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Abstract

The Traveling Salesman Problem (TSP) is a classical Combinatorial Optimization problem
intensively studied. The Lagrangean relaxation was first applied to the TSP in 1970. The
Lagrangean relaxation limit approximates what is known today as HK (Held and Karp)
bound, a very good bound (less than 1% from optimal) for a large class of symmetric
instances. It became a reference bound for new heuristics, mainly for the very large scale
instances, where the use of exact methods is prohibitive. A known problem for the
Lagrangean relaxation application is the definition of a convenient step size control in
subgradient like methods. Even preserving theoretical convergence properties, a wrong
defined control can reflect in performance and increase computational times, a critical
point for the large scale instances.  We show in this work how to accelerate a classical
subgradient method while conserving good approximations to the HK bounds. The
surrogate and Lagrangean relaxation are combined using the local information of the
constraints relaxed. It results in a one-dimensional search that corrects the possibly wrong
step size and is independent of the used step size control. Comparing with the ordinary
subgradient method, and beginning with the same initial multiplier, the computational
times are almost twice as fast for medium instances and greatly improved for some large
scale TSPLIB instances.
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1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied problems in the

Combinatorial Optimization literature. Several articles have been published on the subject

and it remains today as an interesting and challenging problem. The most common



interpretation of the problem seeks the shortest tour for a salesman on a number of cities

or clients. Clients must be visited exactly one time and the salesman must return to the

home city. For a comprehensive survey of solution methods, applications and related

problems see the book of Lawler et al. [27]. Laporte [25] gives another review, including

applications on computer wiring, wallpaper cutting, hole punching, job sequencing,

dartboard design and crystallography. The problem is well known to be NP-hard [25],

justifying the use of heuristics, mainly for large scale problems. Johnson and McGeoch

[20] give a recent survey on the use of local search based heuristics.

The Lagrangean relaxation is a well known relaxation technique frequently used to give

bound information to combinatorial optimization problems [see for example the survey

papers [9, 10] and the books [32, 36]).  Held and Karp [17, 18] applied the Lagrangean

relaxation to TSP in 1970. The relaxation limit approximates what is known today as HK

(Held and Karp) bound, a very good bound (less than 1% from optimal) for a large class

of symmetric instances [21]. Johnson et al. [21] report that exact HK bounds have been

computed by a special purposed linear programming code, for instances as large as 33810

cities. For even large scale instances, it is applied the subgradient method proposed on the

original Held and Karp papers and speeded up by a number of algorithmic tricks

[2,16,34,37,38]. Since for large scale instances the optimal solution is not known, the

comparison of the heuristic and HK bounds is common practice.

Although of simple convergence conditions [8, 33], the convergence of subgradient

methods can consume a long computational time for some instances. The subgradient

optimization is very sensitive to the values of the initial multipliers and the rules applied for

step size control. Efforts were made to have theoretical foundations for these choices [3,

13], but until today the most popular approaches are based on previous empirical

experience  [19].

Other subgradient methods appeared in literature [4,5,6,23,24,26]. More elaborated, they

increase the local computational times computing descent directions [6], or combining



subgradients of previous iterations [4,5], or realizing projections onto general convex sets

[23,24,26]. Experimental results with some of these methods show an improvement in

performance compared to the subgradient method [23,26], but the subgradient method

remains the widely used approach in the Lagrangean relaxation context.

Reducing the initial erratic behavior of the subgradient method can result in fast

convergence. This can be interesting for large scale problems, even using fast computers.

The Lagrangean relaxation is combined with the surrogate relaxation, using the local

information (optimization) provided by the relaxed constraints, with the objective of

accelerate the subgradient method while conserving the same HK bounds. The idea is to

introduce a local optimization step at the initial iterations of the subgradient method. The

relaxations are applied in sequence. The first relaxation is a surrogate relaxation of the

assignment constraints at the TSP formulation, followed by a Lagrangean relaxation of the

surrogate constraint. A local Lagrangean dual optimization is approximately solved. The

process is repeated for a pre-defined number of iterations of the subgradient method. The

computational times obtained are almost twice as fast for medium instances and greatly

improved for some large scale TSPLIB (http://www.crpc.rice.edu/softlib/catalog/tsplib.html)

instances.

The combined use of surrogate and Lagrangean relaxation was tested before with success

on Set Covering problems [1,28], Generalized Assignment problems [29,31] and some

Location problems [35]. Narciso and Lorena [31] coined the name Lagrangean/surrogate

for this kind of relaxation. Notably is the gain in computer times for large scale instances.

