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 Abstract

The p-median problem is the problem of locating p facilities (medians) on a network so as to
minimize the sum of all the distances from each demand point to its nearest facility. A
successful approach to approximately solve this problem is the use of Lagrangean heuristics,
based upon Lagrangean relaxation and subgradient optimization. We propose in this paper a
Lagrangean/surrogate heuristic approach to p-median problems. Lagrangean and surrogate
relaxations are combined relaxing in the surrogate way the assignment constraints in the p-
median formulation. Then, the Lagrangean relaxation of the surrogate constraint is obtained
and approximately optimized (one-dimensional dual). Lagrangean/surrogate relaxations are
very stable (low-oscillating) and reach the same good results of Lagrangean (alone) heuristics
in less computational times. The paper presents several computational tests which have been
conducted with problems from the literature,  a set of instances presenting large duality gaps
and a set of time consuming instances.

Resumo

O problema das p-medianas pode ser descrito como o de localizar  p  facilidades (medianas)
em uma rede minimizando a soma de todas as distâncias de cada ponto de demanda a sua
mediana mais próxima. A relaxaçãop Lagrangeana tem sido usada com sucesso, combinada
com heuristicas, para obter soluções aproximadas do problema. Propõe-se neste trabalho a
abordagem de heuristica Lagrangeana/surrogate ao problema das p-medianas. As relaxações
Lagrangeana e surrogate são combinadas relaxando inicialmente de forma surrogate as
restrições de atribuição na formulação do problema. Em seguida, a relaxação Lagrangeana da
restrição surrogate é obtida e aproximadamente otimizada (dual uni-dimensional). A
relaxação Lagrangeana/surrogate é estavel e produz os mesmos bons limites da Lagrangeana
em tempo computacional reduzido. Este trabalho apresenta testes computacionais com ambas
as relaxações, usando instâncias de problemas testes diponíveis na literatura, um conjunto de
instâncias que apresentam grande “gap” de dualidade e outro formado por intâncias que
consomem grande tempo compuatcional.
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1. Introduction

The search for p-median nodes on a network is a classical location problem. The objective is
to locate p facilities (medians) so as to minimize the sum of the distances from each demand
point to its nearest facility.

Hakimi [11,12] was the first to formulate the problem for locating a single and multi-
medians. He also proposed a simple enumeration procedure to solve the problem. The
problem is well-known to be NP-hard [9]. Several heuristics have been developed for p-
median problems. Some of them are used to obtain good initial solutions or to calculate
intermediate solutions on search tree nodes. Teitz and Bart [23] proposed simple interchange
heuristics (see also Maranzana [19] ).  More complete approaches explore a search tree. They
appeared in Efroymson and Ray [5], Jarniven and Rajala [15], Neebe [21], Christofides and
Beasley [3], Beasley [2] and Galvão and Raggi [8]. The combined used of Lagrangean
relaxation and subgradient optimization in a primal-dual viewpoint was found to be a good
solution approach to the problem [2,3,8].

Beasley [2] describes very effective heuristics for a class of location problems. They are
called Lagrangean heuristics, and use Lagrangean relaxation and subgradient optimization.
At each subgradient iteration, Lagrangean solutions are made primal feasible by applying
simple heuristics, that are followed by interchange heuristics after a number of iterations.
Lorena and Narciso [18] introduced relaxation heuristics for generalized assignment
problems, using a generalized subgradient algorithm. The new relaxation presented is a
surrogate relaxation that was used before in other applications, such as set covering problems
[15] and multidimensional knapsack problems [6]. For the problems and instances studied,
the performance of surrogate heuristics to find near-optimal solutions reduced computations
times by a factor of two, relative to the corresponding Lagrangean heuristics with similar
bounds.

The objective of this work is to compare Lagrangean/surrogate and Lagrangean (alone) for p-
median problems. The Lagrangean/surrogate combines the two well-known Lagrangean and
surrogate relaxation for the p-median problem. The relaxations are combined relaxing in the
surrogate way the assignment constraints in the p-median formulation. Then, the Lagrangean
relaxation of the surrogate constraint is obtained and approximately optimized (one-
dimensional dual). Lagrangean/surrogate relaxations are very stable (low-oscillating) and
reach the same good results of Lagrangean (alone) heuristics in less computational times. The
set of test problems is divided in two, one with small problems presenting large dual gaps
and other with the (hard) time consuming instances of the OR-library [1], i.e., the instances
for which the number of medians is about 1/3 of the number of nodes.

