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Abstract

This paper presents two new mathematica formulations for the Point-Feature Cartographic
Label Placement Problem (PFCLP) and a new Lagrangean relaxation with clusters (LagClus) to
provide bounds to these formulations. The PFCLP can be represented by a conflict graph and the
relaxation divides the graph in smal sub problems (clusters) that are easily solved. The edges
connecting clusters are relaxed in a Lagrangean way and a subgradient algorithm improves the
bounds. The LagClus was successfully applied to a set of instances up to 1000 points providing

the best results of those reported in the literature.
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1. Introduction

The point-feature cartographic labe placement problem (PFCLP) can be consdered as a
combinatorial optimization problem. The problem is to place point labels in positions in a way
that a map without overlapsis obtained (See Figure 1).

Cartographic standardization [4] determines possible locations for the labels. Defining these
positions, this problem can be modeled as a combinatorial optimization problem. Figure 2 shows
a set of 8 possible postions for a label, which are caled candidate positions. The numbers
indicate the cartographic preference, and the upper right is the best cartographic position.

Congder the problem with 4 cardidate positions for each point shown in Figure 3(a). It can be
easily represented by a conflict graph. Let N be the number of points that must be labeled and P
the number of candidate positions for each point. G={V,A} is the corresponding conflict graph,
where V={vi, V5, ....Vn+p} is the set of candidate positions (vertices) and A={(vi, v)): i,j T V, itj}
the conflicts (edges). Figure 3(b) presents the conflict graph obtained from Figure 3(a), and
Figure 3(c) shows the optimal solution for this problem. Usually in the literature, proportions of

conflict free labels assessthe quality of labeling. In the case shown at Figure 3(c), we have 100%
of conflict free labels.

The agpproaches studied in literature have different but connected objectives. The PFCLP can
be modeled as a Maxima Independent Vertex Set Problem (MIVSP) [25] or & a Maximum
Number of Conflict Free Labels Problem (MNCFLP) [4]. Both approaches count the fina
number of positioned conflicts free labels, but in MIVSP points with inevitable overlaps are not

labeled, while dl points must be labeled in MNCFLP.



The MNCFLP is more useful under the cartographic point of view than the MIVSP, but the
map vishility is not fully explored. Figure 4 shows two possible solutions for a problem with
four points. While both solutions are equivalent for MNCFLP presenting al labeled pointsin
conflict, solution (b) has better vishility than solution (a). Besides, if we only count the number
of conflicts (edges) in their graphs, solution (b) is better than (a).

Considering the vighbility questions in a map, the aim of this paper is to propose a new
gpproach for the PFCLP, contributing with two integer linear programming models for the
Minimum Number of Conflicts Problem (MNCP), and also presenting a Lagrangean heuristic

that is applied after decompostion of the conflict graph in clusters, obtaining better results than
those reported in the literature for a set of instances up to 1000 points. The MNCP, like the
MNCFLP, labels dl pointsin a map.

The rest of the paper is organized as follows: in the next section, a brief review is shown
about PFCLP, followed by the two proposed mathematical models. In Section 4 the relaxations

are shown, followed by the computation results and conclusions.

2. Literature Review

Consdering the PFCLP as a Maxima Independent Vertex Set Problem (MIVSP), a
substantial research exists in agorithms and techniques to reduce the number of the generated
congtraints. The M1V SP has severa applications in different fields such asin location of military
defenses [3], Cut and Packing [1], pallet loading [7], DNA sequence [15], alocation modds [9],

anti-covering [19], forest planning [20] [6], harvest scheduling [10] and cellular networks [ 2].



Specificaly considering the MIVSP as a PFCLP, Zoraster [30] [31] [32] formulated
mathematically the PFCLP working withconflict constraints and dummy candidate positions of
high cost if candidate positions could not be labeled. He also proposed a Lagrangean relaxation
for the problem and obtained some computational results on small-scale instances.

Strijk et d [25] proposed other mathematical formulation exploring some cut constraints.
These cuts are based on cliques and appeared before in the works of Moon and Chaudhry [18]
and Murray and Church [21]. They aso applied and proposed many heuristics: Simulated

Annealing, Dversified Neighborhood Search, k-opt and Tabu Search. The last one showed the

better results for their instances.

