
GeoInformatica, , 1–11 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

TABU SEARCH HEURISTIC FOR
POINT-FEATURE CARTOGRAPHIC LABEL

PLACEMENT

MISSAE YAMAMOTO, GILBERTO CAMARA AND LUIZ ANTONIO NOGUEIRA LORENA

missae@dpi.inpe.br, gilberto@dpi.inpe.br and lorena@lac.inpe.br

Brazilian Institute of Space Research (INPE), SP, BR

Editor:

Abstract. The generation of better label placement configurations in maps is a problem that
comes up in automated cartographic production. The objective of a good label placement is to
display the geographic position of the features with their corresponding label in a clear and har-
monious fashion, following accepted cartographic conventions. In this work, we have approached
this problem from a combinatorial optimization point of view, and our research consisted of the
evaluation of the Tabu Search (TS) heuristic applied to cartographic label placement. When com-
pared, in real and random test cases, with techniques such as simulated annealing and genetic
algorithm (GA), TS has proven to be an efficient choice, with the best performance in quality.
We concluded that TS is a recommended method to solve cartographic label placement problem
of point features, due to its simplicity, practicality, efficiency and good performance along with
its ability to generate quality solutions in acceptable computational time.
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1. Introduction

Cartographic label placement refers to the label insertion process in maps and is
one of the most challenging problems in geoprocessing and automated cartography.
Positioning the labels requires that overlap among labels be avoided, that carto-
graphic conventions and preference be obeyed, that unambiguous association be
achieved between each label and its corresponding feature and that a high level of
harmony and quality be achieved.

There are three different label-placement problems: labeling of point features
(cities, schools, hospital, mountain peaks ...), line features (rivers, roads, ...), and
area features (countries, states, oceans, ...). In this article we are concerned with
the placement of labels for point features, approaching the problem from a com-
binatorial optimization viewpoint. This approach requires the precise definition of
the associated concepts of potential label positions, cartographic preference and
objective function:

• Potential label positions for each point feature. This concept indicates the set
of positions which will be considered as candidates. Figure 1 shows a set of four
potential label positions for a point feature and each box indicates a region in
which a label may be placed.
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• Cartographic preference concerns a preference assignment to the placement of
a label for a point. The value inside each box from Figure 1 corresponds to the
order of preference for placing a label. More desirable positions are indicated
by lower values.

• The objective function (F) is a function to be optimized that measures the
quality of the label placement distinguishing good elements between potential
label positions. In general the quality of labeling depends on the number of
overlaps between labels and the cartographic preference for placing a label.

Figure 1. A set of potential label positions and their cartographic preference(best=0.0; worse=0.9)

If we indicate by ”npos” the number of potential label positions and by ”np”
the total number of point features, there are nposnp possible configurations, a
number which increases exponentially. Since the set of possible solutions is finite,
theoretically we could select the best solution by enumeration, but as the number
of points increases this becomes unfeasible, because of the combinatorial explosion
of possible solutions. Marks and Shieber [12] have shown that the point feature
label placement (PFLP) problem is NP-hard. Therefore, we need heuristics and
metaheuristics that seek a compromise solution in cost terms.

Several heuristics and metaheuristics have been used to solve the PFLP problem,
such as exhaustive search, greedy algorithms, discrete gradient descent, Hirsch’s
algorithm [9], Lagrangean relaxation [16, 17], Simulated Annealing [3, 2, 13] and
others. They are reviewed by [3]. A GA with mask is described in [14].

In [15], we have reviewed the existing algorithms and proposed a new technique
to solve the PFLP problem, based on TS metaheuristic. Our results indicate that
the TS algorithm has better results in label placement quality than other methods.
Given its relative simplicity of implementation and efficient performance, we believe
that TS method is a good solution to the PFLP problem.

The rest of the article is described as follows. In Section 2 we introduce the
TS optimization algorithm to solve the PFLP problem. In Section 3 we show an
example of a TS application for 6 point features. In Section 4 we present and discuss
the results obtained on real data and on a standard set of randomly generated points
suggested in the literature [3, 14]. The comparison of the TS algorithm with the
other techniques is presented in this section. Our conclusions are presented in
Section 5.

