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Abstract

We present in this paper an application of the Constructive Genetic Algorithm (CGA) to the Generalized
Assignment Problem (GAP). The CGA presents some new features compared to a traditional genetic
algorithm (GA), such as a population formed only by schemata, recombination among schemata, dynamic
population, mutation in structures, and the possibility of using heuristics in schemata and/or structure
representation. The GAP can be described as a problem of assigning n items to m knapsacks, n>m, such
that each item is assigned to exactly one knapsack, subject to capacity constraints on the knapsacks. In our
application of CGA to GAP, we regard the GAP as a clustering problem. A binary representation is used for
schemata and structures, and an assignment heuristic allocates items to knapsacks. Schemata do not
consider all the problem data. The schemata are recombined, and they can produce new schemata or
structures. New schemata are evaluated and can be added to the population if they pass an evolution test.
Structures can result from recombination of schemata or complementing of good schemata. They suffer
mutation and the best structure generated is kept in the process. Computational tests have been performed
using instances of large scale available in the literature.
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1.         Introduction

Genetic Algorithms (GA) have become popular in recent years as efficient heuristics for

difficult combinatorial optimisation problems. The underlying foundation for such

algorithms are the controlled evolution of a structured population. Today there are many

variations on the general GA theme and all such variations can be classified generically as

population heuristics [3], that is as heuristics that operate with a population of solutions.

Such heuristics are in marked contrast to other approaches, such as tabu search and

simulated annealing, that operate on just a single solution.

The GA works on a set of variables called structures. For application to optimization

problems [4,14], the first step is the definition of a codification plan that allows a one to

one mapping between solutions and structures. The following string can represent a

structure Sk = (sk1 , sk2 , ..., skn), where n is the number of variables in the problem. A

fitness function assigns a numeric value to each member of the current population (a

collection of structures). The genetic operators used are selection, like tournament or

biased roulette wheel, working together with a number of crossover and mutation

operators. The best structure is kept after a predefined number of generations [10,17,18].

Holland [10] put forward the building block hypothesis (schema formation and

conservation) as a theoretical basis for the GA mechanism. In his view avoiding

disruption of good schema is the basis for the good behaviour of a GA. One major

problem with building blocks however is that schemata are evaluated indirectly, via

evaluation of their instances (structures), rather than directly, as an instance may typically

represent several schemata. The Constructive Genetic Algorithm (CGA) [13] was
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proposed recently as an alternative to the traditional GA approach [9,20]. One of the

objectives of a CGA is the direct evaluation of schemata.

Some steps in CGA are notably different from a classical GA. Problems are modeled as

bi-objective optimization problems, which consider the evaluation of two fitness

functions. The evolution process is conducted to attain the two objectives conserving

schemata that survive to an adaptive threshold test. Consequently the CGA works with a

dynamic population, composed exclusively of schemata, which increases after the use of

recombination operators and can decrease as generations pass, guided by an evolution

parameter. Schemata recombination diversifies the population thereby generating new

schemata or structures. A structure can be obtained after schemata recombination, or by

complementing a good schema. They suffer mutation and are compared to the best one

found so far, which is always retained. Another main difference between a classical GA

and a CGA is the new fgfitness process (see [13] for further details).

We examine in this paper a CGA application to the problem of the minimum cost

assignment of n tasks to m agents (n > m), such that each task is assigned to only one

agent subject to capacity constraints on the agents. This problem is an important

combinatorial optimization problem, the Generalized Assignment Problem (GAP).

Many real life applications can be modeled as a GAP, e.g. resource scheduling, the

allocation of memory space in a computer, the design of a communication network with

capacity constraints for each network node, assigning software development tasks to

programmers, assigning jobs to computers in a network, vehicle routing problems, and
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others [1,4,6,7].

GAP is NP-hard [19]. A number of algorithms in the literature are exact tree search

methods [16,21], and there are also a number of heuristics for the problem

[4,8,11,12,15,16,19].

This paper is organized as follow. The CGA application to the GAP is presented in

Section 2. The GAP is modeled as a bi-objective optimization problem that drives the

evolutionary search for well adapted structures (solutions) and good schemata.  The

relevant aspects of the CGA are explained, the schemata and structure representation, the

evolution process, selection, recombination and mutation, and a CGA pseudo-code.

Section 3 presents computational tests considering large scale instances from the

literature, providing insights into CGA performance.



5

2. CGA modeling

The CGA must be tailored to be applied to the GAP. A typical mathematical formulation

to the GAP is presented in the following.