The Maximum Number of Conflict Free Labels Problem (MNCFLP) was examined in several
papers. Hirsh [13] developed a Dynamic Algorithm of label repulsion, where labels in conflicts
are moved trying to remove a conflict. Christensen et a [4] [5] proposed an Exhaustive Search
Approach, aternating positions of the labels that were previoudy positioned. Christensen et d
[5] adso proposed a Greedy Algorithm and a Discrete Gradient Descent Algorithm. These
agorithms have difficulty of escaping from loca maximum. Verner et d [26] applied a Genetic
Algorithm with mask such that if alabd isin conflict the changing of positions are alowed by
crossover operators.

Yamamoto et a [27] proposed a Tabu Search Algorithm that provides very good results when
compared with the literature. Schreyer and Raidl [24] applied Ant Colony System but the results
found were not interesting when compared to the ones obtained by Yamamoto et a [27].
Yamamoto and Lorena [28] developed an exact agorithm for small instances of MNCFLP and

applied the Constructive Genetic Algorithm (CGA) proposed by Lorena and Furtado [17] to a set



of large-scale instances. The exact algorithm was applied to instances of 25 points and the CGA

was applied to instances up to 1000 points, providing the best results of the literature.

3. Mathematical Formulation Based on Candidate Positions

The first mathematical formulation proposed for the Minimum Number of Conflicts Problem
(MNCP) looks a the candidate positions to construct the conflict graph The objective is to
minimize the number of conflicts considering that for each point i correspond a number P; of
candidate positions. Each candidate position is represented by a binary variable xij, it {1,...,N},
il {1,...,P}, and N is the number of points that will be labeled. If x;; = 1the candidate position |
of the point i will be used (it will receive the label of point i), otherwise, x;; = 0. Besides, for
each possible candidate position of pointi isassociated a cost (a penalty) represented by wi .

For each candidate position x;; corresponds a set S of index pairs of candidate positions
conflicting with xij. S isthe set of index pairs (k,t) of candidate positions X« conflicting with X .
For dl (k)T S ;, where ki {1,...N}:k>iand tI {1,...,P}, corresponds a binary variable Yok
representing the conflict (an edge in the conflict graph G).

Now, considering the information above, the objective function of the Minimum Number of

Conflicts Problem (MNCP1) can be represented by:

Y a, 2
VIMNCP)=Min @ @ W%+ a Yijki+ @
i=1 j=1 kT S @



However, for each point i only one candidate position should be selected. Consequently, only

one of the candidate positions from P; will be recelving the value 1. This set of constraints can be

e

written as;

;=1 "i=1..N

Considering the conflicts, placing alabel in a candidate position should be taken into account
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the potential overlaps, and thereby a new constraint set is necessary. This set of constraints
its respective conflict positions x,, and one conflict variabley, ; .,

considers each positionx |,
expressed as.
+Xk,t - yi,j,k,t £1 - | =1..N
" j=l.R (3
(kO S
Thus, the first formulation to MNCP is the following binary integer linear programming
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Congtraint (7) ensures that all decison variables of the problem are binaries. When the
objective function is minimized the conflict variables should be eliminated or minimized (if
elimination is not possble). The formulation (4)-(7) is Smilar to the one proposed by Zoraster
[31], however it alows positioning al labels minimizing the number of conflicts.

This formulation was initialy tested using CPLEX 7.5 [14] on a set of standard problems

available at http://www.lac.inpe.br/~lorena/instancias.html that are standard sets of randomly

generated points. grid size of 792 by 612 units, fixed size label of 30 by 7 units and page size of
11 by 8.5 inch [28]. CPLEX uses fast algorithms and techniques, including cuts, heuristics and a
variety of branching and node selection strategies. So, the optimal solution could be found in few
seconds for the instances up to 500 points. For the larger instances with 750 and 1000 points that
are gpproximately solved by Yamamoto et al [27] and Yamamoto and Lorena [28], the optimal

solutions were found in 9 of 25 instances in the problems with 750 points, and none for problems
with 1000 points CPLEX was running in severa hours until reaching an out of memory state for

a512 MB RAM memory Pentium 1V 2.66 GHz machine.