2. TABU SEARCH FOR PFLP

TS is a heuristic procedure proposed by Fred Glover to solve combinatorial opti-
mization problems. The basic idea is avoiding that the search for best solutions
stops when a local optimum is found [4, 5, 6, 11, 7, 8]. In order to avoid conver-
gence to a local minimum, the TS algorithm maintains a list of points where a label
position has been changed (”tabu list”) which are considered to be non-acceptable
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(hence the use of the term taboo). The algorithm makes a search of the solution
space, aiming at getting the best alternative that is not considered taboo. The TS
heuristic also includes special provision for solutions in the tabu list to be consid-
ered as alternatives, based on an aspiration criterion that determines when tabu
restrictions can be overridden. The following outline describes the TS algorithm
for PFLP:

1. Pre-compute all potential overlappings between label positions, recording for
each potential label a list of which points and label positions overlap it.

2. Generate an initial configuration, labeling each point with its best cartographic
preference position.

3. Repeat the following steps, until we reach a solution without overlappings or
until a pre-specified limit of iterations is reached:

(a) Create a initial candidate list for this iteration.

(b) Recalculate the candidate list to find the minimum cost label positions for
each point referenced in the candidate list.

(c) Choose the best candidate from the list, based on the cost, taking into
account the tabu list and the aspiration criterion.

(d) Perform the configuration change, designating the solution obtained as the
new current solution. Each configuration change consists in modifying the
label position of one location.

(e) Update the tabu list.

The proposed TS algorithm applied to the PFLP problem involves six compo-
nents: F, tabu list, candidate list, configuration changes, aspiration criteria and
long term memory. They are described in the following.

2.1. Objective function

The TS algorithm used here is entirely deterministic and selects the best allowable
candidates. Therefore it is necessary to examine and to compare candidates, bring-
ing about a large amount of computation, specially when the number of the points
is large. Then the best F is the one whose cost can be easily calculated, making the
search efficient and at the same time obtaining quality solutions. The minimization
objective function used is∑np

i=1 C(i)
where,

np = number of points;
C(i) = cost of each point ”i”, defined by

C(i) = α1 overlap(i) + α2 preference(i)
and,
overlap(i) = number of overlappings for the label associated with point i (Figure

2). This number refers both to overlappings with other labels and point symbols.
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preference(i) = cartographic preference of the active label in the point i and
overlapping labels with it;

α1 = weight for overlapping labels;
α2 = weight for cartographic preference.
The parameters α1 and α2 are manipulated by the user that can choose what is

more important, non-overlapping or cartographic quality. If α2 = 0, cartographic
preference is not considered.

Figure 2. Conflict evaluation

2.2. Tabu list

The tabu list is an essential component of the algorithm, and stores points where
the last label position has been changed.

In [15], we have used a dynamically-sized list, because the PFLP problem needs
a large tabu list at the beginning to avoid focusing conflict solutions only at certain
regions of the map. Therefore, as the number of overlapping labels decrease, the
tabu list can be reduced, as the search will be conducted in smaller regions of the
map, for the final adjustments to be made.

The tabu list size used was 7 + INT(0.25 * number of labels that overlap). After
some iterations the number of labels that overlap decreases and consequently the
tabu list size. The weight 0.25 as well as the tabu list size recalculation after
each 50 consecutive iterations were established after tests and experiments made
in configurations with 100, 250, 500, 750 and 1000 points (details in [15]).

2.3. Candidate list

The candidate list will be composed of the (point, label, cost) triples that have
higher individual costs in the current configuration. The costs associated to each
point are calculated as described in Section 2.6. In general (depending on the
weights α1, α2) higher-cost solutions have a large number of overlaps and their
labels are in the least desirable cartographic positions.

The list size is recalculated after 50 consecutive iterations using the expression:
1 + INT (0.05 * number of labels that overlap). The weight 0.05 was chosen after
tests in 9 different configurations of 1000 points. The average of labels without
overlapping from 9 different configurations for weights 0.03, 0.04, 0.05, 0.06 and
0.07, has shown that the weight 0.05 produces better results (details in [15]).

2.4. Configuration changes

To generate a configuration change, all triples in the candidate list are used to
search a best position to label. After the changes in label positions, the candidate
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which provides the smallest individual cost is chosen. Solutions generated for a
point that is part of the tabu list are discarded, and the next best alternative is
selected.

