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Abstract

We consider in this paper a new lagrangean relaxation with clusters fer th
Manufacturer’'s Pallet Loading Problem (MPLP). The relaxation is based orivitReP
formulated as a Maximum Independent Set Problem (MISP) and repisergeconflict
graph that can be partitioned in clusters. The edges inter clusters #agedein a
lagrangean fashion. Computational tests attain the optimality for some instances
considered difficult for a lagrangean relaxation. Our results show thatréésation can

be a successful approach for hard combinatorial problems modeled in conflict graphs
Moreover, we propose a column generation approach for the MPLP derived fradethe
behind the lagrangean relaxation proposed.
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1. Introduction

The Pallet Loading Problem (PLP) is a well-known optimizapooblem and consists in
arranging the maximum number of boxes onto a pallet without overlapfiegooxes can
be rotated by 90and the edges must be orthogonal to the pallets’ edges. Accdoding
Dyckhoff [15], this problem is classified as 2/B/O/C (Two-dimenai, Selection of items,
One object, Identical items), therefore, this problem allows a@iapease of cut and

packing problems.

The PLP frequently appears in goods and logistics distribution. #angase in the number
of boxes packed onto the pallet can represent a decrease ifc$ogmdts (Pureza and
Morabito [35]). In the literature, there are two types of PLP d@gson [22]): The
Manufacturer’'s Pallet Loading Problem (MPLP) and Distributodfe® Loading Problem
(DPLP). The MPLP considers boxes with identical dimensions an®fid® deals with
boxes of different dimensions. In both cases, the boxes are packedizantal layers.

Figure 1 shows an example of how the boxes can be arranged acdordmegproblem

type.

Figure 1 — Types of PLP: (a) Manufacturer’s Pallet Loading Problem - MPLP and (b)

Distributor’s Pallet Loading Problem - DPLP (Morabito and Morales [31]).

In this paper we consider the MPLP, where given a fixed layghthh, the problem
consists in arranging the maximum number of identical bdx&y g¢nto the palletl(,W).
The boxes faced,@) can be packed in two different orientations in each layer) and

(w,]).



Several optimization methods have been developed to MPLP. The igadheas work,
basically, with a tree search structure (Dowsland [14]; Btiadiya et al. [8]; and Alvarez-
Valdez et al. [3]). Heuristics can be constructive, dividing theepadlblocks (Young-Gun
and Maing-Kyu [40]), recursive methods (Morabito and Morales [31]) actniques
based in identified structures known as G4 (Scheithauer and Tefp@ifi@l L (Lins et al.
[28] and Birgin et al. [9]). Some other works applied metaheurisiosh as Tabu Search
(Pureza and Morabito [35] and Alvarez-Valdes et al. [2]) and @GeA&jorithms (Herbert

and Dowsland [19]).

There are also upper bounds that consider the problem’s geometry, wadlahved us to
state the solution quality of relaxations and heuristics. Letdl#nd Amaral [27] presented
a good review of the known upper bounds for the MPLP and conducted a detallgsisa
to determine which bounds dominate others. They compared the area baues, iRaind
(Barnes [6]), Isermann bound (Isermann [24]) and the packing bound tlaatingar
relaxation of the formulation proposed by Beasley [7]. Their refalt®e shown that the
linear relaxation dominates the other examined bounds. More detailsecabtained in

Letchford and Amaral [27].

The MPLP can also be seen as a Maximum Independent Set Probl§m) (@owsland
[14]). The MPLP can be represented by a conflict graph whereveatdx indicates the
left-lower-corner of a box placed on the pallet, and the edga®sent the possible

overlapping between these vertices.



Some problems represented in conflict graphs are well-adaptedpi@vious partitioning
phase (clustering). This feature generates small scalgraphs (clusters) that are similar
to the original one. Thus, if we remove the edges that are campedtisub-graphs, the
sub-problems can be independently solved providing bounds for the originaémrobl
Besides, these edges correspond to constraints, and if they &eel iela lagrangean way,

the bound can be improved and used to efficiently search optimal solutions.

Thus, this paper explores this characteristic. The conflict gapthe MPLP is generated
and partitioned in clusters. The edges connecting these clusteetaaedl in a lagrangean
way. Each cluster is a sub-problem and can be solved independgestiyne commercial
solver. The bound is obtained and the lagrangean multipliers are updabed aus
subgradient method. Again, the sub-problems are solved independently, and sd on unt

some stopping test is reached.

This lagrangean relaxation is called lagrangean relaxatibnclusters, or simply LagClus.
It was applied in point-feature cartographic label problems \Wétier results than all
reported in the literature (Ribeiro and Lorena [36]). The Lag@slication to MPLP
could ensure the optimality for instances that are considereduttiffar lagrangean and

linear relaxations.

Moreover, given that sub-problems generate solutions for eachrdiudépendently, we
also present a column generation approach for the MPLP. We preBamttag-Wolfe

decomposition for the MPLP and some results for instances reported literature. The



results show that the restricted master problem, obtained atindeof the column

generation process, provided the optimal solution for all tests.

The structure of the paper is as follows. In Section 2, we prédserIPLP and MISP
formulation and a brief literature review of the MISP. In SmtTtB we present the
lagrangean relaxation with clusters proposed for the BeasMiPEP formulation. In
Section 4 we show the Dantzig-Wolfe decomposition proposed for MPLP arsiagalogy
with MISP. In Section 5 we present computational results of these proposed

approaches, and finally, some comments are discussed in Section 6.