4. Mathematical Formulation Based on Candidate Positions and Points

The second mathematical formulation proposed for the PFCLP considers the conflict graph
formed by all cardidate positions and its conflicts with points. It was inspired in the work of
Murray and Church [21]. Given that for each point i only one candidate position will be used
(congtraints (5)), the conflict constraints (congtraints (6)) will represent conflicts of candidate
positions and points instead of others candidate positions.

In addition to the variables and sets above mentioned, let Cij be a set with al points that
contain candidate positionsin conflict with the candidate position xij, and yij,c a conflict variable
between the candidate position x;; and the point ¢l Cj: c>i. So, the congtraints (6) can be
reformulated by the following constraints:

|Ci,j|xi’j +(k,0aﬁ.3fk]t - &%jyi'j'c £|Ci’j| "i=1.N ®

" j=1.R
As the congtraints defined in (8) considers conflict variables that indicate conflicts between

candidate positions and points, the objective function (4) must be replaced by:

R ? o 9
VIMNCP2) =Min @ Q W%+ A Yijc= ©
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Thus, the MNCP can be reformulated as;
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Table 1 reports the average number of constraints generated by MNCP1 and MNCP2
formulations for the instances proposed by Y amamoto and Lorena [28], considering 4 candidate
positions for each point. In the first column we can see the number of points, followed by the

number of instances and the average number of constraints generated by MNCP1 and MNCP2.
MNCP2 reduces significantly the number of constraints.

The MNCP2 formulation is also tested running CPLEX on the set of instances proposed in
[28], obtaining 12 optimal solutions of 25 for instances with 750 points. It shows that the
MNCP2 modd appears to be better than MNCPL. But, again with 1000 points, no optimal
solution was found in severa hours until CPLEX reaches an out of memory state.

o, to find good lower and upper bounds, we applied a Lagrangean heuristic, observing the
particular case of w;j=1 in both models. In this case, MNCP1 and MNCP2 have a trivial lower

bound equal to N, when al points are labeled without conflicts.

4. Lagrangean Relaxation with Clusters
We examine in this section a Lagrangean relaxation formed after the decomposition of the

graph G in clugters. The relaxation was proposed observing that the conflict graph for PFCLP is



usualy sparse and well adapted for a previous clustering phase. For example, for MNCP1 mode,

the graph shown in Figure 5 (@) can be partitioned in two clusters (b). In this partition some

constraints represented by edges inter clusters are ignored (¢) and the two smaller problems (d)

can be independently solved. Zoraster [33] aso partitioned the data with other objective in a

Simulated Annealing algorithm for solving point feature label placement problems on petroleum

industry.

Thus, based on this idea and considering the MNCP1 formulation, we propose a new

L agrangean relaxationwith clusters following the steps:

i. Apply agraph partitioning heuristic to divide G in m parts, forming m clusters. The problem
now can be written through the objective function defined in (4) subject to (5) and (6), where
the conflict condraints (6) can be divided in two groups. one with conflict congtraints
corresponding to edges intra clusters and other formed by conflict constraints that correspond
to edges connecting the clusters.

ii. Two distinct multipliers relax, in the Lagrangean way, the constraints (5) and the conflict
constraints corresponding to edges inter clusters.

iii. The resultant Lagrangean relaxation is decomposed in m sub-problems and solved. This

L agrangean relaxation will be denoted by LagClus heresfter.

Relaxing condtraints (5) the solution cannot be feasible to P and the following heuristics CH

and IH are used to obtain and improve a feasible solution.

Constructive Heuristic - CH

Fill a feasible solution array with zeroes;

1C



Fori=1to N
Find in relaxed solution all positions different from zero for the point i.
Select for feasible solution in the position i the candidate position j with smallest number of
conflicts with elements in feasible solution. In case of tie, select the position corresponding to set
Si; with smallest cardinality.
If none candidate position j for the point i is in relaxed solution, choose the candidate position
corresponding to the candidate position set S;; with smallest cardinality.