In section two we present the relaxation used and some theory to explain their good behavior.
Section three details the general subgradient heuristic. The computational tests  which have
been conducted with problems from the literature are presented in the next section. We
conclude confirming that the Lagrangean/surrogate heuristic is better than the Lagrangean
alone heuristic for time consuming p-median instances.

2.  The Lagrangean/Surrogate Relaxation

The p-median problem considered in this paper is modeled as the following binary integer
programming problem:
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where:

[dij]nxn is a symmetric cost (distance) matrix, with dii = 0, ∀ i;
[xij]nxn is the allocation matrix, with xij = 1 if node i is allocated to node j, and xij = 0,

otherwise; xii = 1 if node i is a median and xii = 0, otherwise;
p is the number of facilities (medians) to be located;
n is the number of nodes in the network, and N = {1, ..., n}.

Constraints (1) and (3) ensure that each node  j  is allocated to only one node  i , which must
be a median. Constraint (2) determines the exact number of medians to be located (p), and
(4) gives the integer conditions.

We use here relaxation heuristics to approximately solve problem (P). The surrogate and
Lagrangean/surrogate relaxation are presented as follows.

As proposed by Glover [10], for a given λ ∈ Rm
+ , a surrogate relaxation of (P) can be defined

by:
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and (2), (3) and (4).

The optimal value v(SPλ) is less than or equal to v(P), and its best value can result in a

surrogate dual max
λ≥0

 v(SPλ). The surrogate function s: Rm
+ → R, (λ, v(SPλ)) has some

properties that make it difficult to find a dual solution. Some methods proposed in the
literature find the approximate solution of the surrogate dual, such that of Dyer [4] and

Karwan and Rardin [16]. Note here that problem (SPλ) can not be easily solved, as it is an
integer linear problem with no special structure to explore. See [22] for a book describing
Lagrangean and surrogate relaxations.

Due to the difficulties with relaxation (SPλ) we proposed to relax again the problem, now in
the Lagrangean way. For a given  t ≥ 0, constraint (5) is relaxed, and the
Lagrangean/surrogate relaxation is given by:
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subject to (2), (3) and (4).

For given t ≥ 0 and λ ∈ Rm
+ , v(LtSPλ) ≤ v(SPλ) ≤ v(P). (LtSPλ) is solved considering

implicitly constraint (2) and decomposing for index i , obtaining the following  n  problems
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Each problem is easily solved letting
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and choosing  I  as the index set of  the  p  smallest  βi  (here constraint (2) is considered

implicitly). Then, a solution xij
λ  to problem (LtSPλ) is:

x
if i I

otherwiseii
λ =

∈



1

0

,

,

and for all  i  ≠  j

x
if i I and d t

otherwiseij

ij jλ λ
=

∈ − <



1 0

0

,

,

The Lagrangean/surrogate solution is given by:
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The interesting characteristic of relaxation (LtSPλ), is that for  t = 1  we have the usual
Lagrangean relaxation using the multiplier λ. For a fixed multiplier  λ , the best value for  t
can be found by solving a Lagrangean dual:

( Dt
λ ) v( Dt

λ ) =  max
t ≥ 0

 v(LtSPλ).

It is immediate that  v(SPλ) ≥ v( Dt
λ ) ≥  v(L1SPλ). It is well-known that the Lagrangean

function

l:R+ → R, (t,v(LtSPλ)), is concave and piecewise linear [22]. The best Lagrangean/surrogate
relaxation value gives an improved bound to the usual Lagrangean relaxation. An exact
solution to ( Dt

λ ) may be obtained by a search over different values of  t  (see Minoux [20]
and Handler and Zang [13]). However, in general, we have an interval of values  t0 ≤ t ≤ t1
(with t0 = 1 or t1 = 1) which also produces improved bounds (see Figure 1, for the case  t1 =
1).
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Figure 1: Lagrangean/surrogate bounds.