2. The MPLP and MISP formulation

As mentioned by several works in the literature (Morabito and Mei{&1]; Morabito and
Farago [29]; Alvarez-Valdes et al. [3]), the MPLP can be fortedlasing a particular case
of the Beasley’s [7] formulation for the two-dimensional non-guillotiaéting problem.
Let L andW be the pallet length and width, respectively, suchlix&Y, and,| andw, the
box length and width, respectively, such tlzav andl<Min(L,W). To represent all possible
ways to packing a box, let bl,(v)=(l,w) and (2,w.)=(w,l). Thus, these possible positions
can be represented bly,W)i-1~ that indicates the box length and width considering the

orientationi.

To represent the boxes position onto the palletXlahdY be two sets that are used to

define the coordinatep,Q) of the box left-lower-corner. These sets can be described by:



2
X :{pDZ+ |p=>lib, 0< p<L-w, by = Oandinteger, i :],2} (1)
i=1

2
Y:{qDZ+ lg=> wb;, 0sq<W-w, b = 0and integer, i :],2} (2)
i=1

These sets were introduced by Christofides and Whitlock [13] andatieegallechormal

sets The restriction of the boxes positions to these sets does not imply in loss ofigeneral

Let a be a function that describe overlapping constraints between bdxedumiction can

be obtained in advance for each vertexj(in relation to some other vertexd), for each

orientationi, wherep/ZX|psL-l;, /Y |gsW-w, r X, s/ ¥, andi=1,2. Thus, this function can
be expressed by:

_{1 If Ospsr<p+lj-1<sL-land0sqgs<ssqg+w -1sW-1 )

A e = .
PArs 10, Otherwise

Now, let xpq/40,1} be a decision binary variable for glX]|psL-li, qZ¥|gsW-w, and
i=1,2. If xpq=1, one box is placed in pallet coordinatpg( with orientationi, otherwise,

Xipg=0-
Then the MPLP can be formulated as (Beasley [7]):

2
V(MPLP) = Ma{z Z{ pX | p< L_|i}2{qDquSW—V\4 } Xiqu (4)

Subject to:



2
_le{pDX|pSL—|i}Z{qDYMSW—V\{}aipqrsxipq <1 OrdX and sOdY (5)
i=

Xipg 0{0F Di =1..2 pOX | p<L~lj,andgOY |q<W - w (6)

The constraints set (5) avoids overlapping betweasitions. Each individual constraint
ensures that a particular “square” is covered bgnast one box. The constraints set (6)

ensures that all variables are binaries.

As mentioned before in Section 1, this problem atso be formulated as a Maximum
Independent Set Problem (MISP). It is a classiblerm, quite studied in the literature. The
MISP normally appears embedded in applications arsks in several fields such as in
coding theory, combinatorial auctions, computerovisand protein chemistry (see Bomze

et al. [10]).

Due to MISP wide application area, there are séwamproaches proposed in the literature.
Exact techniques include explicit enumeration ofximal independent sets (Bron and
Kerbosch [11]), Branch-and-Bound (Balas and Xue (§tergard [33]), Branch-and-Price
(Hicks et al. [21]) and continuous formulations andranch-and-Bound (Barnes [5]).
Besides, several heuristics were proposed suclerigas contraction algorithms (Hertz
[20]), and the greedy heuristic of Kopf and Ruh@][Z here are still local search heuristics
that try improving some solution given by anotheetihhod, for example, by a greedy

metaheuristic (see Feo et al [16]).



There are also several applications of metahecsi$br solving the MISP. Aarts and Korst
[1] have used a Simulated Annealing, Bui and Epgdt&3] Genetic Algorithms, and

Gendreau et al. [17] have applied Tabu Search.

Among all works related before, the Branch-and€d”atHicks et al. [21] is interesting and
the idea behind our work is based in this paperyThave worked with the Maximum
Weight Independent Set Problem (MWISP) that diffeirshe MISP because the MWISP
considers weight in the edges. The authors genteat®nflict graph for the MWISP and
partitioned it. All sub-graphs (sub-problems) arensidered in a Branch-and-Price
algorithm, where each sub-problem generates coluimms Restricted Master Problem
(RMP). Their results were good for several instanogported in the literature for the

MWISP.

So, the MISP can be modeled as following. Get(V,E) be a graph wher¥ is a set of
verticesv, andE a set of edgeau(v) such thatu,v/V anduzv. Consider that there are no
weights assigned to the vertices or edges. Thad\ilBP consists in obtain a subsety
such that all pairs of vertices & are not adjacent, that is, ifs/AV’, then (,s) E.

Therefore, the MISP can be formulated by:

v(MISP) = Ma{v%lvx\,} (7)

Subject to:

x, +x <1 O(uv)OE (8)



x, 0{0} OuOv 9)

If x,=1 the vertexv is in the independent set, otherwiggs0. The constraints set (8)
ensures that two adjacent vertices cannot be saimediusly in the independent set. The

constraint set (9) indicates that all variabigare binaries.

The formulation (7)—(9) for the MISP can be used foe MPLP as mentioned by
Dowsland [14], however it produces more constraihé in formulation defined in (4)-
(6). It happens because the Beasley’s [7] formutatises cliques, reducing the number of
constraints. For instance, consider a pallet witmetisions I(,W)=(5,4 and boxes
(lw)=(3,2). Figure 2(a) shows the formulation produced bydetd4)-(6), Figure 2(b)
shows the conflict graph obtained from formulatgfrown in Figure 2(a), and Figure 2(c)
shows the formulation produced by (7)-(9). As exeec formulation (7)—(9) produces
more constraints than formulation (4)-(6), but @hstraints are considered implicitly in

MPLP formulation.

