to genetic algorithms and an application
to some clustering problems in graphs.

The Constructive Genetic Algorithm - CGA provides some new features to genetic
algorithms. The principal CGA characteristics can be summarized as:

1. the direct work and evaluation of schemata,

2. the population is dynamic in size,

3. the initial population is formed by schemata,

4. the new fg-fitness provides double evaluation of schemata and structures,

5. at the creation time schemata and structures receive a rank,

6. good schemata and structures have high ranks and greater surviving and recom-
bination times,

7. recombination preserves good schemata,
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8. local search mutation to structures provides population diversification,

9. one objective of the CGA is the construction of a population with good structures
after some generations.

For the clustering problems studied (PMP and CPMP) assignment heuristics decode
common binary representations. The (good) effects of the heuristics are reflected to
the whole population. The same CGA representation (composed with an assignment
heuristic) was also tested (and described in an earlier version of this paper) on the Min
Cut Clustering Problem considered in the paper of Johnson and Mehrotra (Johnson and
Mehrotra,1992). It is the problem of partitioning the vertex set of a given graph into
a pre-fixed number of clusters, such that the sum of the cluster vertex weights have
inferior and superior limits, while the sum of clusters edge weights is maximized (or,
alternatively, the sum of edge weights outside the clusters is minimized).

These representations and assignment decoders can be used in other clustering
problems, but it is important to note that the CGA concepts and properties are in-
dependent on the representation and decoders used. Some early results used different
representations to the CGA application to 2D-cutting (Lorena and Lopes, 1996) and
k-coloring (Ribeiro and Lorena, 1997) problems.

Some complementary research can be made on experimental parameter design (ε
and d), additional representation decoders (heuristics) and definitions of functions f
and g and of parameter gmax. It is expected that the good behavior obtained with
the clustering problems studied here can be repeated with other difficult optimization
problems.

Table 3: Problem CPMP-CGA and Osman & Christofides results.

Problem Vertices Medians Best H.OC H1+F1 H1+B1 HSS.OC HSS.C TS1+ CGA

solution FBA

1 50 5 713 786 780 818 713 734 734 713
2 50 5 740 816 762 778 740 740 740 740
3 50 5 751 972 811 816 751 751 751 751
4 50 5 651 891 651 652 651 651 651 651
5 50 5 664 804 746 677 664 664 664 664
6 50 5 778 882 841 847 778 778 778 778
7 50 5 787 968 852 824 787 805 787 787
8 50 5 820 945 834 837 820 820 821 826
9 50 5 715 752 735 734 715 715 715 715
10 50 5 829 1017 844 891 829 829 829 834
11 100 10 1006 1761 1020 1019 1006 1006 1009 1014
12 100 10 966 1567 1004 974 966 966 968 969
13 100 10 1026 1847 1144 1053 1026 1026 1026 1026
14 100 10 982 1635 998 1054 985 982 985 987
15 100 10 1091 1517 1098 1138 1091 1091 1096 1091
16 100 10 954 1780 1063 993 954 954 957 955
17 100 10 1034 1665 1104 1092 1039 1037 1040 1034
18 100 10 1043 1345 1089 1136 1045 1045 1045 1045
19 100 10 1031 1634 1105 1125 1031 1032 1034 1032
20 100 10 1005 1872 1036 1030 1005 1019 1005 1039
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Table 4: Problem CPMP:CGA and Osman & Christofides gaps to the best solution.

Problem H.OC H1+FI H1+BI HSS.OC HSS.C TS1+FBA HSS.OC CGA CGA

times times

(sec.) (sec.)

1 10.23 9.39 14.72 0 2.94 2.94 4.34 0 2
2 10.27 2.97 5.13 0 0 0 3.94 0 2
3 29.42 7.98 8.65 0 0 0 4.10 0 12
4 36.86 0 0.15 0 0 0 3.39 0 2
5 21.08 12.34 1.95 0 0 0 3.77 0 8
6 13.36 8.09 8.86 0 0 0 5.52 0 2
7 22.99 8.25 4.70 0 2.28 0 5.15 0 3
8 15.24 1.70 2.07 0 0 0.12 10.18 0.73 11
9 5.17 2.79 2.65 0 0 0 11.43 0 2
10 22.67 1.80 7.47 0 0 0 3.40 1.44 14
11 75.04 1.39 1.29 0 0 0.29 100.57 0.79 614
12 62.21 3.93 0.82 0 0 0.20 128.67 0.31 296
13 80.01 11.50 2.63 0 0 0 106.13 0 327
14 66.49 1.62 7.33 0.30 0 0.30 74.36 0.50 303
15 38.91 0.54 4.21 0 0 0.36 129.85 0 315
16 86.58 11.42 4.08 0 0 0.31 136.88 0.10 271
17 61.02 6.76 5.60 0.48 0.29 0.58 122.47 0 332
18 28.95 4.41 8.91 0.19 0.19 0.19 94.73 0.19 380
19 58.48 7.17 9.11 0 0.09 0.29 82.87 0.09 410
20 86.26 3.08 2.48 0 1.39 0 70.60 3.38 503
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