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Abstract 
 

We present a combined use of Genetic Algorithms (GAs) and column generation to approximately solve 
graph-coloring problems. The proposed method is divided in two phases. The constructive phase builds 
the initial pool of columns using a Constructive Genetic Algorithm (CGA). Each column forms an 
independent set. The second phase solves by column generation the set covering formulation. The 
columns are generated solving weighted independent set problems. Some computational experience is 
given. 
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1. Introduction 
 

Let G = (V,E)  be an undirected graph. A k-coloring of G is a partition of V into k  subsets Ci, i = 
1,…,k , such that no adjacent vertices belong to the same subset. The Graph-Coloring Problem is to find 
k-coloring of G with k  as small as possible. This optimal value of k  corresponds to the chromatic number 
of G. It is well known that this problem is NP-hard [Garey and Johnson (1978)], and heuristics must be 
used for large graphs. Each vertex subset is an independent vertex set, and the coloring problem could be 
seen as a clustering problem to form independent vertex sets. Graph coloring is a very studied problem 
[de Werra (1990), Korman, (1979)] and efficient algorithms have been developed [Fleurent and Ferland 
(1994)]. Applications appear in scheduling (like timetabling) [de Werra (1985), Leighton (1979)], 
frequency assignment [Gamst (1986), Hale (1980)] and register allocation  [Briggs et al. (1989)]. The use 
of metaheuristics has produced the best results for a large class of graph instances. Johnson et al. (1991) 
and Chams et al. (1987) applied Simulated Annealing. Costa and Hertz (1996) have applied Ant Colony. 
Friden et al. (1989) and Hertz and de Werra (1987) applied Tabu Search and Fleurent and Ferland (1994) 
applied Hybrid Genetic Algorithm with aggressive local search.  

The Genetic Algorithms (GA) are very well known, having successful applications in 
Combinatorial Optimization (CO) problems [Fleurant and Ferland (1994), Levine (1993), Lorena and 
Lopes (1996), Lorena and Lopes (1997), Tam (1992), Ulder et al. (1991)]. GA is based on the controlled 
evolution of a structured population. The basis of a GA is the recombination operators and the schema 
formation and propagation over generations [De Jong (1975), Goldberg (1989), Holland (1975)]. To 
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obtain successful applications of GA to solve CO problems some characteristics of a classical GA have 
been adapted and redefined.  

The Constructive Genetic Algorithm (CGA) approach was recently proposed by Lorena and Furtado 
(1998) and Ribeiro Filho (1997). A typical CGA uses not only complete problem solutions, but also 
solution parts, known as schemata. The algorithm works with an initial population formed only by 
schemata. The schemata theory was for a long time the central point in classical GA, but has been less 
explored in recent years. A simple schema is not enough to represent a feasible solution for the coloring 
problem, as some vertices are not colored. New schemata or complete solutions are generated by 
schemata combination. A double fitting process is used to evaluate schemata adaptation and good 
schemata are preserved. An evolution parameter eliminates schemata that do not satisfy a permanence 
criterion and the best schema found so far is kept. The process finishes with an empty population or when 
an iteration limit is reached. 

A column generation approach to graph coloring was early studied by Mehrotra and Trick (1995) 
for implicit optimization of the linear program at each node of a branch and bound tree. The authors show 
that the method solves small to moderate size problems quickly.  
 
2. CGA review 
 

The CGA is proposed to address the problem of evaluating schemata and structures in a common 
basis. While in the other evolutionary algorithms, evaluations of individuals is based on a single function 
(the fitness function), in CGA this process relies on two functions, mapping the space of structures and 
schemata onto ℜ+ .  
 
2.1 Representation 
 

The representation for structures and schemata uses three symbols. These symbols are: the “do not 
care” symbol, indicating the vertices which are not assigned to any cluster; a symbol to indicate the 
vertex is a “seed” to form a cluster; and a third symbol indicating the vertices assigned to some cluster. 
The number of seed vertices is exactly the number of colors being used, or clusters being formed. The 
vertex-to-cluster assignment must be made by an appropriate heuristic. 

The vertex-to-cluster assignment uses an adaptation of a heuristic known as Recursive Large First 
(RLF)  (Leighton, 1979) that has been compared to others and considered a very good one. This can be 
better understood using an example. Suppose we are looking for a 3-coloring for a graph with ten vertices 
and the following adjacency matrix:  

0111000000 
1000001000 
1001010000 
1010101100 
0001010110 
0010100000 
0101000001 
0001100010 
0000100100 
0000001000 

Let’s consider the following sets:  
Ci is the set of vertices in the i-th cluster,  
Ui is the set of all schema vertices adjacent to any vertex in Ci,  
Vsch is the set of all the schema vertices, and  
Vi is Vsch – Ui. 