Section 2 presents the TSP formulation and the corresponding Lagrangean/surrogate

formulation. Section 3 details the subgradient method modified by the local search, and the

next section presents computational results for two samples of instances drawn from the

TSPLIB. We conclude with general comments.



2. The surrogate information in Lagrangean relaxation

We initially give an integer linear programming formulation for symmetric TSPs. Consider

a TSP defined on a graph G = (V,E) , V={1,...,n}, and let the binary variable xij  be equal

to  1  if the edge (i,j) ∈  E is used in the optimal tour. C = [ ]cij  , where  c cij ji=  for all  i,j

∈  V, is a distance (or cost) matrix associated with  E. The formulation is

Min c xij
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Constraint (1) specify that every vertex has degree 2, constraints (2) are subtour

elimination constraints, and (3) the binary conditions. As was point out by Laporte [25]

connectivity constraints equivalent to (2) are
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A well-known relaxation to (P) is the length of the 1-spanning tree, obtained by the

shortest tree having vertex set V\{1} and two minimal distinct edges at vertex 1. A known

formulation is

Min c xij
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Constraint (5) is derived taking half the sum of constraints (1), constraint (6) is constraint

(1) for k = 1, and constraint (7) is a weaker form of (4) (see [25]).



Problem (1-T) is solved in practice by applying a minimum spanning tree algorithm to the

graph resulted after the exclusion of vertex  1  and their end point edges [25]. The vertex

1  is then included at the resulting tree, adding the two minimum costs edges that connects

vertex 1 to the tree.

Held and Karp reinforced the (1-T) bound using Lagrangean relaxation. Considering the

multipliers  λk k V, ,∈ constraints (1) are relaxed in the objective function obtaining the

following Lagrangean function
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where  x  is a feasible solution to (1-T). The Lagrangean bound is improved by searching

the solution of the Lagrangean dual problem D(λ) = Max Lλ λ{ ( )}.

The surrogate duality theory is an old matter, that was not so intensively explored like the

Lagrangean counterpart (see the papers [7, 11, 12, 14, 22] and the book [32] for a formal

view of the subject). We explore here the simple relationship between the two relaxations,

recalling that Lagrangean multipliers can also be considered as surrogate multipliers, and

making profit of the local optimization induced by a new local Lagrangean relaxation.

The multipliers  λk k V, ,∈ can be seen as surrogate multipliers, and constraint
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 =2 0 , as a surrogate constraint included in problem (1-T). Using

a one-dimensional multiplier  t ∈  R, and relaxing this surrogate constraint in the

Lagrangean way, we obtain the surrogate version of the Lagrangean function (named

Lagrangean/surrogate in [31])
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where  x  is a feasible solution to (1-T).

In our notation, L(λ) = L1( ).λ For a given  λ,  a local dual can be identified here, as

D t ( )λ  = Max Lt t{ ( )}.λ It is interesting to note that for  t = 1  the local optimization

induced by the surrogate constraint is not considered. The same condition is observed for

each fixed value of  t. It is also immediate that for the same  λ ,  v [ D t ( )λ ] ≥  v[L(λ)], i.e.,

the local dual gives an improved bound to the usual Lagrangean relaxation (v[(.)] is an

optimal value for problem (.)).

It is well known that the Lagrangean function is concave and piecewise linear [9]. An

exact solution to D t ( )λ  may be obtained by a search over different values of  t  (see

Minoux [30] and Handler and Zang [15]). However, in general, we have an interval of

values  t0 ≤ t ≤ t1 (with t0 = 1 or t1 = 1) which also produces improved bounds to the usual

Lagrangean ones (see Figure 1, for the case  t1 = 1).

t

t
0 t* 1

v[L ( )]
t

λ

v[D ( )]t λ

v[L ( )]λ

Figure 1: Lagrangean/surrogate bounds.

So, in order to obtain an improved bound to the usual Lagrangean relaxation it is not

necessary to find the best value  t* , being enough to find a value  T,  such as  t0 ≤ T ≤ t1.

The following inequalities are valid,  v(P) ≥  v[D(λ)] ≥  v[ D t ( )λ ] ≥  v[ LT ( )λ ] ≥



v[L(λ)]. The Lagrangean/surrogate bound is a better local limit than the Lagrangean

bound, but the overall dual optimization produces the same theoretical bounds (for either

Lagrangean alone or Lagrangean/surrogate [31]).

3. The subgradient method

The subgradient method is employed to solve problem D(λ), giving an approximated HK

bound for problem (P). We propose here to use the traditional subgradient method, with

the step size corrections provided by Held and Karp [18], without any modification or

improvement. That decision will respond the question if the original HK step was a good

one. Observing the literature for other suggestions on step size corrections and/or new

step sizes, it become evident the necessity of such modifications [3, 5, 16, 21, 34, 37, 38].