2.5. Aspiration criteria

In some situations, it is necessary to consider alternatives that are part of the tabu
list. In such cases, an aspiration criterion is used to override the taboo restriction
in two cases:

• A solution is selected if it has a lower value of F than the best solution obtained
so far.

• If all candidate solutions are part of the tabu list and fail to meet the above
criterion, then the candidate with higher permanency time in the tabu list is
chosen.

2.6. Long term memory

Very often, the costs of different solutions are equal, resulting in the same points
being entered into the candidate list. Therefore, there is a need to diversify the
search. We used a frequency-based memory strategy that counts the number of
times that a point has changed its label position and after 50 consecutive iterations
divides the accumulated value for each point by the maximum value, obtaining a
normalized frequency. This information is used to apply penalties for points that
did not bring improvement. The cost C(i) of each point ”i” was therefore modified
to the individual costs:

CN(i) = C(i) − normalized frequency(i)
where the normalized frequency(i) is an instrument for search diversification.

3. Example of a TS application for 6 point features

In order to clarify the use of the TS algorithm, this section describes in detail its
use. We consider an initial configuration of 6 points features, as illustrated in Figure
3. Each point has four potential label positions (L0, L1, L2 and L3) and each label
position has an associated cost (0.0, 0.4, 0.6 and 0.9), where 0.0 indicates the best
position and 0.9, the worst (Figure 1).

In the initial configuration there are 5 labels overlapping. The point features and
their labels are: P0 = Youngstown (10 characters), P1 = Yankton (7 characters),
P2 = Yakima (6 characters), P3 = Worcester (9 characters), P4 = Wisconsin Dells
(15 characters) and P5 = Winston-Salem (13 characters). Winston-Salem is the
only one without overlapping.

Figure 3. initial configuration
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We consider for the example, equal overlapping and cartography preference, so
we use α1 = α2 = 1. The expression 2+INT(0.25 * number of labels that overlap)
is used to compute tabu list size, but if the list size is greater than 4 its becomes
equal to 4. The candidate list size adopted is 2+INT(0.05 * number of labels that
overlap) and they are recalculated at each five iterations. In the following the
algorithm to solve conflicts between labels is presented step by step.

Initial state: tabu list size = 4; candidate list size = 2; solution = {(P0, L0, 1.0),
(P1, L0, 3.0), (P2, L0, 3.0), (P3, L0, 2.0), (P4, L0, 3.0), (P5, L0, 0.0)}; tabu list =
{ }; F = 12.0; best solution = 12.0 and labels that overlap = 5

Iteration 1: candidate list = {(P1, L0, 3.0), (P2, L0, 3.0)}; recalculated candidate
list = {(P1, L1, 2.4), (P2, L1, 3.4)}; chosen candidate = (P1, L1, 2.4); solution =
{(P0, L0, 1.4), (P1, L1, 2.4), (P2, L0, 2.0), (P3, L0, 2.0), (P4, L0, 3.4), (P5, L0,
0.0)}; tabu list = {P1}; F = 11.2; best solution = 11.2 and labels that overlap = 5.

The candidate list is composed at start with the triples (P1, L0, 3.0) e (P2, L0,
3.0), the two first higher-cost cases. Next, the four potential label position of point
P1 are examined and the label position with the lowest cost is chosen. The same
procedure is repeated for point P2. In the example, the label position L1 with the
cost 2.4 is chosen for point P1 and label position L1 with cost 3.4 is selected for
point P2.

The candidate (P1, L1, 2.4) was chosen because its cost is lower than the candidate
(P2, L1, 3.4) and P1 is not in the tabu list. Applying the same steps iteratively,
we will obtain the following results:

Iteration 2: candidate list = {(P4, L0, 3.4), (P1, L1, 2.4)}; recalculated candidate
list = {(P4, L2, 1.6), (P1, L2, 2.6)}; chosen candidate = (P4, L2, 1.6); solution =
{(P0, L0, 1.4), (P1, L1, 1.4), (P2, L0, 1.0), (P3, L0, 1.0), (P4, L2, 1.6), (P5, L0,
1.6)}; tabu list = {P4, P1 }; F = 8.0; best solution = 8.0 and labels that overlap
= 6.

