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Abstract. Thiswork presents a @mnstructive approach to the processof fixing a
sequence of medings between teaders and students in a prefixed period of
time, satisfying a set of congtraints of various types, known as <hool
timetabling problem. The problem is modeled as a bi-oljedive problem used as
a basis to congtruct feasible assgnments of teaders to classes on spedfied
timeslots. A new representation for the timetabling problem is presented. Pairs
of teaders and classes are used to form conflict-free dusters for ead timeslot.
Teader preferences and the process of avoiding undesirable waiting times
between classes ae eplicitly considered as additional objedives.
Computationa results over red test problems are presented.

1 Introduction

The timetabling problem consists in fixing a sequence of medings between teachers
and students in a prefixed period of time (typicdly a week), satisfying a set of
congtraints of various types. A large humber of variants of the timetabling problem
have been proposed in the literature, which dffer from ead other based on the type
of ingtitution involved (university or high school) and distinct constraints. A typica
timetable instancerequires ®vera days of work for amanual solution[1].

Several techniques have been developed to automaticdly solve the problem[2, 3].
We therefore see agorithms based on integer programming[4], network flow, and
others. In addition, the problem has also been tadkled by reducing it to a well-studied
problem: graph coloring[5]. More recetly, some gproaches based on seach
techniques appeared in the literature6]; among ahers, we have simulated
annealing[7], tabu search[8] and genetic algorithmg[9, 10, 11].

We onsider in this paper a problem known as school timetabling: the weekly
scheduling for all the dasses of a high schod, avoiding teaders meeing two classes
in the same time, and vice versa. Our main oljedive was to help administrative staff



of public schods in Brazl. The particular charaderistics observed for Brazlian
pubic schodsare:

* Full use of available rooms;

¢ Closed timetabling —at any timeslot all rooms are occupied,;

» Usual timeslot conflicts of classes and teaders; and

e Soft constraints for teaders — preferences to some determined timedlots and in
general avoiding the waiting timeslots (windows).

Genetic Algarithms (GA) are very well known, having severa applicaions to
general optimizaion and combinatorial optimization problems[12]. GA is based on
the ontrolled evolution of a structured population, and is considered as an
evolutionary algorithm[13]. The basis of a GA are the recombination operators and
the schema formation and propagation over generations. This work presents an
application o a Constructive Genetic Algorithm to school timetabling problems.

The Constructive Genetic Algorithm (CGA) is a recently developed approach of
Lorena and Furtado [14] that provides sme new feaures to GA, such as a popuation
formed orly by schemata, recombination among schemata, dynamic popuation size,
mutation in complete structures, and the possbility of using heuristics in schemata
and/or structure representation. Schemata do not consider all the problem data. The
schemata ae recombined, and they can produce new schemata or structures. New
schemata ae evaluated and can be alded to the popuation if they satisfy an evolution
test. Structures can result from recombination of schemata or complementing o good
schemata. A mutation processis applied to structures and the best structure generated
so far iskept in the process

In this work, the schod timetabling problem is considered as a dustering problem
to be solved using the CGA. Our CGA applicaion presents various new feaures
compared to athers GA applications to schod timetabling. They include a spedfic
representation for clustering problems, spedalized recombination and locd seach
mutation.

2 CGA Mode€ling

The CGA is proposed to addressthe problem of evaluating schemata and structuresin
a @ommon basis. While in ather evolutionary algorithms evaluation of individuals is
based onasingle function (the fitnessfunction), in the CGA this processrelies on two

functions, mapping the spaceof structures and schemataonto [, .

2.1 Representation

Considering p timeslots in a week, and respeding the ledure requirements of eadh
class we can form all possble pairs of (teader, clasg, which shoud be implemented
inthe p timedots. Let n bethetotal of posdble pairs.



The soft constraints for teachers are considered implicitly encoded in the
representation. The set of teachersis partitioned on three levels, according the number
of classes and overall time dedicated to the school. All the teachers are asked to
identify undesirable timeslots (preference constraints) conformable with their number
of classes per week.

Pairs (teacher, class) are represented by binary columns. For example, considering
4 teachers and 5 classes, the column corresponding to the pair (2,3) is

0
1 ~ teacher 2
0
0
a= 0
0
1 ~ class3
0
0

The CGA works over a population of schemata (strings) formed by n symboals,
one for each column. For example: s = (#,0,0,0,#,0,1,#,1,0,0,0,1,#,#,0,#,0,1,0,0,0,1,4),
is apossible schema. There are three possible symbals:

1 - the corresponding column is a seed to form a cluster

(thereis always exactly p seedsinside each schema or structure);
0 > the corresponding column is assigned to a cluster; and
# > the column is considered temporarily out of the problem.