Beginning with the same initial multiplier 0λ , a different sequence of relaxation bounds is

obtained for the usual Lagrangean (t fixed in 1 at all iterations) and the

Lagrangean/surrogate (t is calculated for a number of iterations and then fixed). The

multiplier updates observe the following formula
2
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(where v f  is the value of a feasible solution to (P)).

It is easy to see different sequences observing that the subgradients are distinct,

g gt
λ λ≠ 1 (in general). The parameter  β  follows the Held and Karp [19] suggestion, that

makes  0 2≤ ≤β , beginning with  β = 2. If after 20 iterations  v L t[ ( )]λ   not increases,

β  is updated to  β = β / 2 .

The value T  suggested in figure 1 for  t , can be obtained by a simple one-dimensional

search. Beginning with an initial  t , many types of search can be employed here, but the

ideal will be that one making the smallest number of )]([ λtLv  evaluations to reach the

interval  t0 ≤ T ≤ t1 . The following one-dimensional search was used. The value of  T  is



increased while the slope of the Lagrangean/surrogate function is positive (or for a pre-

fixed number of iterations).

t-search

 Given
  λ ; (current Lagrangean multiplier)
  increment = 1.5;
  k_max = 5; (maximum number of iterations)
  t0 := -∞  ; ( lower bound for the best  t)
  T := increment; ( initial Lagrangean/surrogate multiplier)
  t1 := ∞  ; ( upper bound for the best  t)
  v* :=  -∞  ; (best Lagrangean/surrogate bound)
  k := 0; (number of iterations)

While k ≤  k_max do
k := k + 1;
solve  )(λTL
If  v [ )(λTL ] >  v*  then v* := v [ )(λTL ];

If    
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k xx 2λ   < 0 then

t1 = T;
T = T - increment;
If   t0 ≠  -∞   (t0  was already determined)    then

increment = (t1 – t0)/2 ;
T = T + increment;

End_If
Stop;

      else
t0 = T;
increment = increment*2;
T = T + increment;

     End_If
End_while

4. Computational tests

A sample of symmetric instances was initially selected from the TSPLIB

(http://www.crpc.rice.edu/softlib/catalog/tsplib.html) to conduct a computational comparison



between the application of the usual Lagrangean relaxation (multiplier  t  is fixed to 1 at

each iteration of the subgradient method) and the Lagrangean/surrogate (which explores

the one-dimensional search for  t  at some of the initial iterations of the subgradient

method).

This initial set of instances is composed of the problems known as: uly16m; uly22m;

att48; berlin52; kroA100; tsp225; pcb442; pr1002; d1291, rl1304; nrw1379; d1655;

vm1748; rl1889 and u2152 (refereed herein as 16, 22, 48, 52, 100, 225, 442, 1002, 1291,

1304, 1379, 1655, 1748, 1889 and 2152).

Table 1 presents the results for the usual Lagrangean relaxation, while table 2 presents the

results for the Lagrangean/surrogate counterpart. The algorithms are coded in  C  and run

on a  SUN ULTRA1 127 Mhz. The columns in tables are composed of:

Prob. → problem instance,
n_iter →  number of iterations (limited to 3000),
time →  total computer time,
gap →  (optimal solution – relaxation)/optimal solution,
10%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1% →

elapsed time to gap  be equal to  α % , α ∈  {0.1, 0.2, 0.3, 0.4, 0.5,
1, 2, 3, 4, 5, 10}.

The experiments were conducted to compare lower bounds, and then the known optimal

solution value was used for  fv  on the multiplier updating formula (8). The same initial

multiplier was used at the subgradient method ( 0λ = (1,1,… ,1)) for both relaxation. The

stop conditions are the iteration limit (3000), or for a small  β (< 0.005), or if

fv - v L t[ ( )]λ  < 1. The gap percentages reflect the behavior of the subgradient method

without the effect of stopping tests, and the smaller one is used to compare the

relaxations.

Comparing the results in tables 1 and 2, we can see that the Lagrangean/surrogate reaches

tighter gaps than the Lagrangean ones, using only part of the time required by the

Lagrangean, and the same gaps with a notably saving of time for the large scale problems.



To better compare, table 3 shows for each problem the Lagrangean and

Lagrangean/surrogate (enclosed in brackets) results:  best gap (%), elapsed time to reach

the Lagrangean best gap, and finally the percentage of time expended by the

Lagrangean/surrogate to reach the same gap attained by the Lagrangean. The

Lagrangean/surrogate was able to reach 6 tighter bounds, all after the problem size of

1002. Observing the last column we can see, for example, that it reached the better

Lagrangean bound using only 2.6 % of time on problem 1889 , 2.8% on problem 1002,

3.7% on problem 1748, and 5.3% on problem 1304. The economy of time was not

representative for two small instances (52 and 225).

