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Abstract. This work presents a constructive approach to the process of fixing a
sequence of meetings between teachers and students in a prefixed period of
time, satisfying a set of constraints of various types, known as school
timetabling problem. The problem is modeled as a bi-objective problem used as
a basis to construct feasible assignments of teachers to classes on specified
timeslots. A new representation for the timetabling problem is presented. Pairs
of teachers and classes are used to form conflict-free clusters for each timeslot.
Teacher preferences and the process of avoiding undesirable waiting times
between classes are explicitl y considered as additional objectives.
Computational results over real test problems are presented.

1 Introduction

The timetabling problem consists in fixing a sequence of meetings between teachers
and students in a prefixed period of time (typically a week), satisfying a set of
constraints of various types. A large number of variants of the timetabling problem
have been proposed in the literature, which differ from each other based on the type
of institution involved (university or high school) and distinct constraints. A typical
timetable instance requires several days of work for a manual solution[1].

Several techniques have been developed to automatically solve the problem[2, 3].
We therefore see algorithms based on integer programming[4], network flow, and
others. In addition, the problem has also been tackled by reducing it to a well -studied
problem: graph coloring[5]. More recently, some approaches based on search
techniques appeared in the literature[6]; among others, we have simulated
annealing[7], tabu search[8] and genetic algorithms[9, 10, 11].

We consider in this paper a problem known as school timetabling: the weekly
scheduling for all the classes of a high school, avoiding teachers meeting two classes
in the same time, and vice versa. Our main objective was to help administrative staff



of public schools in Brazil . The particular characteristics observed for Brazili an
public schools are:

• Full use of available rooms;
• Closed timetabling – at any timeslot all rooms are occupied;
• Usual timeslot conflicts of classes and teachers; and
• Soft constraints for teachers – preferences to some determined timeslots and in

general avoiding the waiting timeslots (windows).

Genetic Algorithms (GA) are very well known, having several applications to
general optimization and combinatorial optimization problems[12]. GA is based on
the controlled evolution of a structured population, and is considered as an
evolutionary algorithm[13]. The basis of a GA are the recombination operators and
the schema formation and propagation over generations. This work presents an
application of a Constructive Genetic Algorithm to school timetabling problems.

The Constructive Genetic Algorithm (CGA) is a recently developed approach of
Lorena and Furtado [14] that provides some new features to GA, such as a population
formed only by schemata, recombination among schemata, dynamic population size,
mutation in complete structures, and the possibilit y of using heuristics in schemata
and/or structure representation. Schemata do not consider all the problem data. The
schemata are recombined, and they can produce new schemata or structures. New
schemata are evaluated and can be added to the population if they satisfy an evolution
test. Structures can result from recombination of schemata or complementing of good
schemata. A mutation process is applied to structures and the best structure generated
so far is kept in the process.

In this work, the school timetabling problem is considered as a clustering problem
to be solved using the CGA. Our CGA application presents various new features
compared to others GA applications to school timetabling. They include a specific
representation for clustering problems, specialized recombination and local search
mutation.

2 CGA Modeling

The CGA is proposed to address the problem of evaluating schemata and structures in
a common basis. While in other evolutionary algorithms evaluation of individuals is
based on a single function (the fitness function), in the CGA this process relies on two
functions, mapping the space of structures and schemata onto ℜ+ .

2.1 Representation

Considering  p  timeslots in a week, and respecting the lecture requirements of each
class, we can form all possible pairs of (teacher, class), which should be implemented
in the p timeslots. Let  n  be the total of possible pairs.



The soft constraints for teachers are considered implicitly encoded in the
representation. The set of teachers is partitioned on three levels, according the number
of classes and overall time dedicated to the school. All the teachers are asked to
identify undesirable timeslots (preference constraints) conformable with their number
of classes per week.

Pairs (teacher, class) are represented by binary columns. For example, considering
4 teachers and 5 classes, the column corresponding to the pair (2,3) is

0
1 ←  teacher 2
0
0
--

a  = 0
0
1 ←  class 3
0
0

The CGA works over a population of schemata (strings) formed by  n  symbols,
one for each column. For example: s = (#,0,0,0,#,0,1,#,1,0,0,0,1,#,#,0,#,0,1,0,0,0,1,#),
is a possible schema. There are three possible symbols:

1 → the corresponding column is a seed to form a cluster
(there is always exactly p seeds inside each schema or structure);

0 → the corresponding column is assigned to a cluster; and
# → the column is considered temporarily out of the problem.