The dissimilarity between two columns is then calculated to non-seed columns and
all the other columns assigned to a cluster. The result is used to identify the cluster to
which non-seed columns will be assigned. The dissimilarity measure between two
columnsisgiven by:

> [at -a| @

a isthe value (zero or one) on paition i at column k, and
@J isthe value (zero or one) on pasition i at column j.

To find ou the duster to which anon-seed column will be asgned,

» columns are ordered acording to the teader level and the number of preference
constraints,

« wetake the sead column that is most disgmil ar,

e the @mlumns (the non-seal and the chosen seed) are merged into a single one
(simple binary OR operation —seefigure 1 for an example) that becomes a new



seed column. The process then continues until al non-seed columns are assigned to
acluster.

OO0OPrOO0O )] OOFr O
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OO0OO0OOoOr | Or OO

Fig. 1. Merging two strings.

After columns to clusters assignments, exactly p clusters
C,(9),C,(9),...,C,(s) areidentified, corresponding to the p available timeslots.

2.2 Modeling

Let X be the set of all structures and schemata that can be generated by the 0-1-#
string representation of section 2.1., and consider two functions f and g, defined as

f: X - 0, and g:X - U, suchthat f(s) < g(s), foral s O X. Wedefine
the double fitness evaluation of a structure or schemas , due to functions f and g, as
fg-fitness.
The CGA optimization problem implements the fg-fitness with the following two
objectives:

(interval minimization) Searchfor s O X of minimal {g(s) - f(s)}, and
(g maximization) Search for s 0 X of maximal ¢(s) .

Considering the schema representation, the fg-fitness evaluation increases as the
number of labels # decreases, and therefore, structures have higher fg-fithess
evaluation than schemata. To attain these purposes, a problem to be solved using the
CGA ismodeled as the following Bi-objective Optimization Problem (BOP):

Min  {g(s)-f(s)}
Max a(s)
subj.to g(s)= f(s) OsOX

Functions f and g must be properly identified to represent optimization
objectives of the problem at issue. For each schema s O X, exactly p clusters



C,(5),Cy(8),--,C,(5) are identified. Functions g and f are defined by
o) = S [le o) -2)es sz e 19)=05)- 3 [eonfiedes )]

Considering graphs formed by vertices as columns and the edges as possible
conflicts between columns (clashes of teachers or classes), function g(s) can be
interpreted as the total number of possible conflicts in p complete graphs of size

|CJ. (s )| . Function f (s) decreases this number by the true number of conflicts on the
clusters C;(5). Whenf (s) = g(s) the p clusters C,(s) are free of conflicts (a
possible feasible solution).

3 The Evolution Process

The BOP defined above is not directly considered as the set X is not completely
known. Instead we consider an evolution process to attain the objectives (interval
minimization and g maximization) of the BOP. At the beginning of the process, the
following two expected values are given to these objectives: a non-negative rea

number g, > Max,, g(s ), that is an upper bound to g(s), for each s O X;

and theinterval length d g, , obtained from g, usingarea number 0<d< 1.

Let [/, :mlt.p.é(@/pﬁ'zl)-@/p% This upper bound is obtained by

dividing the number of vertices n in p clusters with approximately the same number
of elements ( the expression [/ p[ gives the large integer smaller than n/p ), and the

same procedure used for g(s) is applied, where the positive factor mult is considered
to certify that g, ., >Maxg(s)-
50X

The evolution process is then conducted considering an adaptive rejection
threshold, which contemplates both objectivesin BOP. Given aparameter a =0, the
expression

9s)-f(s) 2 d0us - a.d[g,, —9(s)] @

presents a condition for rejection of a schema or structure s from the current
population.

The right hand side of (2) is the threshold, composed of the expected value to the
interval minimization dg,, ., ad the measure [g, . —9(s)]. that shows the
difference of g(s) and Q,, evauations. For o = 0, the expression (2) is
equivalent to comparing the interval length obtained by s and the expected length



d 9, - Schemata or structures are discarded if expresson (2) is stisfied. When a>0,
schemata have higher posshility of being discarded than structures, as dructures
present, in general, smaller differences [g, ., — 9(S )] than schemata.

The evolution parameter a isrelated to time in the evolution process Considering
that the good schemata need to be preserved for recombination, a startsfrom 0, and
then increases dowly, in small time intervals, from generation to generation. The

popuation at the evolutiontime a , denoted by P, , is dynamic in size acerding to
the value of the alaptive parameter a , and can be eventually emptied during the
process

The parameter o is isolated in expresson (2), yielding the following expresson
andthe arresponding rank to 5: O 2 d9 e ~[9(s) ~ T(S))] =4(s)

d[gmax — 9(S))]

At the time they are aeaed, structures and/or schematareceve their corresponding

rank value J (s;) . Thisrank is then compared to the current evolution perameter a .