Figure 2 — Comparison between MPLP and MISP formulatiopnMBLP formulation, (b)

conflict graph, and (c) MISP formulation.

3. The Lagrangean relaxation with clusters (LagClus)
The LagClus takes advantage that some conflicthgraare well-adapted for previous
partitioning phase. So, from Beasley’s [7] formidat a conflict graph can be obtained as

we showed at Figure 2(b).



The LagClus can be applied to the MPLP by followting steps:

a) Create the conflict graph from MPLP formulation aayoply a graph partitioning

heuristic to divide the conflict graph i clusters. This step generat@s sub-
graphs (sub-problems);

b) Relax the constraints present in MPLP formulatibat tcorrespond to vertices in
different clusters. In each relaxed clique, veiifthere are pairs of vertices that are
in the same cluster, and if they exist, add to eespe cluster one adjacent

constraint between each pair found;

c) The Lagrangean relaxation obtained is divide@itsub-problems and solved.

Note what happens at step b). If some clique caimstis relaxed, it must be decomposed
and each one of their edges must be analyzednié ssxge is connecting two vertices in
the same cluster, it must be appended to the regpatuster. This procedure is essential

to become the relaxation stronger and to avoidlieh&lution for some cluster.

The example in the Figure 3 explains the partitignphases. Figure 3(a) has two well-
defined clusters. Figure 3(b) shows all edges octimie the clusters that are relaxed in
LagClus, and Figure 3(c) shows the two sub-graphswo sub-problems) similar to the

original problem that can be separated and soivéejpendently.

Figure 3 — Lagrangean relaxation with clusters. (a) Cohfiiraph, (b) edges

connecting the clusters, and (c) clusters or sobipms.



For the computational tests, we have implementetdibggradient algorithm to solve the
Lagrangean dual (Parker and Rardin [34]; Narcisb laorena [32]). The step size control
in the algorithm was the one proposed by Held aagpK18], beginning with 2 and halving
it whenever the upper bound does not decreaseSf@utcessive iterations. The stopping
tests used are: step less or equal than 0.00®rehife between the best lower and upper
bounds less than 1; and the length of the subgradextor equal to zero. The lagrangean

multipliers are initialized with zero.

Figure 4 — Verify and improvement heuristic used in LagQuscess.

Before the first iteration of the subgradient aition, we used a simpler form of the block
heuristic proposed by Smith and De Cani [38] toegate an initial solution. This solution

is used in step size definition and can be sulbsttby a solution provided by the LagClus,
made feasible to MPLP. This heuristic, called dentifies all vertices present in relaxed
solution that are in conflict, removing from thislgion the vertex with the largest number
of vertices in conflict. This process is repeatadiluthe heuristic produces a feasible
solution to MPLP. After that, it tries to introducgher vertices in this solution aiming to

get the maximum number of independent verticess@lwher vertices are the remaining
vertices, not including the first vertices removeaim the relaxed solution. The VI heuristic
is shown in Figure 4. The step sizes of the subgnadlgorithm are updated considering

the LagClus solutions and the feasible solutiortaiabd with VI or the block heuristic.



4. Dantzig-Wolfe decomposition and column generation approach for the MPLP

The classic implementation of a column generatippr@ach uses a coordinator problem
and sub-problems that generate columns. The caaadiproblem or Restricted Master
Problem (RMP), guides the sub-problems by theil @adables for search new columns

that introduce new information for the RMP.

Using the LagClus idea of partitioning, the Dantglfe decomposition proposed by

Hicks et al. [21] to MWISP can be reformulated t¢S®, and consequently to MPLP. Let

P be the number of clusters formed after the confliepph partitioning, as shown at Figure

3(b). Thus, the MISP can be rewritten as:

P
v(MISP) = Max{ ZXP} (10)
p=1

Subject to:

AL+ A2 + ...+ APXP <1 (11)

D <1

2,2

P =1 (12)

<:

DEXB <1
OB .. ... X7|:|BrFP (13)

Where:

« xPis a decision variables vector assigned to the clpster



« AP is a binary matrix with dimensiondl x |V| that represents the variable
coefficientsx” assigned to clustgp and also appearing at tid adjacent

constraints between cluster;

e DPis a binary matrix with dimension&|-M x |V| that represents the variable

coefficientsx” assigned to adjacent constraints that are inside the ghyster

- the B™ s a vector of binary variables assigned to clusteirdimensiom,.

Note that if we remove the constraint set defined by Equation (12), it allows usde thei

problem inP distinct sub-problems as shown at Figure 3(c).

Now, applying the Dantzig-Wolfe decomposition (DW) for the linedeixation (LP) of the

problem (10)-(13), we have the following problem:
P ~ip
V(MISRw ) p = Max D" D" A, (14)

p=1j0J,

Subiject to:

b .
> Ajp(Api”’)sl (15)
p=1j0J,

Sip=1 OpOfL.Pl (16)
i,
dp20 OpOfL.Plandjoy, (17)

Where:

« Jpis a set of extreme points of the cluster (sub-probfgm)



. x"is a vector of dimensiofV,| that represents the extreme pojrifl Jp ;

. A

ip IS a decision variable that represents the extreme paint,, .