The dissimilarity between two columns is then calculated to non-seed columns and
all the other columns assigned to a cluster. The result is used to identify the cluster to
which non-seed columns will be assigned. The dissimilarity measure between two
columns is given by:
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where:
is the value (zero or one) on position  i  at column  k , and

is the value (zero or one) on position  i  at column  j.

To find out the cluster to which a non-seed column will be assigned,

• columns are ordered according to the teacher level and the number of  preference
constraints,

• we take the seed column that is most dissimilar,
• the columns (the non-seed and the chosen seed) are merged into a single one

(simple binary OR operation – see figure 1 for an example) that becomes a new
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seed column. The process then continues until all non-seed columns are assigned to
a cluster.

0 0 0
1 1 0
0 1 1
0 0 0
-- -- --
0 1 1
0 0 0
1 1 0
0 0 0
0 0 0

Fig. 1. Merging two strings.

After columns to clusters assignments, exactly  p  clusters
)(),...,(),( 21 sCsCsC p are identified,  corresponding to the  p  available timeslots.

2.2 Modeling

Let  Χ  be the set of all structures and schemata that can be generated by the 0-1-#
string representation of section 2.1., and consider two functions  f  and  g ,  defined as
f : Χ → ℜ+    and    g : Χ → ℜ+  such that  f(si) ≤  g(si) , for all  si ∈ Χ.  We define

the double fitness evaluation of a structure or schema si , due to functions  f  and  g, as
fg-fitness.

The CGA optimization problem implements the  fg-fitness  with the following two
objectives:

( interval minimization) Search for  si ∈ Χ  of minimal  {g(si) - f(si)}, and
( g  maximization) Search for si ∈ Χ  of maximal  g(si) .

Considering the schema representation, the fg-fitness evaluation increases as the
number of labels # decreases, and therefore, structures have higher fg-fitness
evaluation than schemata. To attain these purposes, a problem to be solved using the
CGA is modeled as the following Bi-objective Optimization Problem (BOP):

)}()({ ii sfsgMin −
)( isgMax

subj. to    g(si) ≥  f(si)      ∀ si ∈Χ

Functions  f  and  g  must be properly identified to represent optimization
objectives of the problem at issue. For each schema si ∈ Χ, exactly  p  clusters



)(),...,(),( 21 ipii sCsCsC are identified. Functions  g  and  f  are defined by
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Considering graphs formed by vertices as columns and the edges as possible
conflicts between columns (clashes of teachers or classes), function g(si) can be
interpreted as the total number of possible conflicts in  p  complete graphs of size

)( ij sC . Function f (si) decreases this number by the true number of conflicts on the

clusters )( ij sC . When f (si) =  g(si)  the  p  clusters )( ij sC  are free of conflicts (a

possible feasible solution).

3 The Evolution Process

The BOP defined above is not directly considered as the set X is not completely
known. Instead we consider an evolution process to attain the objectives (interval
minimization and g maximization) of the BOP. At the beginning of the process, the
following two expected values are given to these objectives: a non-negative real

number gmax  > )( is sgMax
i Χ∈ , that is an upper bound  to  g(si), for each  si ∈ Χ;

and the interval length  d maxg  , obtained from maxg  using a real number 0 < d ≤ 1.
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dividing the number of vertices  n  in  p  clusters with approximately the same number
of elements ( the expression  pn /  gives the large integer smaller than  n/p ), and the

same procedure used for g(si) is applied, where the positive factor  mult  is considered
to certify that gmax > )( i

Xs
sgMax
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The evolution process is then conducted considering an adaptive rejection
threshold, which contemplates both objectives in BOP. Given a parameter  α ≥ 0 ,  the
expression

g(si ) - f(si ) ≥   d gmax  - α . )]([ max isggd − (2)

presents a condition for rejection of a schema or structure  si from the current
population.

The right hand side of  (2) is the threshold, composed of the expected value to the
interval minimization  d gmax  , and  the measure )]([ max isgg − , that shows the

difference of  g(si)  and gmax  evaluations. For  α = 0 ,  the expression (2) is

equivalent to comparing the interval length obtained by  si and the expected length



d gmax . Schemata or structures are discarded if expression (2) is satisfied. When α>0,

schemata have higher possibilit y of being discarded than structures, as structures
present, in general,  smaller differences )]([ max isgg −  than schemata.

The evolution parameter α  is related to time in the evolution process. Considering
that the good schemata need to be preserved for recombination, α  starts from  0 , and
then increases slowly, in small ti me intervals, from generation to generation. The
population at the evolution time α , denoted by Pα  , is dynamic in size according to

the value of the adaptive parameter α , and can be eventually emptied during the
process.

The parameter α is isolated in expression (2), yielding the following expression
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At the time they are created, structures and/or schemata receive their corresponding
rank value )( isδ . This rank is then compared to the current evolution parameter  α .