So, in order to obtain an improved bound to the usual Lagrangean relaxation it is not
necessary to find the best value  t* , as is enough to find a value  T  such as  t0 ≤ T ≤ t1. To
find the approximate best Lagrangean/surrogate multiplier  T  we have used the following
search procedure:

Search Heuristic (SH)

Given S (the initial step size) and M (the maximum number of iterations) let  t  be the current
Lagrangean/surrogate multiplier, s  be the current step size, k  be the current number of
iterations, and z be the current best lower bound.

Set t = 0, s = S, z = 0, k = 0;
Repeat

Update t and n using t = t + s and k = k + 1;
If k > M then stop

Else solve (LtSPλ)
End_If

If v(LtSPλ) > z then do the following:

Set T = t and z = v(LtSPλ);

Calculate the slope ωλ of the Lagrangean/surrogate dual function using 
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;

If ωλ < 0 then try to improve the current multiplier solving ( L SPt s− /2
λ ), updating T if

necessary and stop
End_If

Else
Try to improve the current multiplier solving ( L SPt s− /2

λ ), updating T if necessary;

If  n M≤ / 2  then the initial step size is too large and must be halved for the next
procedure applications so update S by setting S = S/2;
Stop
End_If



End_if
Until (stop conditions).

3.  The General Subgradient Heuristic

The following general subgradient algorithm is used as a base to the relaxation heuristics
proposed in this work. In this algorithm the sets  O  and  C  are defined as: O = { i | xii = 1 }
and  C = { i | xii = 0 }, that is, O  is the set of nodes already fixed as medians and  C  is the
set of nodes already fixed as non-medians.

General Subgradient Heuristic (GSH)

Given λ ≥ 0, λ ≠ 0;
Set lb = - ∞, ub = + ∞, O = ∅, C = ∅;
Repeat

Solve relaxation (Rλ) (Lagrangean or Lagrangean/surrogate)

obtaining xλ and v(Rλ);

Obtain a feasible solution  xf  and  vf  = d xij f ij
j
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;

Update lb = max [lb, v(Rλ)];
Update ub = min [ub, vf];

Fix xii  at the value α  ( α ∈ {0,1} )  if v(Rλ   xii  = 1 - α ) ≥ ub, i ∈ N - (O ∪ C);
Update the sets O and C accordingly;

Set g xj ij
i

n
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, j ∈ N;

Update the step size θ;

Set λj = max { 0, λj + θ. g j
λ  }, j ∈ N;

Until (stopping tests).

GSH have some early successful applications to generalized assignment problems [18], set
covering problems [17] and 0-1 multiknapsack problems [6].

Two versions of GSH have been tested and the computational results are reported in the next

section. They differ on the relaxation  (Rλ)  used. The first algorithm uses the well-know

Lagrangean relaxation  (Rλ) = (L1SPλ), and reproduces the Lagrangean heuristic of [2].

The second algorithm uses the new Lagrangean/surrogate relaxation (Rλ) = (LTSPλ), where
T  is the approximately best value for  t  obtained by the procedure SH described in section
two. SH results in a multiplier  T  which is used in the Lagrangean/surrogate relaxation.
However, if the search procedure produces the same multiplier  T  for  P  consecutive
iterations of GSH, then the next Lagrangean/surrogate relaxations will use this fixed value  T
as the multiplier and the search is no demand nodeperformed. In this work we have used the
following parameter values in SH:  S = 0.5,  M = 5  and      P = 10.



For both algorithms the initial  λ  used is  λ j
i N

ijd=
∈

min { } , j ∈ N . The step sizes used are:

θ = π (ub - lb) / || gλ ||2 . The control of parameter  π  is the Held and Karp [14] classical
control. It makes  0 ≤ π ≤ 2, beginning with  π = 2  and halving  π  whenever  lb  does not
increase for  30  successive iterations.

The stopping tests used are:

a) number of iterations greater than 1000;
b) π ≤ 0.005;
c) ub - lb < 1.