The sub-problemgp I:I{l...l3} are MISPs defined by

V(MISPP) = Max{ﬁ— AlTOA);jp} (18)
Subject to:

DPXP <1 (19)

xP B (20)

Where A is an M-dimensional vector of dual variables cepanding to constraints set

(16).

Considering the restricted master problem (RMP)Xh&f decomposition above, i. e., a

restricted number of columns, a new column proviog@ sub-problenp is an improving
column, if v(MISP'O)—,BIO > 0, where B, is a dual variable associated with th8

convexity constraint (17).
The LagClus proposed in Section 3 can also be mddadirectly from RMP model of (14)-
(17) using the formulation:

P
V(LAMISP) = >’ v(MISPp)}+ > (21)
p=1 o, 0A



We used a RSF (Recursive-Smallest-First) heuripticposed by Yamamoto and Lorena
[39] for point-feature cartographic label probletm,generate the initial pool of columns
that is composed only by feasible solutions forMteLP. Originally, RSF begins choosing
the smallest vertex degree, and turns inactive tl@dex and its adjacent vertices.
Considering the list of active vertices, the degi@eeach vertex is calculated and the
algorithm is repeated upon this new set of vertioetd there are no more active vertices.

The selected vertices form an independent set &alsible solution for the MPLP.

We have modified the original RSF to generate ckffié solutions for MPLP, and,
consequently, generate a good initial set of colkinimstead of starting the RSF choosing
the smallest vertex degree, we randomly selectventex, and the algorithm continues as

the original version. This process is repeated amumber of desired solutions. D be

this number, then, the number of columns appena&MP isND * P because each cluster

generates one column,
To give a better idea of the decomposition and roollgeneration approach described
above, Figure 5 shows a diagram with flows andilae steps used. Note that the shadow

area represents the iteration necessary to proohpreved columns.

Figure 5— Diagram of the steps used for the column geloerapproach



5. Computational results

There are several works that present instancesRifRVl as in Dowsland [14], Letchford
and Amaral [27], Morabito and Morales [31], Alva‘€aldez et al. [2] and Pureza and
Morabito [35]. Other works propose instances olatdirfirom real problems arising in
carriers, such as in Morabito et al. [30] and inrdMwto and Farago [29]. In this work, we
present results for some of these instances taatiaided in three groups. The first one has
10 instances (L1-L10) proposed by Letchford and rahf?7] and they are considered
difficult for lagrangean and linear relaxation apgehes. The second has 10 randomly
selected instances (L11-L10) from COVER Il propobgdowsland [14], and the last has
10 randomly selected instances (L21-L30) obtaineminf COVER Ill, proposed by

Alvarez-Valdez et al. [2], that do not present knovptimal solutions.

The code in C++ and the tests are performed imgpater with Pentium IV processor and
512 MB of RAM memory. The sub-problems, either fagClus or for sub-problems and
RMP, were solved by CPLEX 7.5 (ILOG [23]). For tgmph partitioning task, we have
used the METIS (Karypis and Kumar [25]) that is alldnown heuristic for graph

partitioning problems. Given a conflict grafhand a pre-defined numbét of clusters,

the METIS divides the graph irP clusters minimizing the number of edges with

terminations in different clusters.

Tables 1, 2 and 3 report results for LagClus udimg instances defined before. The
columns are:

* Instance — Name of the instance;



L andW- Pallet length and width, respectively;

* | andw — Box length and width, respectively;

* Optimal solution — Known optimal solution;

» Best known solution— Best feasible solution repbiteliterature;

« Area Bound — Area bound given B{L*W)/(I * w) | (where | z| denotes rounding

down to the nearest integer);

» Barnes bound — Bound provided by Barnes [6];

* LP bounds - Linear relaxation of model (4) —(6vedlby CPLEX;

» Lower bound — Lower bound found by VI heuristidobwck heuristic;

* Upper bound — Upper bound provided by LagClus;

» GAP LB (%) — Percentage deviation gap from themalibest known solution to
the best lower bound:

Optimal solution/Bestsolution— Lowerbound)

GaplLB = ( : : :
Optimal solution/Bestsolution

*100:;

« GAP UB (%) — Percentage deviation gap from thenoglibest known solution to
the best upper bound:

(Upperbound— Optimal solution/Bestsqution)

GapUB = - - -
Optimal solution/Bestsolution

*100:;

 Time — Time in seconds elapsed by LagClas reagonte of the stop conditions;

Iterations — Number of iterations used by LagClus.
The number of clusters for all sets was previoudiyained. We analyzed the tradeoff
between the quality of the upper bounds and thepoatational times. We used number of

clusters that provide good upper bounds with aep@teble time.



As can be seen at Tables 1, 2 e 3, the lower bopirodsded are very close to the optimal
or to the best known solution. In worst case, asults differ in one box. The LagClus
upper bounds are almost the same as the LP boandsthe computational times are

comparable.

Table 1 presents all results for instances L1-Llthw clusters. These instances are
considered difficult for a lagrangean relaxationt the LagClus was able to prove the
optimal solution for one instance (L7) and for titkers, the dual bound are very close to

the optimal solution (almost 1 box).

Table 1— Computational results for 10 examples proposedeichford and Amaral [27],

considered difficult for a lagrangean relaxation.

Table 2 reports results for instances L11-L20 aordtliis group we have used 5 clusters.
The LagClus was able to verify the optimality in%6®f instances: L13, L14, L16, L18,
L19 and L20. Confirming the results shown in Tablehe dual bounds are very close to

the optimal solution.

Table 2— Computational results for 10 instances randarbtgined from COVER I

(Dowsland [14]).