At the moment a structure or schema is created, it is then possible to have some figure
of its survivabilit y.  The higher the value of  )( isδ , and better is the structure or

schema to the BOP, and they also have more surviving and recombination time.

3.1 Selection, Recombination and Mutation

Functions  f  and  g  defined in section 2.2. drives the evolution process to reach
feasible solutions (structures free of conflicts), but the soft constraints are not directly
considered. The selection will consider explicitly the soft constraints. Define a new
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prefw  is the preference constraint weight,

windoww  is the window constraint weight, and )()(),()( 11 iiii sfsfsgsg ==  (as

defined in section 2.2), =)(2 isg  number of columns, −= )()( 22 ii sgsf number of

columns with preference in conflict, =)(3 isg  number of columns,

and −= )()( 33 ii sgsf number of windows.

The population is kept in a non-decreasing order according to the following key:
( ) ( )#/)(1)( nnsds ii −+=∆ , where n# is the number of # labels in si. Schemata with

small n# and/or presenting small )( isd  are better and appear in first order positions.

The method used for selection takes one schema from the n first positions in the
population (base) and the second schema from the whole population (guide). Before
recombination, the first schema is complemented to generate a structure representing
a feasible solution (all #’s are replaced by 0’s). A mutation process is applied to this



complete structure and it is compared to the best solution found so far, which is kept
throughout the process. The recombination merges information from both selected
schemata, but preserves the number of labels 1 (number of timeslots) in the new
generated schema.

Recombination
if sbase(j) = sguide(j) then snew(j) ← sbase(j)
if sguide(j)=# then snew(j) ← sbase(j)
if sbase(j) = # or 0 and sguide(j)=1 then

snew(j) ← 1 and snew(i) ← 0 for some snew(i)=1
if sbase(j) = 1 and sguide(j)=0 then

 snew(j) ← 0 and snew(i) ← 1 for some snew(i)=0

At each generation, exactly n new individuals are created by recombination. If a
new individual is a schema, it is inserted into the population; otherwise the new
individual is a structure, the mutation process is applied, and it is compared to the best
solution found so far.

The mutation process has three parts. The purpose of the first two parts is to repair
infeasible solutions eventually produced by recombination. The third part maximizes
soft constraints satisfaction.

The mutation process can be described as: 1) Class feasibility - for each cluster,
while there are repeated classes in this cluster, find in other clusters a missing class on
this one, and swap the columns; 2) Teacher feasibility - for each cluster, while there
are repeated teachers in this cluster, find in other clusters a missing teacher on this
one, for the same class, and swap the columns; and 3) Teacher preference
improvement - make columns ordered according to teachers level and number of
constraints, and for each column, if the teacher is constrained in the present cluster,
find in other clusters a unconstrained teacher which is missing on this cluster and is
feasible to swap, and swap the columns.

4 Computational Tests

The computational tests consider four instances, corresponding to two typical
Brazilian high schools. Three periods were considered for the Gabriel school,
respectively, morning, afternoon and evening, and only one period for the Massaro
school.

When the tests were performed, the schools activities were already begun. The data
used in the tests were taken from feasible solutions given by the schools
administrative staff. As the teachers precedence levels and preference timeslots were
unknown to us, this information were artificially generated. The set of teachers was
partitioned into three levels, according to the number of classes and overall time
dedicated to the school: teachers giving classes in less than 50% of the all timeslots in
the week were considered at level three, between 50% and 75% were considered at
level two, and those giving classes in more than 75% of the timeslots, had the
precedence level considered one. Teachers in level one precedes the others and so on.
The teachers undesirable timeslots (preference constraints) were artificially identified



considering their number of classes per week and the real solution manually obtained
by the schools administrative staff .

Tables 1 to 4 show the results for weights ( prefw  and  windoww ) varying on the set

{ 0, 0.5, 1} . Three runs were made for each weight combination and the average
results are reported in the tables lines. The first column resumes the data: number of
teachers, classes, timeslots and preference constraints (total and particularized for the
teachers in level one). The other columns show the weight values, percentage of
preferences attendance (total and for teachers in level one) and number of windows
(total and for the teachers in level one) at the best schedule obtained.

It can be seen in the tables that the weights have direct influence on the soft
constraints attendance.  The percentages of attendance for teacher preferences and
final number of windows are comparable to those obtained by manual schedule,
aiming the possibilit y of  being in future an important component of administrative
school tools.