The GAP is best described using knapsack problems [16]. Given n items and m

knapsacks, with pij as the cost associated with assigning item j to knapsack i, wij as the

weight of assigning item j to knapsack i, and ci the capacity of knapsack i, assign each

item j to exactly one knapsack i, not exceeding knapsack capacities. Then the GAP can be

formulated as
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For the CGA application, the GAP will be formulated as a bi-objective optimization

problem. While in the other evolutionary algorithms, the evaluation of individuals is

based on a single function (the fitness function), in CGA this process relies on two

functions, mapping the space of schemata onto ℜ + . We first describe the structure and

schema representation.

2.1. Schema and structure representation

For schema and structure representation, we used a sequence of n symbols, where n is the
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number of items. Seed items are initially assigned to the m knapsacks, exactly one per

knapsack. If the structure is a schema, some items are not considered, i.e. they are

considered temporarily out of the problem. The structures have in each position one of

the following three possible symbols:

 1 - to indicate the seed item is assigned to a knapsack,

 0 - to indicate a non-seed item assigned to a knapsack, and

 # - to indicate items temporarily out of the problem.

A structure with #’s represents a schema. For example considering a problem with 10

items and 3 knapsacks, a structure could be represented by Sk = (#,1,#,0,1,0,0,#,1,0),

where item number 2 was assigned to knapsack 1, item number 5 was assigned to

knapsack 2, and item number 9 is assigned to knapsack 3. The items receiving labels 0

will be assigned to one of the knapsacks according to an assignment heuristic, and the

items with labels # are out of the problem.

Suppose we have a given schema or structure Sk. The following assignment heuristic is

used to complement the Sk representation:

Assignment Heuristic - AH

1 – Assign the m items with label 1 to the m knapsacks,

2 – Update the knapsack capacities,

3 – Assigning the other items to the knapsacks (labels 0 and #)
3.1 – solve the m knapsack problems separately exactly
3.2 – update the knapsack capacities for the items assigned to exactly one knapsack,
3.3 – resolve the m knapsack problems separately exactly for the remaining items,
3.4 – update the knapsack capacities for the items assigned to exactly one knapsack,
3.5 – for each item j remaining, assign it to knapsacki* corresponding to the smallest wi*j .
3.5 – If the obtained solution is not feasible to GAP, restart the assignments of the n-m items (the
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m seed items were already assigned in step 1), assigning item j to knapsacki* corresponding to the
smallest wi*j. If capacities are violated, assign if possible, item j to the knapsack corresponding to
the next smallest wij for which capacities are not violated.

4 – If the solution is feasible to GAP improve the solution with the second part of MMTH (see [15]), else
discard the schema and select a new one.

5 – Discard from knapsacks the items with labels # in Sk.

Knapsack problems are solved exactly using the algorithm of Horowitz and Sahni [16].

2.2. The bi-objective problem

Let  Χ   be the set of all structures and schemata that can be generated by the 0-1-# string

representation of section 2.1., and consider two functions  f  and  g , defined as  f : Χ  →

ℜ +    and    g : Χ  →  ℜ +  such that  f (Sk) ≤  g(Sk) , for all Sk ∈  Χ .  We define the double

fitness evaluation of a structure or schema si , due to functions  f  and  g, as  fg-fitness.

The CGA optimization problem implements the  fg-fitness  considering two objectives:

• ( interval minimization) Search for Sk ∈  Χ   of minimal  {g(Sk) - f(Sk)}, and

• ( g  maximization) Search for Sk ∈  Χ   of maximal  g(Sk) .

Considering the schema representation, the fg-fitness evaluation increases as the number

of labels # decreases and therefore structures or schemata with few labels # have higher

fg-fitness.
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To attain these purposes, a problem to be solved using CGA is modeled as the following

Bi-objective Optimization Problems (BOP):

)}()({ kk SfSgMin −

)( kSgMax

  subj. to     g(Sk) ≥  f(Sk)

              Sk ∈Χ

Functions  f  and  g  must be properly identified to represent optimization objective of the

GAP. The application of the CGA to the GAP is made through an analogy with clustering

problems. Each knapsack is a capacitated cluster to which items must be allocated

Consider a structure or schema Sk ∈  X. For the GAP, after the application of the

assignment heuristic AH, the clusters AHki SC )(  are identified, corresponding to index of

items on knapsacki, i=1,...,m. The function  g  is then defined by ∑ ∑
= ∈

=
m

i SCj
ijk

AHki

pSg
1 )(

)( .

To define the function f the following MAH heuristic is applied to Sk, producing an

additional move of one item between two knapsacks:

Modified Assignment Heuristic – MAH

1. Apply AH to Sk.
2. Sort in non-increasing order the costs pij corresponding to the items in knapsacks presenting label 0 in

Sk.
3. Let pi*j* be the cost of the item at the first order position (item j* was assigned to knapsack i*).
4. Sort in non-decreasing order the costs pij*, i=1,...,m. Let pi’j* be the cost of the item at the first order

position.
5. Move item j* to knapsack i’.