Iteration 3: candidate list = {(P5, L0, 1.6), (P4, L2, 1.6)}; recalculated candidate
list = {(P5, L2, 0.6), (P4, L1, 1.8)}; chosen candidate = (P5, L2, 0.6); solution
= {(P0, L0, 1.4), (P1, L1, 1.4), (P2, L0, 1.0), (P3, L0, 1.0), (P4, L2, 0.6), (P5,
L2, 0.6)}; tabu list = {P5, P4, P1}; F = 6.0; best solution = 6.0 and labels that
overlap = 4.

Iteration 4: candidate list = {(P0, L0, 1.4), (P1, L1, 1.4)}; recalculated candidate
list = {(P0, L1, 1.8), (P1, L0, 2.0)}; chosen candidate = (P0, L1, 1.8); solution =
{(P0, L1, 1.8), (P1, L1, 1.8), (P2, L0, 1.0), (P3, L0, 1.0), (P4, L2, 0.6), (P5, L2,
0.6)}; tabu list = {P0, P5, P4, P1}; F = 6.8; best solution = 6.0 and labels that
overlap = 4.

Iteration 5: candidate list = {(P1, L1, 1.8), (P0, L1, 1.8)}; recalculated candidate
list = {(P1, L0, 1.0), (P0, L0, 1.4)}; chosen candidate = (P1, L0, 1.0); solution =
{(P0, L1, 0.4), (P1, L0, 1.0), (P2, L0, 2.0), (P3, L0, 1.0), (P4, L2, 0.6), (P5, L2,
0.6)}; tabu list = {P1, P0, P5, P4}; F = 5.6; best solution = 5.6 and labels that
overlap = 3.

The points P0 and P1 are in the tabu list, but the candidate (P1, L0, 1.0) was
chosen, because the F = 5.6 of the new configuration is better than the best solution
= 6.0 reached.
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Iteration 6: candidate list = {(P1, L0, 1.0), (P2, L0, 2.0)}; recalculated candidate
list = {(P1, L1, 1.8), (P2, L3, 1.9)}; chosen candidate = (P2, L3, 1.9); solution =
{(P0, L1, 0.4), (P1, L0, 0.0), (P2, L3, 1.9), (P3, L0, 1.9), (P4, L2, 0.6), (P5, L2,
0.6)}; tabu list = {P2, P1, P0, P5}; F = 5.4; best solution = 5.4 and labels that
overlap = 2.

In this iteration we recalculate the tabu list size, candidate list size and the cost
of the solution for each point using the normalized frequency: tabu list size = 2;
candidate list size = 2; solution = {(P0, L1, 0.01), (P1, L0, 0.0), (P2, L3, 1.44),
(P3, L0, 1.9), (P4, L2, 0.14), (P5, L2, 0.14)}; tabu list = {P2, P1}.

The same procedure is executed until we reach a solution without overlapping
or until a pre-specified limit of iterations.The Figure 4 shows the result of TS
application on the example of 6 points features.

Figure 4. After TS application for example of the Figure 3

4. Results

In order to verify the performance of the TS algorithm in real datasets, we used
the dataset available in [10]. The set consists of 128 point features from regions of
the USA map. Each label varies in length depending on the name of the city it
represents, creating a realistic situation. The area in geographical coordinates is:
longitude ( W 1230 0’ 0” W 730 0’ 0” ), latitude ( N 240 0’ 0” N 510 0’ 0” ) and
the projection is LAMBERT/HAYFORD.

We made tests using different values of α1 (that handle the level of consideration
of the number of overlaps) and α2 (that handle the level of consideration of the
cartographic preference). The parameters considered for tests are:

• tabu list size = 7 + INT (0.25 * number of labels that overlap);

• candidate list size = 1 + INT (0.05 * number of labels that overlap);

• number of iterations for recalculations = 50;

• character height of the label = 1.0 mm;

• potential label positions = 8.