At the moment a structure or schemais creaed, it isthen pcssble to have some figure
of its survivability. The higher the value of ¢ (s;), and better is the structure or

schemato the BOP, and they also have more surviving and recombination time.

3.1 Selection, Recombination and Mutation

Functions f and g defined in section 2.2. drives the evolution processto readh
feasible solutions (structures freeof conflicts), but the soft constraints are not diredly
considered. The seledion will consider explicitly the soft constraints. Define a new
+ + W,
mezsure. (s = L) * Worg Fa(8) + W (SN e
1+W, o +W,

'window

d;(5)=[9;(s)-f;(8)/g;(s) .i =123 w,, isthe preference mnstraint weight,
Wi 1S the window constraint weight, and g,(s) = 9(s), f,(S)="f(s) (as
defined in sedion 22),g,(s) = number of columns, f,(s)=g,(s)-number of
columns with  preference in  conflict,g,(s)= number of columns,

and f,(s) = g,(s ) — number of windows.

The population is kept in a non-deaeasing ader according to the following key:
A(s) =(@+d(s))/(n-n,), where n, is the number of # labelsin 5 Schemata with

small n, and/or presentingsmall d(S) are better and appear in first order positions.

The method used for seledion takes one schema from the n first positions in the
popuation (base) and the seaond schema from the whole population (guide). Before
recombination, the first schema is complemented to generate astructure representing
afeasible solution (all # s arereplacal by 0s). A mutation processis applied to this



complete structure and it is compared to the best solution found so far, which is kept
throughout the process. The recombination merges information from both selected
schemata, but preserves the number of labels 1 (number of timeslots) in the new
generated schema.

Recombination

If soase(al) = sguide(J) then snew(J) - %}ase(J)
if s, ()=#thens, () - s..()
if 5.() =#or0ands,,,(j)=1 then
S () < Lands_(i) « Ofor somes_(i)=1
if 5.() = 1and s, (j)=0 then
S.() — 0Oands_ (i) — 1for somes_(i)=0

At each generation, exactly n new individuals are created by recombination. If a
new individual is a schema, it is inserted into the population; otherwise the new
individual is astructure, the mutation processis applied, and it is compared to the best
solution found so far.

The mutation process has three parts. The purpose of the first two partsis to repair
infeasible solutions eventually produced by recombination. The third part maximizes
soft constraints satisfaction.

The mutation process can be described as: 1) Class feasibility - for each cluster,
while there are repeated classesin this cluster, find in other clusters a missing class on
this one, and swap the columns; 2) Teacher feasibility - for each cluster, while there
are repeated teachers in this cluster, find in other clusters a missing teacher on this
one, for the same class, and swap the columns, and 3) Teacher preference
improvement - make columns ordered according to teachers level and number of
congtraints, and for each column, if the teacher is constrained in the present cluster,
find in other clusters a unconstrained teacher which is missing on this cluster and is
feasible to swap, and swap the columns.

4 Computational Tests

The computational tests consider four instances, corresponding to two typical
Brazilian high schools. Three periods were considered for the Gabriel school,
respectively, morning, afternoon and evening, and only one period for the Massaro
school.

When the tests were performed, the schools activities were already begun. The data
used in the tests were taken from feasible solutions given by the schools
administrative staff. As the teachers precedence levels and preference timeslots were
unknown to us, this information were artificially generated. The set of teachers was
partitioned into three levels, according to the number of classes and overall time
dedicated to the school: teachers giving classes in less than 50% of the all timedlotsin
the week were considered at level three, between 50% and 75% were considered at
level two, and those giving classes in more than 75% of the timedots, had the
precedence level considered one. Teachersin level one precedes the others and so on.
The teachers undesirable timeslots (preference constraints) were artificially identified



considering their number of classes per week and the red solution manually obtained
by the schools administrative staff.

and Wwi ndow

Tables 1 to 4 show the results for weights (w ) varying onthe set

pref
{0, 0.5, 1}. Three runs were made for ead weight combination and the average
results are reported in the tables lines. The first column resumes the data: number of
teaders, classs, timeslots and preference onstraints (total and particularized for the
teaders in level one). The other columns $ow the weight values, percentage of
preferences attendance (total and for teaders in level one) and number of windows
(total and for the teachersin level one) at the best schedule obtained.

It can be seen in the tables that the weights have dired influence on the soft
congtraints attendance. The percentages of attendance for teader preferences and
final number of windows are @mparable to those obtained by manual schedule,
aiming the posshility of being in future an important comporent of administrative
schod todls.