And the following schema: (#,1,0,1,#,0,0,#,1,0). Where: 1 = seed vertex, 0 = vertex to be 
assigned and  # = vertex not to be assigned. So, initially we have: 
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C1 = {2}  C2 = {4}  C3 = {9} 
V1 = {3,6,10}  V2 = {6,10}  V3 = {3,6,7,10} 
U1 = {7}  U2 = {3,7}  U3 = { } 

Now, take the vertex v in Vi , i=1,2,3 with the largest degree in Ui, i=1,2,3 and assign v to Ci. Then, 
update the sets Ci, Vi, and Ui. We obtain: 

C1 = {2,10}  C2 = {4}  C3 = {9} 
V1 = {3,6}  V2 = {6}  V3 = {3,6,7} 
U1 = {7}  U2 = {3,7}  U3 = { } 

Repeating the process we have: 
C1 = {2,10}  C2 = {4,6}  C3 = {9} 
V1 = {3}  V2 = { }  V3 = {3,7} 
U1 = {7}  U2 = {3,7}  U3 = { } 

The process continues until all sets Vi are empty. At the end, in this example we will have the 
following clusters: C1 = {2,3,10}  C2 = {4,6}  C3 = {7,9} 

 
2.2. CGA modeling  
 

Let  Χ  be the set of all structures and schemata that can be generated by the 0-1-# string 
representation of section 2.1., and consider two functions  f  and  g ,  defined as  f : Χ → ℜ+    and    g : Χ 
→ ℜ+  such that  f(si) ≤  g(si) , for all  si ∈ Χ.  We define the double fitness evaluation of a structure or 
schema si , due to functions  f  and  g, as  fg-fitness.  

The CGA optimization problem implements the  fg-fitness  with the following two objectives:  
( interval minimization) Search for  si ∈ Χ  of minimal  {g(si) - f(si)}, and  
( g  maximization) Search for si ∈ Χ  of maximal  g(si) . 

Considering the schema representation, the fg-fitness evaluation increases as the number of labels # 
decreases, and therefore structures have higher fg-fitness evaluation than schemata. To attain these 
purposes, a problem to be solved using CGA is modeled as the following Bicriterion Optimization 
Problems (BOP): 

)}()({ ii sfsgMin −   

)( isgMax  

  subj. to     g(si) ≥  f(si) 
                 si ∈Χ 
  

Functions  f  and  g  must be properly identified to represent optimization objectives of the 
problems at issue.  
 
2.3. The fg-fitness 
 

For the coloring problem the functions used are respectively 
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Where  k  is a pre-fixed number of colors, Cip  is the set of vertices receiving the color   p  on 

schema si   (the notation  Cip  is the number of vertices in set Cip ), and ( )E Cip  is the set of edges with 
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both terminal vertices in Cip  . The expression ( ) 2/.1 ipip CC −  gives the number of edges of a complete 

graph with  Cip  vertices.  

Function g(si ) can be interpreted as the total number of edges if  k  complete graphs of sizes Cip  

are considered. Function f (si) decreases this number by the number of edges actually linking vertices on 
the sets Cip . When f (si) =  g(si)  the  k   sets Cip  are independent sets. To obtain the upper bound gmax  , 

first is considered divide the number of vertices  n  in  k   sets with approximately the same number of 

elements ( the expression  n k/ gives the large integer smaller than  n/k ), then the same procedure used 

for g(si ) is applied, where the positive integer  mult  is considered to certify that gmax > Max g s
s P

i
i ∈ α

( ) . 

 
2.4. The evolution process 
 

The evolution process in CGA is conducted to accomplish the objectives (interval minimization and  
g  maximization) of the BOP. At the beginning of the process, the following two expected values are 

given to these objectives. A non-negative real number gmax  > )( is sgMax
i Χ∈ , that is an upper bound  to  

g(si), for each  si ∈ Χ, and the interval length  d maxg  , obtained from maxg  using a real number 0 < d ≤ 1. 
The evolution process is then conducted considering an adaptive rejection threshold, which 

contemplates both objectives in BOP. Given a parameter  α ≥ 0 ,  the expression  

g(si ) - f(si ) ≥   d gmax  - α . )]([ max ksggd −            (2.4.1) 
presents a condition for rejection from the current population of a schema or structure  si.  