The results of the tests are reported on Table 1.
When the cartographic preference weight is larger than the weight of the number

of overlappings, the number of labels that overlap is large, but the labels try to
occupy the best cartographic positions. On the other hand, as cartographic pref-
erence decreases and the weight for number of overlappings increases, the number
of labels that overlap decreases, but it is possible to see that the labels occupy any
of the potential positions. Figure 5 presents a zoom of the crowded area of the
example layout. Results of the tests for different character heights and different
scale are in [15].
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Table 1. RESULTS FOR DIFFERENT α1 AND α2

layout USA1 USA2 USA3 USA4

α1 1 1 1 3

α2 10 5 1 1

number of iterations 324 140 28 28

number of labels that overlap 26 4 0 0

Christensen et al. [3] and Verner et al.[14] compared several algorithms using
standard sets of randomly generated points: grid size of 792 by 612 units, fixed size
label of 30 by 7 units and page size of 11 by 8.5 inch. In order to compare the TS
algorithm with previous work, we used the standard sets of randomly generated
points and simulated the same conditions as described by [3] and followed the same
assumptions as [14].

• Number of the points: n = 100, 250, 500, 750, 1000;

• For each problem size, we generated 25 different configurations with random
placement of point feature using different seeds;

• For each problem size, we calculated the average percentage of labels placed
without conflict of the 25 trials;

• No penalty was attributed for labels that extended beyond the boundary of the
region;

• 4 potential label positions were considered;

• cartographic preference was not taken into account;

• No point selection was allowed (i.e., no points are removed even if avoiding
superposition is inevitable);

• the parameters used for TS are:

– tabu list size = 7 + INT (0.25 * number of labels that overlap);

– candidate list size = 1 + INT (0.05 * number of labels that overlap);

– number of iterations for recalculation = 50.

Results from our TS application on PFLP (average over 25 trials) are recorded in
(Table 2), as follows:

• iteration: number of iterations to reach a state without conflicts or a state of
smallest conflicts among labels, limited to the maximum number of iterations.
(50 for 100 points, 100 for 250 points, 8000 for 500 points, 15000 for 750 points
and 30000 for 1000 points);
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• Overlapping labels: labels placed with conflicts;

• Time(sec.): processing time to get state without conflicts or the state of smallest
conflict among labels.

• Results(minimum): the minimum quantity of labels placed without conflict.

• Results(maximum): the maximum quantity of labels placed without conflict.

• Results(standard deviation): the standard deviation of labels placed without
conflict.

• Results(average): the average of labels placed without conflict.

• Results(%): the percentage of labels placed without conflict.

Table 2. RESULTS FROM TS ALGORITHM USING THE STANDARD DATASETS

Number of points 100 points 250 points 500 points 750 points 1000 points

number of iterations 7 45 450 6645 21410

overlapping labels(average) 0.0 0.0 3.6 24.28 99.96

time (sec.) 4 28 114 245 1179

Results(minimum) 100.00 250.00 492.00 715.00 871.00

Results(maximum) 100.00 250.00 500.00 735.00 923.00

Results(standard deviation) 00.00 00.00 2.29 6.67 15.61

Results(average) 100.00 250.00 496.40 725.72 900.04

Results(%) 100.00 100.00 99.26 96.76 90.00

Figure 6 shows a initial label placement for 1000 points and Figure 7 shows a
layout after using our TS algorithm.

Regarding the optimization algorithms of the literature, the tabu search showed
superior results in quality of label placement. Table 3 shows the percentage of
labels placed without conflict for 100, 250, 500, 750 and 1000 points, considering
different algorithms of the literature. The lines show the percentage of labels placed
without conflict by the optimization algorithms tested in [3] (random placement,
greedy-depth first, gradient descent, 2-opt gradient descent, 3-opt gradient descent,
Hirsch, Zoraster and simulated annealing), in [14] (GA without masking and GA
with masking) and the TS.

The average processing times spent by the GA with masking [14], to solve the
PFLP problem for 100, 250, 500, 750 and 1000 points, were 6, 49, 414, 1637 and
7256 seconds respectively, using a Sun-Sparc 10 workstation. TS solved similar
problems in 4, 28, 114, 245 and 1179 seconds. Our implementation used a Sun
Sparc 20 workstation, UNIX solaris version 2.5, C++ compiler version 4.0.1, and is
part of the Map Production module (SCARTA) of the SPRING GIS environment
[1].
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Table 3. COMPARISON OF PFLP ALGORITHMS USING STANDARD DATASETS
(percentage of labels placed without conflict)