Solution  xλ  is not necessarily feasible to (P), but the set   I   identifies median nodes that can

be used to produce feasible solutions to (P). Two heuristics are used to make  xλ  primal
feasible. The first calculates the upper bound at each iteration of GSH while  π  is not halved.
This heuristic simply makes:
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The second, as suggested by Beasley [2], is an interchange heuristic which is used when  π  is
updated to  π/2. Considering that in expression (6) the  βi (i ∈ N)  are sorted in ascending
order, this heuristic applies the following procedure:

Interchange Heuristic (IH)

Set U d
i Ij

n

ij=
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∑ ( min )
1

 corresponding to the solution xλ associated with the current

maximum lower bound lb.

Set  m = max (25, n/10);
 m = min (m, n-p);

For j = p+1 to p+m ; j ∉ C do
For i = 1 to p ; i ∉ O do

Interchange βi with βj, updating I accordingly;

v df
i Ij

n

ij=
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∑ ( min )
1

If  vf < U  then  U = vf
Else interchange βi with βj and update I
End_If

End_For
End_For
If  U < ub  then ub = U
End_If



4.  Computational Tests

The Lagrangean and Lagrangean/surrogate heuristics discussed above were programmed in C
and run on a IBM Risc/6000 model 3AT workstation (compiled using xlc compiler with -O2
optimization option).

An initial set of instances used for the tests are obtained from the work of Galvao et al. [7],
and although small (n = 100 and n = 150), the instances present duality gaps larger than to
1%  for some values of  p (number of medians). They can be considered hard instances for
Lagrangean approaches in the sense of duality gaps.

The other set of instances are drawn from OR-Library [1], and can be considered easy
problems for Lagrangean approaches in the sense of duality gaps. The gaps can be all closed
[2].

For this work the objective is to show that Lagrangean/surrogate are better than Lagrangean
(alone) heuristics in computational times performance. The first set of instances [7] are
included only to show that the duality gaps performance of both relaxations are comparable,
even in presence of large gaps. The second set of instances was used for computational times
comparison. The time consuming instances of the OR-Library set are those presenting  ratios
n/p  approximately equal to  3 , and are then selected for the tests. The instances (n = 700, p =
233), (n = 800, p = 267) and (n = 900, p = 300) were not considered in the OR-Library, and
their optimal values were obtained running the Lagrangean/surrogate heuristic without limit
of iterations searching for the optimality condition
ub - lb < 1.

The results are reported in the tables below (all computer times shown exclude the time
needed to setup the problem).

Tables 1 and 2 show the results obtained by Lagrangean heuristic and Lagrangean/surrogate
heuristic,  respectively for the Galvao et al. [7] and OR-Library instances. Each table
contains:

a) gap1 := (100 * [ub - optimal] / optimal), is the percentage deviation from optimal to the
best feasible solution value found by the corresponding heuristic procedure;

b) gap2 := (100 * [optimal - lb] / optimal), is the percentage deviation from optimal to the
best relaxation value found by the corresponding heuristic procedure; and

c) The ratio between the total computational times, Lagrangean/surrogate by Lagrangean (in
IBM Risc/6000 seconds).

From Tables 1 and 2 we can see that in terms of duality gaps, Lagrangean/surrogate
heuristics reach the same (good) results of Lagrangean (alone) heuristics. The total
computational times are almost the same for the small instances of table 1, but in table 2 the
Lagrangean/surrogate heuristic was able to find the same results using in mean 80% of time
needed by the Lagrangean (alone) heuristic.



Lagrangean Lagrangean/Surrogate Ratio
Prob. n p Optimal

solution
gap1 gap2 gap1 gap2 Time(LS)/

Time(L)
1 100 5 5703 - 0,340 - 0,346 1,12
2 10 4426 1,469 3,746 2,327 3,728 1,11
3 15 3893 0,899 0,900 0,308 0,895 1,01
4 20 3565 0,084 0,089 - 0,093 1,00
5 25 3291 - 0,061 - 0,067 1,05
6 30 3032 0,066 0,065 - 0,056 1,09
7 40 2542 - - - - 1,08
8 50 2083 - - - - 0,63