Problem Best gap ( % ) Times ( sec. ) Time ( % )

16 0.1 (0.1) 2. (1.03) 51
22 0.1 (0.1) 9.1 (4.6) 51
48 0.3 (0.3) 19. (8.) 42
52 0.3 (0.3) 5. (5.) 100
100 2. (2.) 27. (14.) 51
225 4. (4.) 495. (392.) 92
442 1. (1.) 4054. (997.) 24
1002 4. (2.) 36714. (1054.8) 2.8
1291 3. (3.) 13431. (3230.) 24
1304 5. (2.) 28094.3 (1511.) 5.3
1379 2. (2.) 9465.7 (3147.) 33
1655 3. (2.) 29368. (3029.) 10
1748 5. (2.) 48413. (1802.) 3.7
1889 5. (2.) 87568. (2275.4) 2.6
2152 2. (1.) 31334. (3648.) 11.6

  Table 3: Comparison: Lagrangean versus Lagrangean/surrogate – first set of instances

It appears from table 3 that the Lagrangean/surrogate do not improve the Lagrangean

times for small instances ( < 1000 cities), and greatly improves it for the large instances ( >

1000 cities).  We have then proceeded the computational tests to reinforce this

observation.



The second set of instances is composed of the problems known as: st70; bier127; gr137;

ch150; gr202, a280; lin318; gr431; att532; rat575; rat783; u2319; pr2392 and pcb3038

(refereed herein as 70, 127, 150, 202, 280, 318, 431, 532, 575, 783, 2319, 2392 and

3038).

Table 4 presents results on a similar way to that one presented in table3. The

Lagrangean/surrogate was able to reach 5 tighter bounds. For problems 280 and 575, the

Lagrangean times are better than the Lagrangean/surrogate ones. But, for example, on

problems 202 and 431, the Lagrangean/surrogate employed only 7% and 6.62% of the

time needed by the Lagrangean to reach their best bound.  For the large scale instances, it

is confirmed the great improvement in times, particularly on instance 2319, where the

Lagrangean/surrogate used only 2.69% of the time to reach the Lagrangean best bound.

Problem Best gap ( % ) Times ( sec. ) Time ( % )

70 4. (4.) 4. (4.) 100.
127 10. (1.) 243. (12.) 4.9
150 2. (2.) 26. (18.) 69.2
202 3. (0.3) 1495. (105.) 7.
280 2. (2.) 22. (80) 363
318 2. (1.) 679. (62.) 9.13
431 10. (2.) 1450. (96.) 6.62
532 2. (2.) 1799. (580.) 32.2
575 4. (4.) 106. (464.) 437.
783 10. (10.) 122. (112.) 91.8
2319 10. (1.) 92819. (2503.) 2.69
2392 4. (2.) 63401. (4161.) 6.56
3038 2. (2.) 80661. (4294.) 5.32

   Table 4: Comparison: Lagrangean (Lagrangean/surrogate) – second set of instances

The Lagrangean/surrogate relaxation requires the application of the  t-search  algorithm

for a number of initial iterations. The criterion used was to fix the  T value if it repeats for

5  consecutive iterations. For almost all the cases, the  T  value was fixed on  46.5 , and in

some cases on  22.5. It is a direct consequence of the one-dimensional search used. It is



also observed that, in general,  T  was fixed after the  5  initial iterations, that has the same

effect that if it was fixed at the first iteration.

The best required  t  can result in a value that is very large than the usual Lagrangean   t

( = 1), and the local search produced relevant effects for these instances, reflecting on the

behavior of the relaxation sequences. It can be better observed on figure 2. Three

instances are used, the 48, 442 and 1002. The local search effects can be seen on the initial

perturbed sequences for the Lagrangean/surrogate case. The Lagrangean sequences were

very stable, but increase at small rates (slopes), mainly for the  1002  instance, where the

Lagrangean/surrogate employed only 2.8% of the time needed by the Lagrangean to reach

their best bound.

One conclusion based on this TSPLIB sample of instances is that  t = 1 is not the best

multiplier for almost all the instances tested, justifying the search for better Lagrangean

performance on TSP [3, 5, 16, 21, 34, 37, 38].

5. Conclusions

We investigated in this paper the effects of local search on Lagrangean relaxation applied

to symmetric TSP. The local search was simply justified considering the Lagrangean

multipliers as surrogate multipliers, affected by a local one-dimensional Lagrangean dual.