algorithms 100 points 250 points 500 points 750 points 1000 points

Tabu Search 100.00 100.00 99.26 96.76 90.00

GA with masking 100.00 99.98 98.79 95.99 88.96

GA without masking 100.00 98.40 92.59 82.38 65.70

Simulated Annealing 100.00 99.90 98.30 92.30 82.09

Zoraster 100.00 99.79 96.21 79.78 53.06

Hirsch 100.00 99.58 95.70 82.04 60.24

3-Opt Gradient Descent 100.00 99.76 97.34 89.44 77.83

2-Opt Gradient Descent 100.00 99.36 95.62 85.60 73.37

Gradient Descent 98.64 95.47 86.46 72.40 58.29

Greedy-depth First 95.12 88.82 75.15 58.57 43.41

Random Placement 84.56 65.63 44.06 29.06 19.53

5. Conclusion

The point feature label placement (PFLP) is a problem of practical importance for
geoprocessing and automated cartography. Our work has proposed and evaluated
a TS optimization algorithm applied to the PFLP problem. TS algorithm perfor-
mance was evaluated with real datasets and using a standard test set described in
the literature.

In real datasets, issues that influence performance include clustering of point
features, paper size and scale, variation in label length and character height. We also
tested the impact of cartographic preference choices, allowing different compromises
between label placement and the number of overlappings. The results have shown
that, as the importance of cartographic preference increases, the algorithm takes
longer to reach a non-conflict state. Our tests with real datasets have indicated that
the TS method always produces maps with desirable cartographic quality with an
acceptable timing, even when applied to situations with natural clusters of the point
feature distributions and with labels of variable length.

By using a standard set of randomly generated points and the same conditions
described by [3] and [14], we have shown that TS has better results in label place-
ment quality than other methods published in the literature. TS also allows the
user to establish his choice of compromise between non-overlapping labels and car-
tographic prefence. Therefore, TS can be recommended to solve the cartographic
label placement problem for point features, due to the quality of its label placement
and to its flexibility.
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1. G. Câmara, R.C.M. Souza, U.M. Freitas, and J.C.P. Garrido. Spring integrating remote
sensing and gis with object-oriented data modelling. Computers and Graphics, 15:395–403,
1996.

2. J. Christensen, J. Marks, and S. Shieber. Graphics Gems IV, chapter Placing Text Labels
on Maps and Diagrams. London, Academic Press, Cambridge, Mass., 1994.

3. J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature
label placement. ACM Transactions on Graphics, 14:203–232, 1995.

4. F. Glover. Tabu search - part i. ORSA Journal on Computing, 1:190–206, 1989a.
5. F. Glover. Tabu search - part ii. ORSA Journal on Computing, 2:4–32, 1989b.
6. F. Glover. Tabu search - a tutorial. Interfaces, 20:74–94, 1990.
7. F. Glover and M. Laguna. Modern heuristic techniques for combinatorial problems, chapter

Tabu search. McGraw-Hill, New York, 1995.
8. F. Glover and M. Laguna. Tabu Search. Kluwer Publishers, Boston, 1997.
9. S. A. Hirsch. An algorithm for automatic name placement around point data. American

Cartographer, 9:5–17, 1982.
10. D. E. Knuth. The stanford graphBase, a platform for combinatorial computing. Addison-

Wesley, New York, 1993.
11. M. Laguna. A guide to implementing tabu search. Investigacin Operativa, 4:5–25, 1994.
12. J. Marks and S. Shieber. The computational complexity of cartographic label placement.

Technical report, Center for Research in Computing Technology, Harvard University, 1993.
13. E. Shawn, J. Christensen, J. Marks, and S. Shieber. A general cartographic labeling algo-

rithm. Cartographica, 33:111–999, 1997.
14. O. V. Verner, R. L. Wainwright, and D. A. Schoenefeld. Placing text labels on maps and

diagrams using genetic algorithms with masking. INFORMS Journal on Computing, 9:266–
275, 1997.

15. M. Yamamoto. Tabu search application for point features cartographic label placement
problem. Master’s thesis, Applied computing - Brazilian Institute of Space Research (INPE),
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Figure 5. Zoom of the crowded area of the layout from example

Figure 6. Before TS application for 1000 random points (number of labels that overlap = 703)

Figure 7. After TS application for 1000 random points (number of labels that overlap = 77)