End For.

Improvement Heuristic - IH

For each element of feasible solution, store in a conflict array the number of conflicts for each

position.

For i=1 to the length of the conflict array;

If Conflict array[i]* O

Seek among the possible candidate positions j, the one that presents the smallest
number of conflicts with the current feasible solution.
If there is some candidate position j with the number of the conflicts smaller than Conflict
array[i], change Feasible Solution [i] with candidate position j.

End For.

The Lagrangean sub-problems can be solved by CPLEX in reasonable times. The
partitioning of graph G was redized usng METIS [16], a wel-known heuristic for Graph
Partitioning Problems Given a conflict graph G and a pre-defined number m of clusters, the
METIS divides the graph in m clusters minimizing the number of edges with terminations in
different clusters. Recently Hicks et a [12] found good results applying this technique to
Maximum Weight Independent Set Problems.

A subgradient algorithm is used to solve the Lagrangean dua [23]. The subgradient method

issimilar to the one proposed by Held and Karp [11] and updates the multipliers considering step

11



Szes based on the relaxed solutions and the feasible solutions obtained with the heuristics CH
and IH. We implemented the algorithm described by Narciso and Lorena [22].

Now, as the MNCP2 mode considers conflicts between candidate positions and points, we
apply the lagClus in an dternative mode. Figure 6 shows an example where the graph (b) is
obtained from problem (a). We transform it in a point graph and a graph partitioning heuristic is
applied (Figure 6 (c)). Starting from (c), we rebuild the original problem (d). At the end, tre
edges with terminations in different clusters (e) are relaxed in the Lagrangean mode generating
smaller sub-problems that can be independently solved (f).

Therefore for the MNCP2, the LagClus follows the steps:

i. Apply agraph partitioning heuristic to divide G in m parts (G is a graph of conflicts between
candidate positions and points, like Figure 6(c)), forming m clusters. The problem now can
be written through the objective function defined in (10) subject to (11) and (12), where the
conflict constraints (12) can be divided in two groups. one with conflict constraints
corresponding to edges intra clusters and other formed by conflict constraints that correspond
to edges connecting the clusters.

ii. Distinct nonnegative multipliers relax in the Lagrangean way the conflict constraints
corresponding to edges inter clusters.

iil. Theresultant Lagrangean relaxation is decomposed in m sub-problems and solved.

Observe that the condraints (5) are not relaxed, so al relaxed solution are feasible to PMNC,

and thus we use only the IH heurigtic in the subgradient agorithm, that is the same explained

before.

12



5. Computational Results
The computational tests are performed on instances proposed by Y amamoto and Lorena[28]

that are available at http://www.lac.inpe.br/~lorenalinstancias.ntml that were used in previous

works (See Yamamoto and Lorena [28]). The code in C++ and the tests were done in a computer
with Pentium IV 2.66 GHz processor and 512 MB of RAM menory. As done by Zoraster [31],
Yamamoto e a [27] and Yamamoto and Lorena [28], for all problems the cartographic
preferences were not considered. It alowed us to compare our results to the ones present in the
literature considering the cost or pendty ejua to 1 for dl the candidate postions, being the
number of those positionsequal to 4: w;=1"i=1..Nand " j=1...4 We believe that the LagClus
can provide better results for 8 candidate postions, but with the corresponding increase in
computational times.

Tables 2 and 3 report the average results obtained for MNCP1 and MNCP2 models with
CPLEX. The columns are the same in both tables. The first column shows the number of points,

followed by the lower bound, upper bound and the gap = (Lower bound-Upper bound)/Upper

bound* 100. The fifth column presents the time in seconds, followed by the number of labelsin
conflict and by the proportion of free labels. We can see that for problems up to 500 points the
results are the same, except the time that was smaller for MNCP2 model. For the others problems
(750 and 1000 points), CPLEX obtained better solutions with the MNCP2 than the MNCP1
formulation. It optimally solved 9 of 25 instances with 750 points with MNCP1 and 12 with
MNCP2. For problems with 1000 points no optima solution was found.