After the MAH application, if Sk is an structure, the corresponding GAP solution may be
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infeasible. The new clusters MAHki SC )(  are used in the definition of function f as

∑ ∑
= ∈

=
m

i SCj
ijk

MAHki

pSf
1 )(

)( . Clearly we have that f(Sk) ≤ g(Sk).

The interval  g(Sk) - f(Sk)  can be interpreted as the cost of a wrong assignment if the

resulting GAP solution is still feasible, but in general it tries to reduce de overall assigned

costs  pij .

2.3. The evolution process

The BOP defined in section 2.2 is not directly considered as the set X is not completely

known. Alternatively we consider an evolution process to attain the objectives (interval

minimization and  g  maximization) of the BOP.

At the beginning of the process, two expected values are given to these objectives, a non-

negative real number gmax  > )( kS SgMax
k Χ∈ , that is an upper bound to  g(Sk), for each Sk

∈  Χ , and the interval length  d maxg  , obtained from maxg  using a real number 0 < d ≤ 1.

The evolution process is then conducted considering an adaptive rejection threshold,

which contemplates both objectives in BOP. Given a parameter  α ≥ 0 ,  the expression

g(Sk ) - f(Sk ) ≥   d gmax  - α . )]([ max kSggd −     (2.3.1)

presents a condition for rejection from the current population of a schema Sk.
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The right hand side of  (2.3.1) is the threshold, composed of the expected value to the

interval minimization  d gmax  , and the measure )]([ max kSgg − , that shows the difference

of  g(Sk)  and gmax  evaluations. For  α = 0 ,  (2.3.1)   is equivalent to comparing the

interval length obtained by  Sk and the expected length  d gmax . Schemata are discarded if

expression  (2.3.1)  is satisfied. When  α > 0 , schemata with most labels # in

representation have higher possibility of being first discarded, as they present, in general,

smaller differences )]([ max kSgg − .

Parameter α  is related to time in the evolution process. Considering that the good

schemata need to be preserved for recombination, the evolution parameter  α  starts from

0 , and then increases slowly, in small time intervals, from generation to generation. The

population at the evolution time α , denoted by Pα  , is dynamic in size according to the

value of the adaptive parameter α , and can be emptied during the process.

The parameter α  is now isolated in expression  (2.3.1) , thus yielding the following

expression and corresponding  rank  to  Sk :

( )k
k

kk S
Sggd

SfSgdg δα =
−

−−≥
)]([

)]()([

max

max .

At the time they are created, schemata receive their corresponding rank value )( kSδ .

The rank of each schema or structure is compared with the current evolution parameter

α. At the moment a schema is created, it is then possible to have some figure of its
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survivability.  The higher the value of  )( kSδ , and better is the schema to the BOP, and

they also have more surviving and recombination time.

2.4. Selection and recombination

Selection of individuals can be made in several ways. CGA has been tested with a number

of optimization problems and in all cases an appropriate approach is that the population is

kept ordered using a key value that considers the fg-fitness and its proximity to a feasible

solution representation (structure). Then, several times in a generation, two schemata are

randomly selected, one from among the best part of the population and the other from the

whole population, and these are recombined to form (one or more) new schemata or

structures (see Lorena and Furtado [13]).

The recombination is made depending on the problem and the way the structure

represents a solution. The main goal of recombination is population diversification.

Structures representing feasible solutions can be generated not only by recombination,

but also by complementation of a selected schema. The best results found with the CGA

uses mutation over structures that represent feasible solutions for the problem (see Lorena

and Furtado [13]).

The population is then kept non-decreasing ordered according the following key

#

1
)(

nn
d

S k
k −

+=∆ , where 
)(

)()(

k

kk
k Sg

SfSgd −=   and n# is the number of # labels in Sk.

Schemata with small n# and/or presenting small d k  are better and appear in first order
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positions.

The method used for selection takes one schema from the n first positions in the

population (base) and the second schema from the whole population (guide). Before

recombination, the first schema is complemented to generate a structure representing a

feasible solution, i.e. all #’s are replaced by 0’s. This complete structure suffers mutation

and is compared to the best solution found so far (which is kept throughout the process).

The recombination merges information from both selected schemata, but preserves the

number of labels 1 (number of knapsacks) in the new generated schema.