Table 3 presents all results provided for the tastinstances with 15 clusters. Differently
from the results in Table 1 and 2, the LagClus waisable to find the optimality of the

lower bound. In fact, this means that the last gnsuhard to solve. Table 2 has shown that



the LagClus is a stronger relaxation, but it did feond optimal solutions for these last 10

instances.

Table 3— Computational results for 10 randomly exampletaioed from COVER ||

(Alvarez-Valdez [2]), upon all instances that da pesent optimal solution known.

To show the relation between the quality of the arppounds and the time consuming
requirements, we decided to modify the number o$telrs. The instance L7 was used for
tests and the results are shown at Table 4. Asceeghewhen the number of clusters is

increased, the LagClus provided poor upper bount#e time reduces.

Table 4— Computational results for instance L7 varying tlumber of clusters.

The results found using the column generation aurdor instances L1-L10 are shown at
Table 5. The columns are:

* Instance — Instance name;

 Initial number of columns — Initial number of colasiconsidered in RMP;

* Initial RMP — Initial value provided by RMP;

» Final number of columns — Final number of columassidered in RMP;

* Final RMP - Final value provided by RMP;

 Time CG (s) — Time consumed at the column genergtiocess;

* Solution (IP) — Value obtained by RMP solved usgimtgger variables;

* Time IP (s) — Time consumed for solving the intelg&tP.



We considered the same partitioning done as showialde 1, 2 and 3. In this work, we
preferred stop the column generation approach wleemore columns are appended to the
RMP, that is, when no improving column is foundd ave also did not use tests to remove

unproductive columns from the RMP.

The results shown at Table 5 validate the Dantzgf&/decomposition, although the
computational times were high in some cases. Inddwdlast RMP solved considering
only integer variables, provided the optimal saln§ in reasonable times (less than 5,10s

for all instances).

Table 5— Computational results using the column genarnamproach.

Figure 6 shows the column generation approach li@hamd the LagClus bound obtained
in Equation (22). Note that the RMP and LagClusrasutend to be equivalent and are

close to the area/Barnes bound.

Figure 6 — LagClus and RMP behavior.

The column generation results for the last two gsol11-L30 were in course, but can be
obtained in reasonable times only after removingroductive columns or to stop the
column generation process using the converging RNdP LagClus bounds. They will be

reported in a further work.



6. Conclusions

This work has presented a new lagrangean relaxamh a new column generation
approach for the manufacturer’s pallet loading paob The LagClus deals the MPLP as a
Maximum Independent Set Problem (MISP) presentingoaflict graph that can be

partitioned in clusters. The partitioning also pegsna column generation approach to

MPLP.

The LagClus reaches to the optimality of some smistand provided goods bounds for
instances considered difficult for a lagrangeaaxation. The column generation has also
presented good results for some instances as sab\Wable 4, and we have demonstrated
that the LagClus can be obtained using the dualabas provided by the column

generation approach.

Continued efforts are intended for a column geimmaalgorithm to solve large scale
MPLP instances. Besides, a desired complementrtgtadies will be a Branch-and-Price

algorithm for the MPLP.

Acknowledgments. The authors acknowledge Conselho Nacional de Desenvolvimento
Cientifico e Tecnoldgico (CNPq) for partial financial reskasapport. The authors thank the

anonymous referees for their useful suggestions and comments.

References

1) Aarts, E. and Korst, Bimulated Annealing and Boltzmann MachinesChichester, UK: J. Wiley &
Sons, 1989.

2) Alvarez-Valdez, R.; Parrefio, F. and Tamarit, J.AMabu search algorithm for pallet loading problem.
OR Spectrum, 27(1): 43-61, 2005.



3) Alvarez-Valdez, R.; Parrefio, F. and Tamarit, J. Mbranch-and-cut algorithm for the pallet loading
problem.Computer and Operations Research32(11): 3007-3029, 2005.

4) Balas, E. and Xue, J. Weighted and unweighted maxinslique algorithms with upper bounds from
fractional coloring Algorithmica, 15(5): 397-412, 1996.

5) Barnes, E. R. A branch-and-bound procedure follatgest clique in a graph. In: Pardalos, P. M.)(ed.
Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems
Boston: Kluwer Academic Publishers, 2000.

6) Barnes, F. W. Packing the maximum numbernofx ntiles in a largep x g rectangle.Discrete
Mathematics, 26: 93-100, 1979.

7) Beasley, J. An exact two-dimensional non guillotinetting tree search procedur@perations
Research 33: 49-64, 1985.

8) Bhattacharya, R.; Roy, R.; and Bhattacharya, S.eRact depth-first algorithm for the pallet loading
problem.European Journal of Operational Research110: 610-625, 1998.

9) Birgin, E. G.; Morabito, R. and Nishihara, F. Hnate on an L-approach for solving the manufactsrer’
pallet loading problemlournal of the Operational Research Society2005. To Appear.

10) Bomze, I. M.; Budinich, M.; Pardalos, P. M. andi®eM. The maximum clique problem. In: Du, D. and
Pardalos, P. M. (edsHandbook of Combinatorial Optimization. Boston: Kluwer Academic
Publishers, 1999.

11) Bron, C. and Kerbosch, J. Finding all cliques ofuairected graphCommunications of the ACM,
16(9): 575-577, 1973.

12) Bui, T. N. and Eppley, P. H. A hybrid genetic aligfom for the maximum clique problem. In:
Proceedings'6International Conference on Genetic Algorithisnals, p. 478-484, 1995.