The local search can be a straight one, giving in few steps a better one-dimensional

multiplier than the usual Lagrangean multiplier (fixed in one).

The name Lagrangean/surrogate, coined at  Narciso and Lorena [31] paper can be used

to reflect the local search use on Lagrangean relaxation (see the related works [1, 28. 29.

35]). For two samples of instances drawn from the TSPLIB, it produced tight gaps

compared with the usual Lagrangean ones, and for large scale instances, considerably

small times for the same gaps.



We hope that the Lagrangean/surrogate approach can be useful for even large scale TSP

instances, considering the importance of HK bounds for heuristic performance comparison

[20, 21]. It is also important to note that the refereed approach is independent of the step

size and subgradient direction used (if the convergence conditions were observed).
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Figure 2: Lagrangean/surrogate versus Lagrangean – att48, pcb442 and  pr1002
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Prob. n_iter time gap 10% 5% 4%    3%     2%    1% 0.5% 0.4% 0.3% 0.2% 0.1%
16 289 2. 0.000230 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2.
22 487 9.38 0.000123 2.9 4.1 4.3 4.6 4.8 6.3 7.7 7.9 8.4 8.7 9.1
48 1431 23. 0.002355 1. 1. 2. 4. 7. 11. 15. 17. 19. -- --
52 282 6. 0.002132 1. 2. 2. 2. 3. 4. 5. 5. 5. -- --
100 714 52. 0.018157 0. 6. 9. 15. 27. -- -- -- -- -- --
225 950 675. 0.039181 2. 67. 495. -- -- -- -- -- -- -- --
442 3000 6469. 0.007115 2. 527. 754. 1119. 1810. 4054. -- -- -- -- --

1002 3000 52420. 0.030597 6853. 27475. 36714. -- -- -- -- -- -- -- --
1291 3000 56066. 0.023842 14. 420. 2376. 13431. -- -- -- -- -- -- --
1304 3000 42816. 0.040637 4234.9 28094.3 -- -- -- -- -- -- -- -- --
1379 2986 38018. 0.015077 9.9 1918.6 2826.1 4412.8 9465.7 -- -- -- -- -- --
1655 3000 128326. 0.02204 40.1 6405.2 12701.9 29368. -- -- -- -- -- -- --
1748 3000 64421. 0.040159 9739. 48413. -- -- -- -- -- -- -- -- --
1889 3000 87629. 0.049982 10786. 87568. -- -- -- -- -- -- -- -- --
2152 3000 99230. 0.012201 21.4 21.4 2900.1 11413. 31334. -- -- -- -- -- --

Table 1 : TSPLIB instances – Lagrangean results.

Prob.  n_iter time gap 10% 5% 4% 3% 2% 1% 0.5% 0.4% 0.3% 0.2% 0.1%
16   264 1.1 0.000233 0.1 0.1 0.2 0.2 0.8 0.9 1. 1. 1. 1. 1.03
22   372 7. 0.000096 1.0 1.1 1.2 1.2 1.4 1.7 2. 2.3 2.5 3.9 4.6
48   521 8. 0.002988 0.15 1. 1. 1. 3. 6. 7. 7. 8. -- --
52   309 6.5 0.002121 0.33 1. 1. 1. 4. 5. 5. 5. 5. -- --
100   373 28. 0.021871 0.56 3. 3. 4. 14. -- -- -- -- -- --
225   882 652. 0.039154 2.28 83. 392. -- -- -- -- -- -- -- --
442   506 997. 0.009726 1.95 82. 92. 110. 152. 997. -- -- -- -- --

1002   905 17856. 0.011068 455.5 869.5 1054.8 1428.4 2514.5 -- -- -- -- -- --
1291   618 15384. 0.021880 14. 291. 736. 3230. -- -- -- -- -- -- --
1304   1057 15033. 0.018360 626. 1511. 2111. 3678. 9060. -- -- -- -- -- --
1379   962 12249. 0.014109 9.15 315. 351. 440. 3147. -- -- -- -- -- --
1655   3000 128325. 0.019877 40.1 1251. 1600. 3029. 42846. -- -- -- -- -- --
1748   3000 64419. 0.014932 785. 1802. 2285. 3098. 6716. -- -- -- -- -- --
1889   3000 87643. 0.017504 675.8 2275.4 3785.9 9080.7 37393. -- -- -- -- -- --
2152   3000 99222. 0.009182 25.7 25.7 1106. 1805. 3648. 21829. -- -- -- -- --

Table 2 : TSPLIB instances – Lagrangean/surrogate results
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