

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

Constructive Genetic Algorithm and Column Generation:
an Application to Graph Coloring

Geraldo Ribeiro Filho
geraldo@lac.inpe.br

UMC
Av Francisco Rodrigues Filho 399

08773-380 Mogi das Cruzes - SP - Brasil

Luiz Antonio Nogueira Lorena
lorena@lac.inpe.br

LAC/INPE
Caixa Postal 515

12.201-970 São José dos Campos – SP - Brazil

Abstract

We present a combined use of Genetic Algorithms (GAs) and column generation to approximately solve
graph-coloring problems. The proposed method is divided in two phases. The constructive phase builds
the initial pool of columns using a Constructive Genetic Algorithm (CGA). Each column forms an
independent set. The second phase solves by column generation the set covering formulation. The
columns are generated solving weighted independent set problems. Some computational experience is
given.

Key words: Column generation, Constructive Genetic Algorithm, Graph Coloring.

1. Introduction

Let G = (V,E) be an undirected graph. A k-coloring of G is a partition of V into k subsets Ci, i =
1,…,k , such that no adjacent vertices belong to the same subset. The Graph-Coloring Problem is to find
k-coloring of G with k as small as possible. This optimal value of k corresponds to the chromatic number
of G. It is well known that this problem is NP-hard [Garey and Johnson (1978)], and heuristics must be
used for large graphs. Each vertex subset is an independent vertex set, and the coloring problem could be
seen as a clustering problem to form independent vertex sets. Graph coloring is a very studied problem
[de Werra (1990), Korman, (1979)] and efficient algorithms have been developed [Fleurent and Ferland
(1994)]. Applications appear in scheduling (like timetabling) [de Werra (1985), Leighton (1979)],
frequency assignment [Gamst (1986), Hale (1980)] and register allocation [Briggs et al. (1989)]. The use
of metaheuristics has produced the best results for a large class of graph instances. Johnson et al. (1991)
and Chams et al. (1987) applied Simulated Annealing. Costa and Hertz (1996) have applied Ant Colony.
Friden et al. (1989) and Hertz and de Werra (1987) applied Tabu Search and Fleurent and Ferland (1994)
applied Hybrid Genetic Algorithm with aggressive local search.

The Genetic Algorithms (GA) are very well known, having successful applications in
Combinatorial Optimization (CO) problems [Fleurant and Ferland (1994), Levine (1993), Lorena and
Lopes (1996), Lorena and Lopes (1997), Tam (1992), Ulder et al. (1991)]. GA is based on the controlled
evolution of a structured population. The basis of a GA is the recombination operators and the schema
formation and propagation over generations [De Jong (1975), Goldberg (1989), Holland (1975)]. To

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

obtain successful applications of GA to solve CO problems some characteristics of a classical GA have
been adapted and redefined.

The Constructive Genetic Algorithm (CGA) approach was recently proposed by Lorena and Furtado
(1998) and Ribeiro Filho (1997). A typical CGA uses not only complete problem solutions, but also
solution parts, known as schemata. The algorithm works with an initial population formed only by
schemata. The schemata theory was for a long time the central point in classical GA, but has been less
explored in recent years. A simple schema is not enough to represent a feasible solution for the coloring
problem, as some vertices are not colored. New schemata or complete solutions are generated by
schemata combination. A double fitting process is used to evaluate schemata adaptation and good
schemata are preserved. An evolution parameter eliminates schemata that do not satisfy a permanence
criterion and the best schema found so far is kept. The process finishes with an empty population or when
an iteration limit is reached.

A column generation approach to graph coloring was early studied by Mehrotra and Trick (1995)
for implicit optimization of the linear program at each node of a branch and bound tree. The authors show
that the method solves small to moderate size problems quickly.

2. CGA review

The CGA is proposed to address the problem of evaluating schemata and structures in a common
basis. While in the other evolutionary algorithms, evaluations of individuals is based on a single function
(the fitness function), in CGA this process relies on two functions, mapping the space of structures and
schemata onto ℜ+ .

2.1 Representation

The representation for structures and schemata uses three symbols. These symbols are: the “do not
care” symbol, indicating the vertices which are not assigned to any cluster; a symbol to indicate the
vertex is a “seed” to form a cluster; and a third symbol indicating the vertices assigned to some cluster.
The number of seed vertices is exactly the number of colors being used, or clusters being formed. The
vertex-to-cluster assignment must be made by an appropriate heuristic.