All tests were made cnsidering the initial population composed of 100 schemata,
generated randomly, and considering for ead schema, 20% of it's positions fill ed
with zeros, exadly p with ones and #s in al remaining positions. For eadh
algorithm run the maximum number of generations was st to 60 and 30 new
schemata or structures were aeded at ead generation. For each seledion, the base
schema was taken from the best 33% individuals of the popuation and the guide
schema was taken from the whole population. Computational times reported
correspond to a Pentium Il 266 MHz machine.

Comparison ketween the computer generated solutions and red manually obtained
solutions was not considered because of the ladk of information like teaders
preferences timeslots and teaders precalence level, which in pradice @n be very
subjedive.

5. Conclusion

The schod timetabling problem is very challenging for public schods in Braal.
Several days of work are normally employed to manually solve these problems. We
have propcsed in this paper a @nstructive evolutionary approach to schod
timetabling problems. It considers the usual feasibility problem of teaders and
clases allocaion avoiding conflicts, and also some soft constraints, like teater
preferences and to avoid waiti ng times.

The problem was considered as a dustering problem, and adapted to the
application o a recantly propcsed Constructive Genetic Algorithm (CGA). The CGA
has been succes<ully applied to ather clustering problems14]. The weights used at
the seledion plese may extend the CGA to the dassof multicriteria dgorithms. The
mutation processwas highly spedalized to this problem. Some agorithm parameter
tuning can give even better results. Computational tests with red world instances was
promising and the dgorithm may result on a useful tool for Braali an high schods.
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Table 1. Results for Gabriel - morning

Gabriel W i % prefer.| % prefer. | Number of | Number of Times
morning pref window ) Windows | Windows (1) (sec)
0 0 89.39 83.33 55.00 12.33 718.67
0 05 88.33 74.24 33.33 7.33 625.33
30 teachers 0 1 89.85 80.30 33.33 8.67 599.33
17 classes 05 0 93.18 83.33 43.00 8.67 687.33
5x5 Timedots 05 05 91.52 81.82 36.00 7.33 632.00
220 pref. 05 1 90.91 81.82 37.00 10.00 601.33
22 pref. (1) 1 0 93.18 81.82 42.67 11.33 681.00
1 05 92.12 87.88 35.67 7.33 628.00
1 1 92.88 83.33 36.67 9.67 594.67
Table 2. Results for Gabriel - afternoon
Gabriel W W % prefer. |% prefer.(1)| Number of | Number of Times
Afternoon pref window Windows | Windows (1) (sec)
0 0 92.75 75.76 48.67 6.00 840.33
0 05 92.31 69.70 32.00 333 740.00
38 teachers 0 1 93.28 75.76 34.33 3.00 692.00
17 classes 05 0 94.52 75.76 49.67 3.33 758.67
5x5 timeslots 05 05 93.72 83.33 38.67 4,00 687.67
377 pref. 05 1 94.16 81.82 35.67 3.00 668.67
22 pref.(1) 1 0 95.05 84.85 51.33 4.33 732.00
1 05 94.16 80.30 41.67 4.33 679.00
1 1 93.37 77.27 35.67 4.33 648.67
Table 3. Results for Gabriel - evening
Gab(iel W i % prefer. | % prefer. Number of N_umber of Times
evening pref window ) Windows | Windows (1) (sec)
0 0 88.17 75.31 25.00 4.67 574.33
0 05 88.17 76.54 12.33 267 518.67
38 teachers 0 1 88.69 79.01 13.00 167 503.33
17 classs 05 0 90.59 77.78 22.67 3.33 486.33
5x4 timeslots 05 05 90.24 87.65 15.33 2.00 478.00
386 pref. 05 1 89.55 82.72 13.33 267 480.33
27 pref.(1) 1 0 90.85 76.54 26.67 233 451.00
1 05 90.59 77.78 16.33 3.00 444.67
1 1 89.90 83.95 16.33 3.00 446.33




Table 4. Results for Massaro

W i % prefer. | % prefer. | Number of | Number of Times

Massaro pref window ) windows | windows (1) (sec)
0 0 85.79 66.67 11.33 233 182.00

0 0.5 88.80 86.67 4.67 0.33 169.67

18 teechers 0 1 89.89 76.67 4.00 1.67 163.00
11 classs 0.5 0 93.44 86.67 7.00 1.33 163.67
5x4 timeslots 0.5 0.5 92.62 93.33 4.00 0.67 159.00
122 pref. 0.5 1 93.17 96.67 6.33 1.00 160.00
10 pref. (1) 1 0 93.72 90.00 7.67 167 157.33
1 0.5 93.44 86.67 5.33 1.00 158.33

1 1 92.90 83.33 6.00 233 158.00
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