The right hand side of  (2.4.1) is the threshold, composed of the expected value to the interval 

minimization  d gmax  , and  the measure )]([ max ksgg − , that shows the difference of  g(si)  and gmax  

evaluations. For  α = 0 ,  (2.4.1)   is equivalent to comparing the interval length obtained by  si and the 
expected length  d gmax . Schemata or structures are discarded if expression  (2.4.1)  is satisfied. When  α 
> 0 , schemata have higher possibility of being discarded than structures, as structures present, in general,  

smaller differences )]([ max ksgg −  than schemata.  

Parameter α  is related to time in the evolution process. Considering that the good schemata need to 
be preserved for recombination, the evolution parameter  α  starts from  0 , and then increases slowly, in 
small time intervals, from generation to generation. The population at the evolution time α , denoted by 
Pα  , is dynamic in size according to the value of the adaptive parameter α , and can be emptied during 
the process.  

The parameter α  is now isolated in expression  (2.4.1) , thus yielding the following expression and 

corresponding  rank  to  si : ( )i
i

ii s
sggd

sfsgdg
δα =

−
−−≥

)]([

)]()([

max

max .  

At the time they are created, structures and/or schemata receive their corresponding rank value 
)( isδ . The rank of each schema or structure is compared with the current evolution parameter  α . At the 

moment a structure or schema is created, it is then possible to have some figure of its survivability.  The 
higher the value of  )( isδ , and better is the structure or schema to the BOP, and they also have more 
surviving and recombination time.  
 
2.5. Selection and recombination 
 

The population was kept in a non-decreasing order according to the following key 
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( ) ( )#/1)( nnds ii −+=∆ , where [ ] )(/)()( iiii sgsfsgd −= , n# is the number of # labels in si. Schemata 

with small n# and/or presenting small id  are better and appear in first order positions.  
The method used for selection takes one schema from the n first positions in the population (base) 

and the second schema from the whole population (guide). Before recombination, the first schema is 
complemented to generate a structure representing a feasible solution, i.e. all #’s are replaced by 0’s. This 
complete structure suffers mutation and is compared to the best solution found so far (which is kept 
throughout the process). The recombination merges information from both selected schemata, but 
preserves the number of labels 1 (number of colors) in the new generated schema.  
 
Recombination 

if sbase(j) = sguide(j) then snew(j) ← sbase(j) 
  if sguide(j)=# then snew(j) ← sbase(j) 
  if sbase(j) = # or 0 and sguide(j)=1 then  
   snew(j) ← 1 and snew(i) ← 0 for some snew(i)=1 
  if sbase(j) = 1 and sguide(j)=0 then  
   snew(j) ← 0 and snew(i) ← 1 for some snew(i)=0 
 

At each generation, exactly n new schemata are created by recombination. If a new schema does 
not represent a feasible solution, then it is inserted into the population; otherwise it suffers mutation and is 
compared to the best solution found so far. The following pseudo-code describes the mutation process: 
 
Mutation Process 
1: For each cluster 
  Move the seed to the vertex with the largest degree in the cluster 
  Re-assign the vertices using the RLF approach 
  Count conflicts and save the best in this loop 
2: If  the best found in the loop above is better than the original solution 
  Replace the original by this best and return to pass 1 
 Else  
  Stop. 
 
2.6. The algorithm 
 

The Constructive Genetic Algorithm can be summed up by the pseudo-code: 
 
CGA   
Given  gmax and  d ; 
α := 0 ; 
ε := 0.05;      { time interval } 
Initialize Pα ;       { initial population } 
Evaluate Pα ;      { fg-fitness } 
For all  si ∈ Pα  compute )( isδ     { rank computation } 
end_for 
While (not stop condition) do 
 For all  si ∈ Pα  satisfying  α < )( isδ do { evolution test } 

α := α + ε ; 
  Select Pα from Pα-ε ;    { reproduction operator } 
  Recombine Pα ;          { recombination operators } 
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  Evaluate Pα ;     { fg-fitness } 
 end_for 
 For all new si ∈ Pα  compute )( isδ   { rank computation } 

end_for 
end_while  
 
3. The column generation 
 

The column generation process was proposed by Mehrotra and Trick (1995). The master problem 
(MP) is 