The vertex-to-cluster assignment uses an adaptation of a heuristic known as Recursive Large First
(RLF) (Leighton, 1979) that has been compared to others and considered a very good one. This can be
better understood using an example. Suppose we are looking for a 3-coloring for a graph with ten vertices
and the following adjacency matrix:

0111000000
1000001000
1001010000
1010101100
0001010110
0010100000
0101000001
0001100010
0000100100
0000001000

Let’s consider the following sets:
Ci is the set of vertices in the i-th cluster,
Ui is the set of all schema vertices adjacent to any vertex in Ci,
Vsch is the set of all the schema vertices, and
Vi is Vsch – Ui.

And the following schema: (#,1,0,1,#,0,0,#,1,0). Where: 1 = seed vertex, 0 = vertex to be
assigned and # = vertex not to be assigned. So, initially we have:

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

C1 = {2} C2 = {4} C3 = {9}
V1 = {3,6,10} V2 = {6,10} V3 = {3,6,7,10}
U1 = {7} U2 = {3,7} U3 = { }

Now, take the vertex v in Vi , i=1,2,3 with the largest degree in Ui, i=1,2,3 and assign v to Ci. Then,
update the sets Ci, Vi, and Ui. We obtain:

C1 = {2,10} C2 = {4} C3 = {9}
V1 = {3,6} V2 = {6} V3 = {3,6,7}
U1 = {7} U2 = {3,7} U3 = { }

Repeating the process we have:
C1 = {2,10} C2 = {4,6} C3 = {9}
V1 = {3} V2 = { } V3 = {3,7}
U1 = {7} U2 = {3,7} U3 = { }

The process continues until all sets Vi are empty. At the end, in this example we will have the
following clusters: C1 = {2,3,10} C2 = {4,6} C3 = {7,9}

2.2. CGA modeling

Let Χ be the set of all structures and schemata that can be generated by the 0-1-# string
representation of section 2.1., and consider two functions f and g , defined as f : Χ → ℜ+ and g : Χ
→ ℜ+ such that f(si) ≤ g(si) , for all si ∈ Χ. We define the double fitness evaluation of a structure or
schema si , due to functions f and g, as fg-fitness.

The CGA optimization problem implements the fg-fitness with the following two objectives:
(interval minimization) Search for si ∈ Χ of minimal {g(si) - f(si)}, and
(g maximization) Search for si ∈ Χ of maximal g(si) .

Considering the schema representation, the fg-fitness evaluation increases as the number of labels #
decreases, and therefore structures have higher fg-fitness evaluation than schemata. To attain these
purposes, a problem to be solved using CGA is modeled as the following Bicriterion Optimization
Problems (BOP):

)}()({ ii sfsgMin −

)(isgMax

 subj. to g(si) ≥ f(si)
 si ∈Χ

Functions f and g must be properly identified to represent optimization objectives of the
problems at issue.

2.3. The fg-fitness

For the coloring problem the functions used are respectively

()[] 2/.1)(
1

ipip

k

p
i CCsg −= ∑

=

, ()∑
=

−=
k

p
ipii CEsgsf

1

)()(, and ()

 −=

2

/.1/
..max

knkn
kmultg .

Where k is a pre-fixed number of colors, Cip is the set of vertices receiving the color p on

schema si (the notation Cip is the number of vertices in set Cip), and ()E Cip is the set of edges with

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

both terminal vertices in Cip . The expression () 2/.1 ipip CC − gives the number of edges of a complete

graph with Cip vertices.

Function g(si) can be interpreted as the total number of edges if k complete graphs of sizes Cip

are considered. Function f (si) decreases this number by the number of edges actually linking vertices on
the sets Cip . When f (si) = g(si) the k sets Cip are independent sets. To obtain the upper bound gmax ,

first is considered divide the number of vertices n in k sets with approximately the same number of

elements (the expression n k/ gives the large integer smaller than n/k), then the same procedure used

for g(si) is applied, where the positive integer mult is considered to certify that gmax > Max g s
s P

i
i ∈ α

() .

2.4. The evolution process

The evolution process in CGA is conducted to accomplish the objectives (interval minimization and
g maximization) of the BOP. At the beginning of the process, the following two expected values are

given to these objectives. A non-negative real number gmax >)(is sgMax
i Χ∈ , that is an upper bound to

g(si), for each si ∈ Χ, and the interval length d maxg , obtained from maxg using a real number 0 < d ≤ 1.
The evolution process is then conducted considering an adaptive rejection threshold, which

contemplates both objectives in BOP. Given a parameter α ≥ 0 , the expression

g(si) - f(si) ≥ d gmax - α .)]([max ksggd − (2.4.1)
presents a condition for rejection from the current population of a schema or structure si.