Tables 4 and 5 report the average results obtained with LagClus. They have one more column

than Tables 2 and 3, which notify the number of clusters used. These numbers were empiricaly
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obtained. We can see that the results found for MNCP2 are better than the results for MNCPL.
For the instances with 750 points, the LagClus for MNCP2 found 21 optimal solutions of 25
instances while for MNCPL no optimal solution was found. For problems with 1000 points, the
LagClus for MNCP1 and MNCP2 did not found optimal solutions, but the bounds found for
MNCP2 are better than those found by the CPLEX.

Trying to obtain optimal soluti ons for instances with 1000 points, the number of clusters was
reduced to 20 for MNCP2, and to see what happers if the number of clusters increases, we make

another experiment with 30 clusters. The new results are reported in Table 6. As expected, when

the number of clusters is reduced the time increases, but the solutions are better than the ones
reported before. The opposite behavior is obtained when the number of clustersis increased. It
indicatesthat with more constrained sub-problems the LagClus has better quality results.

The best results found in this paper are compared to the best results of literature described in
the works of Yamamoto et d [27], Yamamoto [29] and Yamamoto and Lorena [28]. Table 7
compares the best average percentages of conflict free labels found using the models proposed
(relaxations) with the best results found in he literature. Observe tha those approaches have
different objectives: the MNCFLP maximizes the number of conflict free labels and MNCP
minimize the number of conflicts considering visibility questions, and the LagClus found better
results to PFCLP than al reported in the literature considering the number of conflict free labels
as acommon objective. The computationa times are not compared since the computational tests
were redlized in different machines.

Now, to assess the quality povided by LagClus when there are cartographic preferences

assigned to a candidate position, we elaborated another experiment with MNCP2 formulation but

14



considering that wij=j " i=1..Nand " j=1..4. Thus, in this case there are some positions that are
prioritized. The average results are reported in Table 8. The columns are the same shown at
Table 6 with anadditional column showing the size of the problem. Note that we have reduced
gaps except for instances with 25 points. Moreover, the proportion of free labels is reduced
compared to results of Tables 5 and 6, mainly due to the penalties assigned to candidate

positions.

6. Conclusion

This paper presented two new mathematica formulations for Point-feature Cartographic
Label Placement problem aiming a better map legibility. The objective is to minimize the
number of existing overlapsin alabeling of al points on a map. Based on these formulations we
proposed a Lagrangean relaxation with initial partition in clusters. For many instances the results
found are very close to the optimal solutions and better than those reported in the literature.

We believe that this work contributes for cartographic point labeling problems and can

insight solutions to other related problems that can be formulated on conflict graphs.
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Tablel. Average number of congraints generated by MNCP1 and MNCP2

Number of | Number of [ MNCP1 MNCP2
points instances
25 8 357 96
100 25 202 153
250 25 364 530
500 25 2909 1412
750 25 6181 2481
1000 25 10700 A3
Table2. Average results for MNCP1 modd with CPLEX [14].
MNCP1
L ower Upper . Labebkin Proportion of
Problem | p5ind bound GAP | Time(s) |  conflict free labdls
25 2775 2775 0.00% 160 488 100.00%
100 100.00 100.00 0.00% 0.02 0.00 100.00%
250 20.00 250.00 0.00% 0.06 0.00 100.00%
500 500.84 500.84 0.00% 3.12 1.68 99.6/%
750 7%.13 759.36 0.27% 6530.88 1840 97.55%
1000 1005.76 1048.88 4 11% 57258.98 90.76 90.92%
Table3. Average results for MNCP2 modd with CPLEX [14].
MNCP2
L ower Upper . Labdsin Proportion of
Problem bound bound GAP Time(s) conflict freelabds
25 2.5 20.75 0.00% 0.20 4.88 80.50%
100 100.00 100.00 0.00% 0.03 0.00 100.00%
250 250.00 250.00 0.00% 0.06 0.00 100.00%
500 500.84 500.84 0.00% 0.74 168 99.67%
(20 1o(.25 (39,12 0.25% 9%625.92 17.84 97.62%
1000 1010.37 1051.92 3.94% 0633.80 97.17 90.2%%
Table4. Average resultswith LagClus for MNCP1
. Proportion
Number of L ower Upper - Labdsin
Problem Clugers bound bound GAP | Time(s) conflict of free
labds
25 2 25.13 27.88] 9.69% 23.88 5.63 771.50%
100 4 100.00 100.00| 0.00% 0.16 0.00 100.00%
250 10 250.00 250,00 0.00% 2.36 0.00 100.00%
500 20 29843 0L 52 0.61% 8272 3.08 99.38%
(50 25 149.41 67.08] 2.30% 337.80 33.56 95.55%
1000 60 1002.11 10/0.60| 6.3%% 81/7.00 135.32 86.4/%