  Min  ∑
∈Jj

jx  

  Subject to  Vix
Jj

ij ,...,1,1 =≥∑
∈

 

  .;,...,1},1,0{ JjVixij ∈=∈  
Where J is the set of all maximal independent sets of G. It is a set covering problem with a large 

number of (generally) unknown columns, that are generated when necessary, solving the following 
weighted maximum independent set problem (WMIP) 

  Max   ∑
∈Vi

ii zλ  

  Subject to   Ejizz ji ∈∀≤+ ),(,1  

  .,)1,0{ Vizi ∈∀∈  

Where λi are dual variables for each constraint in MP. An initial pool of columns must be given to 
form the initial MP, and columns are elected to enter the MP if they return bounds larger than  1  when 
solving WMIP. 

The CGA described in section 2 was used here to form the initial pool of columns to MP. Initially, it  
is set a number of colors, and if the CGA find this specified coloring, this number is reduced, until no 
more improvement is found. A number of independent sets found during the last CGA application is 
stored to compose the first pool of columns. The optimal solution of MP may give a lower bound to the 
coloring problem, and the dual variables are saved to be used on problem WMIP. 

In the sequence, the same CGA is used to approximately solve problem WMIP, setting the last used 
number of colors minus one, and storing the independent sets found. These new independent sets are 
appended to the previous pool of columns and problem MP is resolved. The process continues until no 
more columns are found to be added to the MP.  

A lower bound to the coloring problem is obtained at each iteration applying the Farley´s bound 
(Farley, (1990)), given by )(/)( WMIPvMPv , where v(.) is the optimal value of the corresponding 
problem. These values change at each process iteration. 
 
4. Computational tests 
 

Computational tests were made with several instances taken from different groups: book graphs 
(Anna, David, Huck and Jean - each vertex represents a character and two vertices are connected if the 
corresponding characters encounter each other in the book);  game graphs (Games120 – each vertex 
represents a team and two vertices are connected if they played each other during the season); miles 
graphs (Miles250, Miles500 and Miles750 – vertices representing cities are linked if the cities are close 
enough); register graphs (Musol_1, Musol_2, Zeroin_1 and Zeroin_2 - based on register allocation for 
variables in program code); Mycielski graphs (Myciel5, Myciel6 and Myciel7 - graphs based on the 
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Mycielski transformation); queen graphs (Queen55, 66, 77, 88 and 99 - a graph with N2 vertices, each 
corresponding to a square in NxN chess board, and two vertices connected if the corresponding squares 
are in the same row, column or diagonal). 

The table 1 bellow gives computational results. The table contains average numbers of vertices, 
edges and conflicts for each instance group. All the experiments were made with three runs for each 
instance, all of them for the optimal number of colors. 

 
Group Instances Vertices Edges RLF  CGA 
Books 4 94.7 363.5 0 
Games 1 120 638 0 
Miles 3 128 1223.3 0 
Register 4 204.8 3848.6 0 
Mycielski 3 111 1117 0 
Queen 5 51 753.2 0.5 

Table1: CGA computational results  
 

The quality of the results can be easily seen, especially for the queen graphs, considered hard. 
Problem Queen99 was the only one for which the chromatic number was not reached by the CGA.  

Then we have proceeded with tests for column generation using the Queen99 instance. Table 2 
shows the results. 

Process 
iteration 

Number 
of colors 

Best CGA 
number of 
conflicts 

MP 
bound 

Farley´s 
Bound 

Time 
(sec.) 

0 10 2 9.226 8.359 295 
1 9 10 9.059 8.155 283 
2 8 25 9.007 8.542 246 
3 7 47 9.000 - 177 
4 6 75 - - 121 

Table2: Column generation process for Queen99 
 

The times in table 2 correspond to the CGA application. The CPLEX 6.5 solves the MP problem 
very fast, and their times are not reported. The best solution found by the CGA was 11 colors. 
Considering the best MP and Farley´s bounds, it can be conjectured that the best number of colors to 
Queen99 is 9, 10 or 11 (actually the best number is 10). As the number of colors decreases, increases the 
number of conflicts in CGA solutions, but the new columns improve the MP bounds. The Farley´s bound 
have an oscillating behavior due to the fact that problem WMIP was not exactly solved. We have used a 
SUN-ULTRA30 and the CGA parameters was iteration_limit=20, α_increase=0.01, d=0.15 and mult=2.0. 

To complement this work, other tests must be done with larger graphs and also the CGA parameters 
must be analyzed. 
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