The right hand side of (2.4.1) is the threshold, composed of the expected value to the interval

minimization d gmax , and the measure)]([max ksgg − , that shows the difference of g(si) and gmax

evaluations. For α = 0 , (2.4.1) is equivalent to comparing the interval length obtained by si and the
expected length d gmax . Schemata or structures are discarded if expression (2.4.1) is satisfied. When α
> 0 , schemata have higher possibility of being discarded than structures, as structures present, in general,

smaller differences)]([max ksgg − than schemata.

Parameter α is related to time in the evolution process. Considering that the good schemata need to
be preserved for recombination, the evolution parameter α starts from 0 , and then increases slowly, in
small time intervals, from generation to generation. The population at the evolution time α , denoted by
Pα , is dynamic in size according to the value of the adaptive parameter α , and can be emptied during
the process.

The parameter α is now isolated in expression (2.4.1) , thus yielding the following expression and

corresponding rank to si : ()i
i

ii s
sggd

sfsgdg
δα =

−
−−≥

)]([

)]()([

max

max .

At the time they are created, structures and/or schemata receive their corresponding rank value
)(isδ . The rank of each schema or structure is compared with the current evolution parameter α . At the

moment a structure or schema is created, it is then possible to have some figure of its survivability. The
higher the value of)(isδ , and better is the structure or schema to the BOP, and they also have more
surviving and recombination time.

2.5. Selection and recombination

The population was kept in a non-decreasing order according to the following key

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

() ()#/1)(nnds ii −+=∆ , where [])(/)()(iiii sgsfsgd −= , n# is the number of # labels in si. Schemata

with small n# and/or presenting small id are better and appear in first order positions.
The method used for selection takes one schema from the n first positions in the population (base)

and the second schema from the whole population (guide). Before recombination, the first schema is
complemented to generate a structure representing a feasible solution, i.e. all #’s are replaced by 0’s. This
complete structure suffers mutation and is compared to the best solution found so far (which is kept
throughout the process). The recombination merges information from both selected schemata, but
preserves the number of labels 1 (number of colors) in the new generated schema.

Recombination

if sbase(j) = sguide(j) then snew(j) ← sbase(j)
 if sguide(j)=# then snew(j) ← sbase(j)
 if sbase(j) = # or 0 and sguide(j)=1 then
 snew(j) ← 1 and snew(i) ← 0 for some snew(i)=1
 if sbase(j) = 1 and sguide(j)=0 then
 snew(j) ← 0 and snew(i) ← 1 for some snew(i)=0

At each generation, exactly n new schemata are created by recombination. If a new schema does
not represent a feasible solution, then it is inserted into the population; otherwise it suffers mutation and is
compared to the best solution found so far. The following pseudo-code describes the mutation process:

Mutation Process
1: For each cluster
 Move the seed to the vertex with the largest degree in the cluster
 Re-assign the vertices using the RLF approach
 Count conflicts and save the best in this loop
2: If the best found in the loop above is better than the original solution
 Replace the original by this best and return to pass 1
 Else
 Stop.

2.6. The algorithm

The Constructive Genetic Algorithm can be summed up by the pseudo-code:

CGA
Given gmax and d ;
α := 0 ;
ε := 0.05; { time interval }
Initialize Pα ; { initial population }
Evaluate Pα ; { fg-fitness }
For all si ∈ Pα compute)(isδ { rank computation }
end_for
While (not stop condition) do
 For all si ∈ Pα satisfying α <)(isδ do { evolution test }

α := α + ε ;
 Select Pα from Pα-ε ; { reproduction operator }
 Recombine Pα ; { recombination operators }

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

 Evaluate Pα ; { fg-fitness }
 end_for
 For all new si ∈ Pα compute)(isδ { rank computation }

end_for
end_while

3. The column generation

The column generation process was proposed by Mehrotra and Trick (1995). The master problem
(MP) is

 Min ∑
∈Jj

jx

 Subject to Vix
Jj

ij ,...,1,1 =≥∑
∈

 .;,...,1},1,0{ JjVixij ∈=∈
Where J is the set of all maximal independent sets of G. It is a set covering problem with a large

number of (generally) unknown columns, that are generated when necessary, solving the following
weighted maximum independent set problem (WMIP)

 Max ∑
∈Vi

ii zλ

 Subject to Ejizz ji ∈∀≤+),(,1

 .,)1,0{ Vizi ∈∀∈

Where λi are dual variables for each constraint in MP. An initial pool of columns must be given to
form the initial MP, and columns are elected to enter the MP if they return bounds larger than 1 when
solving WMIP.