13) Christofides, N. and Whitlock. C. An algorithm féwo-dimensional cutting problem®perations
Research 25: 30-44, 1977.

14) Dowsland, K. An exact algorithm for the pallet laagl problem.European Journal of Operational
Research 31: 78-84, 1987.

15) Dyckhoff, H. A typology of cutting and packing pifeins. European Journal of Operational
Research 44: 145-159, 1990.

16) Feo, T. A.; Resende, M. G. C. and Smith, S. H. Aegy randomized adaptive search procedure for
maximum independent s@perations Research42: 860-878, 2000.

17) Gendreau, M.; Salvail, L. and Soriano, P. Solvingximum clique problem using a tabu search
approachAnnals of Operations Research41: 385-403, 1999.

18) Held, M. and Karp, R. M. The traveling salesmanbfgm and minimum spanning trees: part II.
Mathematical Programming, 1: 6-25, 1971.

19) Herbert, A. and Dowsland, K. A family of genetigatithm for the pallet loading problem. In: Osman,
H. and Kelly, J. P., editordMetaheuristics: theory and applications Dordrecht: Kluwer Academic
Publishers, p. 378-406, 1996.

20) Hertz, A. A fast algorithm for coloring Meyniel gras. Journal of Combinatorial Theory B, 50(2):
231-240, 1990.

21) Hicks, I. V.; Warren, J. S.; Warrier, D. and Wilthen W. E. A branch-and-price approach for the
maximum weight independent set problem Texas A & M University: Department of Industrial
Engineering, 2004. Available at http:/ie.tamu.&kdple/faculty/HicksAccessed January 22004.

22) Hodgson, T. A combined approach to the pallet logdiroblem.llE Transactions, 14(3): 176-182,
1982.

23) ILOG CPLEX 7.5 Reference Manual 7.5v. 610p. ©Copyright by ILOG, France, 2001.

24) Isermann, H. Ein planungssytem zur optimierung pigettenbeladung mit kongruenten rechteckigen
versandgebinde®R Spectrum, 9: 235-249, 1987.

25) Karypis, G. and Kumar, V. Multilevel k-way partitilmg scheme for irregular graphdournal of
Parallel and Distributed Computing, 48(1): 96-129, 1998.

26) Kopf, R. and Ruhe, G. A computational study of theighted independent set problem for general
graphsFound. Control Engi., 12(4): 167-180, 1987.

27) Letchford, A.N. and Amaral, A. Analysis of upperumas for the pallet loading problerBuropean
Journal of Operational Research 3(132): 582-593, 2001.

28) Lins, L.; Lins, S. and Morabito, R. An L-approadr fpacking [,w)-rectangles into rectangular ahe
shaped piecegournal of the Operational Research Society54: 777-789, 2003.




29) Morabito, R. and Farago, R. A tight lagrangeanxati@n bound for the manufacturer’'s pallet loading
problem.Studia Informatica Universalis, 2(1): 57-76, 2002.

30) Morabito, R.; Morales, S. R. and Widmer, J. A. Limagdoptimization of palletized products on trucks.
Transportation Research Part E 36: 285-296, 2000.

31) Morabito, R. and Morales, S. R. A simple and effectheuristic to solve the manufacturer’'s pallet
loading problemalournal of the Operational Research Society49: 819-828, 1998.

32) Narciso, M. G. and Lorena, L. A. N. Lagrangean/8gate relaxation for generalized assignment
problems European Journal of Operational Research114: 165-177, 1999.

33) Ostergard, P. R. J. A fast algorithm for the maximelique problemDiscrete Applied Mathematics
120: 197-207, 2002.

34) Parker, R. G. and Rardin, R. Discrete Optimization. New York: Academic Press, 1988.

35) Pureza, V. and Morabito, R. Some experiments wittsimple tabu search algorithm for the
manufacturer’s pallet loading proble@omputers and Operations Research33(3):804-819, 2006.

36) Ribeiro, G. M. and Lorena, L. A. N. Lagrangean xal&on with clusters for point-feature cartographic
label placement problemECCO XVII post conference special issue005. Submitted.

37) Scheithauer, G. and Terno, J. The G4-heuristic tfar pallet loading problemJournal of the
Operational Research Society47: 511-522, 1996.

38) Smith, A. and De Cani, P. An algorithm to optimitee layout of boxes in palletdournal of the
Operational Research Society31: 573-578, 1980.

39) Yamamoto, M. and Lorena, L. A. N. A constructivengc approach to point-feature cartographic label
placement. In: Ibaraki, T.; Nonobe, K.; Yagiura, ({@ds)Metaheuristics: Progress as Real Problem
Solvers Netherlands: Kluwer Academic Publishers, pagds 38, 2005.

40) Young-Gun, G. and Maing-Kyu, K. A fast algorithmr ftwo-dimensional pallet loading problems of
large sizeEuropean Journal of the Operational Researchl134: 193-202, 2001.



Different orientations

Identical boxes \\L Different boxes

L[ T 1

Y v Y vz

Pallet J Pallet J

@) (b)

Figure 1 — Types of PLP: (a) Manufacturer’s Pallet Load#rgblem - MPLP and (b)
Distributor’s Pallet Loading Problem - DPLP (Moretband Morales [31]).



MPLP Conflict Graph MISP
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Figure 2 — Comparison between MPLP and MISP formulatiopnMBLP formulation, (b)
conflict graph, and (c) MISP formulation.
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Figure 3 — Lagrangean relaxation with clusters. (a) Confiraph, (b) edges
connecting the clusters, and (c) clusters or sobipms.