All tests were made considering the initial population composed of 100 schemata,
generated randomly, and considering for each schema, 20% of it’s positions fill ed
with zeros, exactly  p with ones and  #’s in all remaining positions. For each
algorithm run the maximum number of generations was set to 60, and 30 new
schemata or structures were created at each generation. For each selection, the base
schema was taken from the best 33% individuals of the population and the guide
schema was taken from the whole population. Computational times reported
correspond to a Pentium II 266 MHz machine.

Comparison between the computer generated solutions and real manually obtained
solutions was not considered because of the lack of information like teachers
preferences timeslots and teachers precedence level, which in practice can be very
subjective.

5. Conclusion

The school timetabling problem is very challenging for public schools in Brazil .
Several days of work are normally employed to manually solve these problems. We
have proposed in this paper a constructive evolutionary approach to school
timetabling problems. It considers the usual feasibilit y problem of teachers and
classes allocation avoiding conflicts, and also some soft constraints, like teacher
preferences and to avoid waiting times.

The problem was considered as a clustering problem, and adapted to the
application of a  recently proposed Constructive Genetic Algorithm (CGA). The CGA
has been successfully applied to other clustering problems[14]. The weights used at
the selection phase may extend the CGA to the class of multicriteria algorithms. The
mutation process was highly specialized to this problem. Some algorithm parameter
tuning can  give even better results. Computational tests with real world instances was
promising and the algorithm may result on a useful tool for Brazili an high schools.
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Table 1. Results for Gabriel - morning

Gabriel
morning prefw windoww % prefer. % prefer.

(1)
Number of
Windows

Number of
Windows (1)

Times
(sec.)

0 0 89.39 83.33 55.00 12.33 718.67
0 0.5 88.33 74.24 33.33 7.33 625.33

30 teachers 0 1 89.85 80.30 33.33 8.67 599.33
17 classes 0.5 0 93.18 83.33 43.00 8.67 687.33

 5x5  Timeslots 0.5 0.5 91.52 81.82 36.00 7.33 632.00
220 pref. 0.5 1 90.91 81.82 37.00 10.00 601.33

22 pref. (1) 1 0 93.18 81.82 42.67 11.33 681.00
1 0.5 92.12 87.88 35.67 7.33 628.00
1 1 92.88 83.33 36.67 9.67 594.67

Table 2. Results for Gabriel - afternoon

Gabriel
Afternoon prefw windoww % prefer. % prefer.(1) Number of

Windows
Number of

Windows (1)
Times
(sec.)

0 0 92.75 75.76 48.67 6.00 840.33
0 0.5 92.31 69.70 32.00 3.33 740.00

38 teachers 0 1 93.28 75.76 34.33 3.00 692.00
17 classes 0.5 0 94.52 75.76 49.67 3.33 758.67

5x5 timeslots 0.5 0.5 93.72 83.33 38.67 4.00 687.67
377 pref. 0.5 1 94.16 81.82 35.67 3.00 668.67

22 pref.(1) 1 0 95.05 84.85 51.33 4.33 732.00
1 0.5 94.16 80.30 41.67 4.33 679.00
1 1 93.37 77.27 35.67 4.33 648.67

Table 3. Results for Gabriel - evening

Gabriel
evening prefw windoww % prefer. % prefer.

(1)
Number of
Windows

Number of
Windows (1)

Times
(sec.)

0 0 88.17 75.31 25.00 4.67 574.33
0 0.5 88.17 76.54 12.33 2.67 518.67

38 teachers 0 1 88.69 79.01 13.00 1.67 503.33
17 classes 0.5 0 90.59 77.78 22.67 3.33 486.33

5x4 timeslots 0.5 0.5 90.24 87.65 15.33 2.00 478.00
386 pref. 0.5 1 89.55 82.72 13.33 2.67 480.33

27 pref.(1) 1 0 90.85 76.54 26.67 2.33 451.00
1 0.5 90.59 77.78 16.33 3.00 444.67
1 1 89.90 83.95 16.33 3.00 446.33



Table 4. Results for Massaro

Massaro prefw windoww % prefer. % prefer.
(1)

Number of
windows

Number of
windows (1)

Times
(sec.)

0 0 85.79 66.67 11.33 2.33 182.00
0 0.5 88.80 86.67 4.67 0.33 169.67

18 teachers 0 1 89.89 76.67 4.00 1.67 163.00
11 classes 0.5 0 93.44 86.67 7.00 1.33 163.67

5x4 timeslots 0.5 0.5 92.62 93.33 4.00 0.67 159.00
122 pref. 0.5 1 93.17 96.67 6.33 1.00 160.00

10 pref. (1) 1 0 93.72 90.00 7.67 1.67 157.33
1 0.5 93.44 86.67 5.33 1.00 158.33
1 1 92.90 83.33 6.00 2.33 158.00
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