The CGA described in section 2 was used here to form the initial pool of columns to MP. Initially, it
is set a number of colors, and if the CGA find this specified coloring, this number is reduced, until no
more improvement is found. A number of independent sets found during the last CGA application is
stored to compose the first pool of columns. The optimal solution of MP may give a lower bound to the
coloring problem, and the dual variables are saved to be used on problem WMIP.

In the sequence, the same CGA is used to approximately solve problem WMIP, setting the last used
number of colors minus one, and storing the independent sets found. These new independent sets are
appended to the previous pool of columns and problem MP is resolved. The process continues until no
more columns are found to be added to the MP.

A lower bound to the coloring problem is obtained at each iteration applying the Farley´s bound
(Farley, (1990)), given by)(/)(WMIPvMPv , where v(.) is the optimal value of the corresponding
problem. These values change at each process iteration.

4. Computational tests

Computational tests were made with several instances taken from different groups: book graphs
(Anna, David, Huck and Jean - each vertex represents a character and two vertices are connected if the
corresponding characters encounter each other in the book); game graphs (Games120 – each vertex
represents a team and two vertices are connected if they played each other during the season); miles
graphs (Miles250, Miles500 and Miles750 – vertices representing cities are linked if the cities are close
enough); register graphs (Musol_1, Musol_2, Zeroin_1 and Zeroin_2 - based on register allocation for
variables in program code); Mycielski graphs (Myciel5, Myciel6 and Myciel7 - graphs based on the

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

Mycielski transformation); queen graphs (Queen55, 66, 77, 88 and 99 - a graph with N2 vertices, each
corresponding to a square in NxN chess board, and two vertices connected if the corresponding squares
are in the same row, column or diagonal).

The table 1 bellow gives computational results. The table contains average numbers of vertices,
edges and conflicts for each instance group. All the experiments were made with three runs for each
instance, all of them for the optimal number of colors.

Group Instances Vertices Edges RLF CGA
Books 4 94.7 363.5 0
Games 1 120 638 0
Miles 3 128 1223.3 0
Register 4 204.8 3848.6 0
Mycielski 3 111 1117 0
Queen 5 51 753.2 0.5

Table1: CGA computational results

The quality of the results can be easily seen, especially for the queen graphs, considered hard.
Problem Queen99 was the only one for which the chromatic number was not reached by the CGA.

Then we have proceeded with tests for column generation using the Queen99 instance. Table 2
shows the results.

Process
iteration

Number
of colors

Best CGA
number of
conflicts

MP
bound

Farley´s
Bound

Time
(sec.)

0 10 2 9.226 8.359 295
1 9 10 9.059 8.155 283
2 8 25 9.007 8.542 246
3 7 47 9.000 - 177
4 6 75 - - 121

Table2: Column generation process for Queen99

The times in table 2 correspond to the CGA application. The CPLEX 6.5 solves the MP problem
very fast, and their times are not reported. The best solution found by the CGA was 11 colors.
Considering the best MP and Farley´s bounds, it can be conjectured that the best number of colors to
Queen99 is 9, 10 or 11 (actually the best number is 10). As the number of colors decreases, increases the
number of conflicts in CGA solutions, but the new columns improve the MP bounds. The Farley´s bound
have an oscillating behavior due to the fact that problem WMIP was not exactly solved. We have used a
SUN-ULTRA30 and the CGA parameters was iteration_limit=20, α_increase=0.01, d=0.15 and mult=2.0.

To complement this work, other tests must be done with larger graphs and also the CGA parameters
must be analyzed.

Acknowledgments: The second author acknowledges Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq (proc. 350034/91-5, 520844/96-3, 680082/95-6) and Fundação para o Amparo a Pesquisa no
Estado de S. Paulo - FAPESP (proc. 95/9522-0 e 96/04585-6) for partial financial support.