Verify and I nprovenment Heuristic - VI

1. Make feasible solution vector equal to the rel axed
solution given by Lagd us;

2. Wiile not obtain a feasible solution Do
3. For each vertex i in feasible solution vector
define the nunber of vertices j that are in
conflict with i;
4. Sort in decrease order the feasible solution
vector according to nunber of conflicts;
5. Renove the first vertex fromde feasible
sol ution vector;

6. End whil e;

7. Verify anong the other vertices not present in
feasi ble solution and not present in that set

renoved fromthe feasible solution in step 2, if
there are vertices that can be inserted in
f easi bl e sol ution.

Figure 4 — Verify and improvement heuristic used in LagQduscess.
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Formulation (10)-(13

A

Solving the sub-problems
defined in (18)-(20) generating
columns and obtaining the

LagClus using the equation (

A

Applying the Dantzig-Wolfe ’
decomposition (DW)

Are there columns with
positive reduced cos

A

MISPgy
Formulation (14)-(17

y
Generating the initial pool

columns for the Restricted
Master Problem (RMP)
with the RSF heuristic

Figure 5— Diagram of the steps used for the column geloerapproach



Table 1— Computational results for 10 examples proposelddichford and Amaral [2], considered difficultrfa lagrangean

relaxation.
Unear LagClus
Optimal | Area Barnes Relaxation
Instance L w solution | bound bound LP Time | Lower Upper CIS_IAgP %ABP Time lterations
bound (s) bound bound %) (%) (s)
L1 32 22 5 4 34 35 35 35.0000 0.2 34 35.0022 0.00 295 25.00 145
L2 32 27 5 4 42 43 43 43.0000 0.2 42  43.0023 0.00 2.39 88.00 145
L3 40 26 7 4 36 37 37 37.0000 0.1 36 37.0020 0.00 2.78 98.00 145
L4 40 33 7 4 46 47 47 47.0000 0.8 46  47.0023 0.00 2.18 276.00 145
L5 53 26 7 4 48 49 49 49.0000 0.5 48  49.0110 0.00 2.11 318.00 145
L6 37 30 8 3 45 46 46 46.0000 0.7 45  46.0334 0.00 2.30 202.00 145
L7 81 39 9 7 49 50 50 50.0000 1.3 49  49.9936 0.00 2.03 257.00 67
L8 100 64 17 10 36 37 37 37.0000 0.2 36 37.0022 0.00 2.78 114.00 145
L9 100 82 22 8 45 46 46 46.0000 1.9 45  46.0250 0.00 2.28 404.00 145
L10 100 83 22 8 45 47 46 46.0000 1.86 45  46.0250 0.00 2.28 403.00 145

The columns contain:

Instance — Name of the instance;

L andW — Pallet length and width, respectively;

| andw — Box length and width, respectively;
Optimal solution — Known optimal solution;

Area Bound — Area bound given ByL*W)/(1*w)|

(where | z| denotes rounding down to the nearest

integer);

Linear relaxation — Bound and Time in seconds;

Barnes bound — Bound provided by Barnes [6];

« GAP LB (%) — Percentage deviation from the optimal
solution to the best lower bound:

GapLB = (Optimal solution— Lowerbound)
Optimal solution

GAP UB (%) - Percentage deviation from the
optimal/best known solution to the best upper bound:
GapUB = (Upperbouer— Optlmal szolutlon)*100
Optimal solution

 Time — Time in seconds elapsed by LagClas reaching
some of the stop conditions;

*100

Lower bound — Lower bound by VI or block heuristic; » lIterations — Number of iterations used by LagClus.

Upper bound — Upper bound provided by LagClus;



Table 2— Computational results for 10 instances randomly obtained from COVER || (Rray41987).

Linea( LagClus
Inst L W | Optimal | Area Barnes Relaxation AP AP
stance solution | bound bound LP Time | Lower  Upper G G Time .
bound (s) bound bound LB us (s) lterations
() (%)
L11 57 53 7 5 85 86 86 86.1379  68.09 85 86.3574 0.00 1.60 418.00 145
L12 84 75 11 6 94 95 95 95.1678 72.56 94 95.6230 0.00 1.73 1192.00 145
L13 151 131 19 11 94 94 94 95.1667 209|39 93 94.4966 1.06 0.53 2755.00 145
L14 61 38 6 5 77 77 77 77.0698 22.01 76 77.2440 130 0.32 144.00 145
L15 100 53 9 7 83 84 84 83.9025 55.14 83 84.1221 0.00 1.35 365.00 145
L16 120 80 14 11 61 62 62 61.7500 6.03 61 61.9986 0.00 1.64 41.00 115
L17 51 38 11 3 57 58 58 57.7500 5.783 57 58.3649 0.00 2.39 118.00 145
L18 120 83 17 6 97 97 97 97.5000 90.68 97 97.9876 0.00 1.02 273.00 55
L19 131 86 16 7 100 100 100, 100.143230.52| 100 100.9866 0.00 0.99 195.00 35
L20 98 93 17 7 75 76 76 75.0000 89.97 75 75.9902 0.00 1.57 482.00 135
The columns contain: .