Recombination

if Sbase(j) = Sguide(j) then Snew(j) ←  Sbase(j)

if Sguide(j)=# then Snew(j) ←  Sbase(j)

if Sbase(j) = # or 0 and Sguide(j)=1 then

Snew(j) ←  1 and Snew(i) ←  0 for some Snew(i)=1

if Sbase(j) = 1 and Sguide(j)=0 then

Snew(j) ←  0 and Snew(i) ←  1 for some Snew(i)=0

At each generation, exactly n new schemata are created by recombination. If a new

schema does not represent a feasible solution, then it is inserted into the population;

otherwise it suffers mutation and is compared to the best solution found so far. The

following pseudo-code describes the mutation process:
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Mutation

For each position j with label 1 do
For each position l with label 0 do

Interchange the labels on positions j and l generating an offspring Snew ;
 {offspring generation}

Interchange the labels on positions j and l ; {returning to the original Sbase }
End_for

End_for

The mutation process was limited to considering just ten new structures to avoid

excessive computation time.

At each generation, after new schemata insertion, the population is scanned to remove all

structures satisfying the condition )( kSδα ≥ . As described earlier in this paper, the

evolution parameter α is initially set to zero and slowly increased at each generation.

2.5. The CGA pseudo-code

The basic form of a CGA [13] is:

Constructive Genetic Algorithm - CGA

α := 0 ;
ε := 0.01; { time interval }
Initialize Pα ; { initial population }
Evaluate Pα ; { proportional fitness }
For all Sk ∈  Pα compute )( kSδ { rank computation }
end_for
While (not stop condition) do

For all Sk ∈  Pα satisfying α < )( kSδ  do { evolution test }
α := α + ε ;
Select Pα from Pα-ε ; { reproduction operator }
Recombine Pα ; { recombination operators }
Evaluate Pα ;  { proportional fitness }

end_for
For all new Sk ∈  Pα compute )( kSδ { rank computation }
end_for

end_while
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As the evolution parameter α increases, the population size initially increases and  then

start to decrease until eventually the population becomes empty. Two stopping conditions

are considered: the process stops when the population is empty, or when a pre-defined

generation limit is reached.

To compute the upper bound gmax, at the very beginning of the process, a structure S

representing a feasible solution (no #’s) is randomly generated and g(S) is taken as the

gmax value.

For all the computational results presented in this paper an initial population was

randomly created with 20% of positions in each structure with label 0, exactly m (number

of knapsacks) with label 1, and the remaining positions having the label #.
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3. Results

In this section we outline the CGA performance on the GAP. The CGA was coded in C

and run on a SUN ULTRA SERVER 2, 200 MHz machine.

A set of large-scale instances were solved (of dimensions, m x n, (5 x 100), (5 x 200), (10

x 100), (10 x 200), (20 x 100) and (20 x 200), from OR-Library [2]). These comprise 24

instances of different sizes and types. Referring to Table 1 the problems in classes A, B

and C present increasingly constrained knapsacks. Class D comprises more difficult

correlated problems.

Table 1 presents the best CGA results (best g(Sk)) for ten replications compared with the

best known solutions reported in [5]. The CGA parameters are set to:

d = 0.15,
α starts at 0,
ε = 0.1 for 0 ≤ α ≤ 1,
ε = 0.01 for α > 1.
The stopping conditions: maximum number of generations = 150, or

the population is empty (α is big enough).

For problems in class A the best known solutions are optimal so the algorithm was

terminated when those solutions were found.

The CGA solutions reported in Table 1 are very close to the best known solutions,

obtained in the GA implementation of Chu and Beasley [5] who ran their GA until

500000 distinct feasible solutions were found. It can be conjectured that the

computational efforts of CGA are very small compared to their GA. The computer times

are not directly comparable, as the GA was run on a different machine.
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Table 1: Computational results

Problem Best known
solution

CGA solution Number of
generations

CGA times
(seconds)

A 5x100 1698 1698 51 253
A 5x200 3235 3235 1 502
A 10x100 1360 1360 87 308
A 10x200 2623 2623 72 930
A 20x100 1158 1158 1 350
A 20x200 2339 2339 19 860
B 5x100 1843 1843 150 302
B 5x200 3553 3601 150 432
B 10x100 1407 1410 150 165
B 10x200 2831 2831 150 949
B 20x100 1166 1166 150 474
B 20x200 2340 2347 150 683
C 5x100 1931 1941 150 195
C 5x200 3458 3460 150 405
C 10x100 1403 1423 150 203
C 10x200 2814 2815 150 498
C 20x100 1244 1244 150 479
C 20x200 2397 2397 150 1059
D 5x100 6373 6479 150 259
D 5x200 12796 12823 150 1253
D 10x100 6379 6390 150 497
D 10x200 12601 12634 150 1321
D 20x100 6269 6280 150 974
D 20x200 12452 12471 150 2158
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4. Conclusions

In this paper we have presented an application of the constructive genetic algorithm to the

generalized assignment problem. Computational results were promising as compared to a

previous genetic algorithm approach presented in the literature.
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