Table5. Average resultswith LagClus for MNCP2

. Proportion
Number of L ower Upper . Labdsin
Problem | "Cilgers | bound | bound | GAP | Time(® | "ot | Of free
labds
25 2 25.62 28. 13T 8.67% 350 6.00 76.00%
100 2 100.00 100.00| 0.00% 0.12 0.00 100. 00%
250 2 250.00 220.00[ 0.00% 012 0.00 100. 00%
500 2 500.84 500.84[ 0.00% 040 1.68 99.6/%
750 10 758.09 78.96| 0.1% 53834 17.60 97.65%
1000 25 1030.07 1047321 1.64% 3445.40 90.16 90.98%

Table6. Average results obtained with L agClus for MNCP2 on problems with 1000 points.

Number of L ower Upper GAP Time Labesin | Proportion of
Clugers Bound Bound () conflict free labds
20 1031.25[ 1044.50 130% | 3842.84 80.80 91.42%
25 1030.0/7[ 1047.32 164% | 3445.40 90.16 90.98%
30 10681 1049.16| 213%| 734.80 9356 90.64%
Table7. Comparison with the literature
Proportion of freelabes
Algorithm Problems
100 | 250 | 500 | 750 | 1000
LagClus 10000 | 10000 [ 9967 97.65 91.42/90.98/90.64
PMNC Exact — CPLEX 10000 | 10000 [ 9967 97.62 90.92
CGABest| 29| 10000 [ 10000 | 9960 97.10 90./0
CGA average [29] 10000 [ 100.00 | 9960 96.60 9040
Tabu Search[27] 10000 [ 100.00 | 9930 96.680 90.00
GA with masking [26] 10000 [ 9998 |9879 | 9599 88.96
GA [20] 10000 [ 9840 9259 8238 6570
Smulaied Anneding [5] T0000 [ 9990 [ 9830 | 9230 8209
Zoraster[3]] 10000 | 9979 96.21 79,78 53.06
Hirsn[13] 100,00 | 9958 9570 8204 0024
S-opt Gradient Descent |5 | 100.00 | 99./6 97.34 8944 (/.83
2-opt Gradient Descent |5 | 100.00 | 99.36 90.62 82.60 13.31
Gradient Descent [ 9 98.64 9H47 86.46 1240 56.29
Greedy Algorithm [S 9H12 88.82 7515 5857 4341
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Table 8. Average results obtained with LagClus for MNCP2 considering pendty for the candidate

positions.
. Proportion
Number of | Lower | Upper : Labdsin

Problem Clugers bound b(?lﬂond GAP | Time(s) conflict ?;géee

S
25 2] 327 43750 1265% 2.750 18000 28.00%
100 2 106.60 106.60 | 0.00% 0.00 9.12 90.85%
250 2| 28680 286.80| 0.00% 0.16 52.00 79.20%
500 2 63880 638.80| 0.00% 0.24 16300 6/.40%
750 10| 1049.4/7| 100.68| 0.12% 30.36 335.50 55.26%
1000 20 1500.3Z2 1I528.08| 123% | 24828 545.32 45.27%
1000 25| 1504.271 1529.24 163% ]| 267.96 54944 45.06%
1000 30| 4016 153040 Z204% | 18332 552.66 247
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