GAP LB (%) — Percentage deviation from the optimal
Instance — Name of the instance; solution to the best lower bound:

L andW — Pallet length and width, respectively; _ (Optimal solution- Lowerboun
) . ) GaplLB = : -
| andw — Box length and width, respectively; Optimal solution

Optimal solution — Known optimal solution; GAP UB (%) — Percentage deviation from the optimal

d) *100

Area Bound — Area bound given HYL*W)/(1*w)] solution to the best upper bound:

(where |z| denotes rounding down to the nearest GapUB = (Upperbour?d— Optimal solution)*100

integer); Optimal solution

Linear relaxation — Bound and Time in seconds; * Time — Time in seconds elapsed by LagClas reaching
Barnes bound — Bound provided by Barnes [6]; some of the stop conditions;

Lower bound — Lower bound by VI or block heuristic; » lterations — Number of iterations used by LagClus.

Upper bound — Upper bound provided by LagClus;



Table 3— Computational results for 10 randomly examples obtained from COVER Il gxhxéaldez et al. [2]), upon all instances
that do not present optimal solution known.

Linear Relaxation LagClus
Optimal | Area Barnes . GAP GAP .
Instance L w l solution | bound bound b(l)_upn q T'(?)e tg\lﬁvﬁé ggfﬁé LB UB T'(?)e Iterations
(%) (%)
L21 99 88 12 5 144 145 145 145.0000 137Q0.0244  145.8324 0.00 1.27 998.00 145
L22 9 75 13 5 113 114 114 114.0000 233/54 113  114.7045 0.00 1.51 342.00 145
L23 97 95 9 7 145 146 146| 146.1436 118467145 146.8228 0.00 1.26 620.00 145
L24 98 98 10 7 136 137 137| 137.1338 1480.9136  137.6772 0.00 1.23 468.00 145
L25 98 88 10 7 122 123 123 123.1186 594/73 122 123.6647 0.00 1.36 357.00 145
L26 97 96 11 6 140 141 141 141.0000 891/98 140 141.8625 0.00 1.33 932.00 145
L27 9% 87 8 7 148 149 149| 149.0000 1232.1348 149.9519 0.00 1.32 638.00 145
L28 9 70 15 4 114 115 115/ 115.0000 520/66 114  116.1673 0.00 1.90 348.00 145
L29 91 70 12 5 105 106 106/ 106.0000 136/84 105 106.5183 0.00 1.45 156.00 145
L30 93 84 11 6 117 118 118 118.0000 248/46 117 118.9239 0.00 1.64 387.00 145

The columns contain:

» Upper bound — Upper bound provided by LagClus;

Instance — Name of the instance;

L andW — Pallet length and width, respectively;

| andw — Box length and width, respectively;

Best solution — Best feasible solution reported in
literature;

Area Bound — Area bound given ByL*W)/(1*w)|
(where |z| denotes rounding down to the nearest
integer);

Barnes bound — Bound provided by Barnes [6];

Linear relaxation — Bound and Time in seconds;
Lower bound — Lower bound by VI or block heuristic;

GapLBz(

GapUB =

GAP LB (%) — Percentage deviation from the best
known solution to the best lower bound:
Bestsolution— Lowerbound)*100

Bes solutior

GAP UB (%) — Percentage deviation from the best
known solution to the best upper bound:

(Upperbound- Bestsolution) 100

Bes solutior
Time — Time in seconds elapsed by LagClas reaching
some of the stop conditions;
Iterations — Number of iterations used by LagClus.




Table 4— Computational results for instance L7 varying the number of clusters.

Number of Iterations VI heuristic LagClus Time (s)
clusters
2 67 49 49,9936 257
3 145 49 50,0612 86
4 145 49 50,0429 31
5 145 49 50,1019 33
6 145 49 50,1316 27
7 145 49 50,1360 18
8 145 49 50,1512 18
9 145 49 50,1241 19
10 145 49 50,1229 22
11 145 49 50,1785 21
12 145 49 50,2020 21
13 145 49 50,2199 16
14 145 49 50,1731 18
15 145 49 50,2645 15

The columns contain:
* Number of clusters — Number of clusters used in LagClus;
* VI heuristic - Result obtained by VI heuristic described in Figure 4 or block heurist
» LagClus — Upper bound provided by LagClus;
» lterations — Number of iterations used by LagClus;
 Time — Time in seconds elapsed by LagClas reaching some of the stop conditions.



Table 5— Computational results using the column generation approach.

. Solving the last RMP
Column generation approach )
Instance — — - . - as mteggr
Initial number Initial Final number Final Time CG | Solution Time IP
of columns RMP of columns RMP (s) (IP) (s)

L1 500 34.00 626 35.00 17 34 0.00
L2 500 41.00 674 43.00 45 42 0.20
L3 500 35.16 697 37.00 62 36 0,00
L4 500 45.00 680 47.00 183 46 2.00
L5 500 47.20 691 49.00 286 48 1.00
L6 500 44.00 829 46.00 194 45 0.00
L7 500 49.00 815 49.85 2166 49 1.00
L8 500 36.00 645 37.00 27 36 0.00
L9 500 44.00 813 46.00 331 45 4.01
L10 500 44.00 813 46.00 326 45 5.10

The columns contain:
* Instance — Instance name;
* [nitial number of columns — Initial number of columns considered in RMP;
» Initial RMP — Initial value provided by RMP;
* Final number of columns — Final number of columns considered in RMP;
* Final RMP — Final value provided by RMP;
* Time CG (s) — Time consumed at the column generation process;
» Solution (IP) — Value obtained by RMP solved using integer variables;
* Time IP (s) — Time consumed for solving the integer RMP.
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Figure 6 — LagClus and RMP behavior.