9 150 5 10839 - 1,402 - 1,404 0,94
10 10 8729 0,378 3,154 0,722 3,158 0,87
11 15 7390 3,315 4,917 1,922 4,906 1,02
12 20 6454 3,099 2,978 3,037 2,975 1,11
13 25 5875 1,617 1,015 1,191 1,009 1,12
14 30 5495 1,292 0,212 0,928 0,208 1,01
15 40 4907 0,102 0,065 0,061 0,068 1,02
16 50 4374 - 0,068 - 0,062 1,02

Average Values 0,770 1,188 0,656 1,186 1,01
Table 1: Computational results for the Galvao et al. [7] instances.

Lagrangean Lagrangean/Surrogate Ratio
Prob. n p Optimal

solution
gap1 gap2 gap1 gap2 Time(LS)/

Time(L)
1 100 33 1355 - - - - 0,502
2 200 67 1255 - - - - 0,723
3 300 100 1729 - - - - 0,872
4 400 133 1789 - - - - 1,268
5 500 167 1828 - - - - 0,859
6 600 200 1989 - - - - 0,782
7 700 233 1847 - - - - 0,634
8 800 267 2035 - - - - 0,629
9 900 300 2106 0,047 0,003 0,807 0,001 0,996

Average Values 0,003 0,000 0,050 0,000 0,807
Table 2: Computational results for the time consuming instances of OR-Library [1]

The total time is largely influenced by the stop tests, and cannot serve as a controlled
measure. We decided to control the running times for the instances in table 2 collecting the
times necessary to gap2 be at least some pre-fixed values (9, 7, 5, 3 and 1). Table 3 shows the
time ratios for gap2 to reach the fixed values. The ratios consider Lagrangean/surrogate by
Lagrangean times. The average values show that the Lagrangean/surrogate used only 38 to
54% of the times needed by the corresponding Lagrangean. For time consuming instances it
can be very interesting. For example,  the running time used by the Lagrangean heuristic to
reach gap2 = 1 using the instance (600,200) (one with the worst ratio in table 3)  was
approximately 1120 seconds, while the Lagrangean/surrogate used only  672 seconds.



Time ratios (LS/L) for gap 2 = fixed value
n p gap2 = 9 gap2 = 7 gap2 = 5 gap2 = 3 gap2 = 1 Total

100 33 0,66 0,45 0,45 0,45 0,55 0,502
200 67 0,40 0,41 0,41 0,71 0,57 0,723
300 100 0,44 0,44 0,44 0,35 0,57 0,872
400 133 0,39 0,39 0,39 0,54 0,43 1,268
500 167 0,38 0,38 0,38 0,53 0,62 0,859
600 200 0,36 0,36 0,36 0,51 0,61 0,782
700 233 0,34 0,34 0,34 0,26 0,51 0,634
800 267 0,34 0,34 0,34 0,35 0,51 0,629
900 300 0,34 0,34 0,34 0,34 0,50 0,996

Average Values 0,41 0,38 0,38 0,45 0,54 0,807
Table 3: CPU time the time ratios for gap2 reach some fixed values.

In order to compare the computational behavior of Lagrangean and Lagrangean/surrogate

heuristics we have plotted (see Figure 2) the values of v(LtSPλ) obtained at each iteration
from these heuristics for problem n = 600 and p = 200. We can observe that the sequence of
Lagrangean/surrogate relaxations are more stable than the corresponding Lagrangean ones.
The local searches in SH at the first iterations of GSH accelerated the overall converge of the
Lagrangean/surrogate, although without loss of quality in duality bounds.
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Figure 2. Computational behavior

5. Conclusion

This work considers a Lagrangean/surrogate approach to relaxation heuristics for p-median
problems. The Lagrangean/surrogate heuristic was able to generate approximate solutions in
a computational time that is about 38% of computational time needed for Lagrangean (alone)
heuristic, without loss of quality for duality gaps. We hope that this feature can be explored
for even large scale problems to produce high quality approximate solutions at reasonable



computational cost. The Lagrangean/surrogate heuristic seems to be better than the ordinary
Lagrangean relaxation for all the time consuming instances tested.
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