References

Briggs, P.; Cooper, K.; Kennedy, K. and Torczon, L. (1989) Coloring heuristics for register allocation. In

ASCM Conference on Program Language Design and Implementation, pp.275-284.
Chams, M.; Hertz A.and Werra, D. (1987) Some experiments with simulated annealing for coloring

graphs. European Journal of Operations Research 32:260-266.

APORS´2000 – The fifth conference of the association of Asian-pacific Operations Research Societies - 2000

Costa, D. and .Hertz, A. (1996) Ants can color graphs. Journal of the Operational Society 47:1-11.
De Jong, K. A. (1975) Analysis of the behaviour of a class of genetic adaptive systems. Ph.D.

Dissertation - Department of Computer and Communication Sciences - University of Michigan ,
Ann Arbor.

de Werra, D. (1985) An introduction to timetabling. European Journal of Operational Research
19(2):151-162.

de Werra, D (1990) Heuristics for Graph Coloring. In Computational Graph Theory, ed. Tinhofer, G. ;
Mayr, E. ; Noltemeier, H. and Syslo, M., Springer-Verlag , Berlin, pp.191-208.

Farley, A A (1990) A note on bounding a class of linear programming problems, including cutting stock
problems. Operations \research 38(5): 922-923.

Fleurent, C. and Ferland, J. A. (1994) Genetic and Hybrid Algorithm for Graph Coloring, Technical
report - Université de Montréal.

Friden, C.; Hertz, A. and de Werra, D. (1989) STABULUS: A technique for finding stable sets in large
graphs with tabu search. Computing 42:35-44, 1989.

Gamst, A. (1986) Some lower bounds for a class of frequency assignment problems. IEEE Transactions
of Vehicular Technology 35 (1):8-14.

Garey, M. R. and Johnson, D. S. (1978) Computers and Intractability: a Guide to the Theory of NP-
Completeness. San Francisco, W. H. Freemann.

Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, New York.

Hale, W. K. (1980) Frequency assignment: Theory and applications. Proceedings of the IEEE
68(12):1497-1514.

Hertz A. and Werra, D. (1987) Using tabu search techniques for graph coloring. Computing 39:345-351.
Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. The University of Michigan Press. ,

Ann Arbor.
Johnson, D. S.; Aragon, C. R. ; McGeoch, L. A. and Schevon, C. (1991) Optimization by simulated

annealing: An experimental evaluation; part II, graph coloring and number partitioning.
Operations Research 39(3):378-406.

Korman, S. M. (1979) The graph-coloring problem. In Christofides, N. ; Mingozzi, A.; Toth, P. and
Sandi, C. editors, Combinatorial Optimization: 211-235. JohnWiley & Sons, Inc., New York.

Leighton, F. T. (1979) A graph coloring algorithm for large scheduling problems. Journal of Research of
the National Bureau of Standards 84: 489-506.

Levine, D. M. (1993) A genetic algorithm for the set partitioning problem. In Proceedings of the 5th
International Conference on Genetic Algorithms , pp. 481-487.

Lorena, L.A.N. and Furtado, J.C. Constructive genetic algorithm for clustering problems. Submitted for
publication – Evolutionary Computation. Presented at the Optimization 98 congress - Coimbra,
Portugal - July 1998. Available from http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF

Lorena, L.A.N. and Lopes, L.S. (1996) Computational Experiments with Genetic Algorithms Applied to
Set Covering Problems. Pesquisa Operacional 16: 41-53.

Lorena, L.A.N. and Lopes, L.S. (1997) Genetic Algorithms Applied to Computationally Difficult Set
Covering Problems. Journal of the Operational Research Society 48, 440-445.

Mehrotra, A and Trick, M. A (1995) A column generation approach for graph coloring. Available from
http://mat.gsia.cmu.edu/color.ps

Ribeiro Filho, G. (1996) Uma heurística Construtiva para Coloração de Grafos. Master thesis, INPE.
Tam, K. Y. (1992) Genetic algorithm, function optimization and facility layout design. European Journal

of Operational Research 63:322-240.
Ulder, N. L. J. ; Aarts, E. H. L. ; Bandelt, H.-J. ; vanLaarhoven, P. J.M.and Pesch, E (1991) Genetic

local search algorithms for the traveling salesman problem. In H.-P. Schwafel and R. Manner,
editors, Springer-Verlag, Proceedings 1st International Workshop on Parallel Problem Solving
from Nature, Lecture Notes in Computer Science 496: 109-116.

