
On wavelet techniques in atmospheric sciences

Margarete Oliveira Domingues

LAC/CTE
National Institute of Space Research - INPE

12201-970 São José dos Campos, São Paulo, Brazil

Odim Mendes Jr.

DGE/CEA
National Institute of Space Research - INPE

12201-970 São José dos Campos, São Paulo, Brazil

Aracy Mendes da Costa

DGE/CEA
National Institute of Space Research - INPE

12201-970 São José dos Campos, São Paulo, Brazil

Abstract

Wavelet analysis has been formalized extensively due to the efforts of mathematicians,
physics and engineers in the last two decades. It has generated a tremendous interest in
these communities both in theoretical and applied areas, in such a way that wavelet analysis
is also considered now as a nucleus of shared aspirations and ideas. Initially applied to
seismic signal studies in geophysics in the 80’s, wavelet techniques have been explored in
the atmospheric sciences since the pioneer applications in turbulence studies. If one decides
to apply the wavelet analysis to a given signal, it is worthwhile to assess the actual need
of the technique itself and the best way to perform it. In atmospheric signal applications,
two main directions have been followed: the singularity and the variance analysis. In this
paper the potential uses of this tool supported by some recently published works in the
field of atmospheric sciences are discussed. Therefore, initially the characteristics and main
properties of the wavelet analysis are presented, focusing on those that are mostly used in
the analysis of atmospheric signals. Continuous and discrete wavelet transforms are also
discussed, as well as the scalograms and the variance analysis. Finally some examples of
wavelet analysis applied to a wide range of atmospheric science phenomena are presented.

Preprint submitted to Elsevier Science 8th September 2004



1 Introduction

The wavelet analysis is a mathematical technique which is very useful for numer-
ical analysis and manipulation of multidimensional discrete signal sets. Originally
applied in geophysics to the analysis of seismic signals, the wavelet transforms
were better and broadly formalized thanks to mathematicians, physicists, and en-
gineers efforts (Morlet, 1983). Therefore, the use of wavelet techniques in data
analysis has exponentially grown, since it represents a synthesis of old techniques
associated with robust mathematic results and efficient computational algorithms
under the interest of a broad community (Daubechies et al., 1992). In a rapidly
developing field, overview papers are particularly useful, and several good ones
concerning to wavelets are already available (Daubechies, 1992; Chui, 1992a,b;
Jawerth and Sweldens, 1994; Chui, 1994; Strang and Nguyen, 1996).

In atmospheric applications, the main characteristic of the wavelet technique is the
introduction of the time-frequency decomposition. A well known example of such
a behavior can be found in the musical structure, where it has been interpreted as
events localized in time. Although it belongs to a more complex structure, a piece of
music can be understood as a set of musical notes characterized by four parameters:
frequency, time of occurrence, duration and intensity (Daubechies, 1992; Lau and
Weng, 1995).

In the last decades wavelet technique has been extensively adopted in the atmo-
spheric sciences. Among the pioneer applications stand out the turbulence studies
(Meneveau, 1991; Farge, 1992; Gao and Li, 1993; Katul et al., 1994) and the inter-
annual and inter-seasonal variations of the South Oscillations and El Niño (Gambis,
1992).

When wavelet analysis is used to study a given signal, it is essential to choose the
best wavelet representation for the signal under study. There are many relevant texts
on this subject, for exampleFoufola-Georgoiu and Kumar(1994); Sweldens and
Schröder(1995); Lau and Weng(1995); Strang and Nguyen(1996) andTorrence
and Compo(1998). In statistical applications, the wavelet analysis has also been
deeply studied (Houdré, 1994; Percival and Walden, 2000; Vidakovic, 2000). In
the Appendix some web pages containing useful information and software about
wavelet technique are presented.

In this context, two main directions have been followed for the atmospheric signal
analysis: the singularity analysis and the variance wavelet analysis or, in analogy
with Fourier terminology, the wavelet spectrum.

The purpose of this paper is to help the potential users of this tool offering a tu-
torial based on some recently published articles in the field. In the following ses-
sions some basic concepts on wavelet analysis, scalogram and wavelet variance are
present, as well as some hints to properly select the wavelet family.
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2 Wavelet concepts

The word wavelet was adopted to express the idea of "small waves" in an intuitive
meaning associated with localized waves, i.e., , wave-like functions whose values
increase and decrease in a short period of the domain. In order to a function be
called a wavelet it must satisfy the following conditions.

1) The integral of the wavelet function, usually denoted by , must be zeroZ 1
�1  (t) dt = 0:

This assures that the wavelet function has a wave shape and it is known as the
admissibility condition.

2) The wavelet function must have unitary energy, i.e.,Z 1
�1 j (t)j2 dt = 1:

This assures that the wavelet function has compact support or has a fast am-
plitude decay (in a physical vocabularye-folding time), warranting a physical
domain localization.

The Fourier transform is a widely used tool for stationary signal analysis where
all frequencies have an infinite coherence in time. The Fourier analysis brings only
global information which is not sufficient to detect compact patterns. Gabor intro-
duced a local Fourier analysis, in which a sliding window, leads to a time frequency-
analysis. This method is only applicable to situations where the coherence time is
independent of the frequency. This is the case, for instance, for “singing–signals”
which have their coherence time determined by the geometry of the oral cavity (Ga-
bor, 1946). Morlet introduced the wavelet transform in order to have a coherence
time proportional to the period (Meyer, 1989).

The wavelet transform is linear and covariant under translation and dilatation trans-
form. The wavelet transform can be used in the analysis of non-stationary signals
to obtain information on the frequency or scale variations of those signals and to
detect its structures localization in time and/or in space. The time/space localization
occurs because the wavelet function is defined in a finite interval. In this way, as the
scale decreases, the wavelet functions of those scales are localized in shorter and
shorter intervals. In each scale level all wavelet functions have the same form, only
changing its localization points, i.e., they undergo a translation motion. Due to the
double localization property of the wavelet function, the wavelet transform is said
to be of local type in time–frequency, with time and frequency resolutions inversely
proportional. Such behavior is shown in the graph of time/space(x) vs frequency
(�) plane presented in Fig. 1. Proportional variations of time/space and frequency
intervals are presented on the left for three different types of scale. On the right,
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the wavelet function is shown, when the scale parameterj = 0, a dilatation for the
mother–wavelet, whenj > 0 and a contraction of the mother–wavelet whenj < 0.
Thus, the wavelet transform has this double localization property: in frequency and
in time/space, with a compromise between them.

Figure 1. Time/space vs frequency plane representation. Proportional variations of time
and frequency intervals are presented on the left. On the right, the dilatation/contraction of
a wavelet function in those respective intervals is shown.

3 Continuous wavelet transform (CWT )

The CWT of a time seriesf is defined by the integral transform,

W
 
f (a; b) = Z 1

�1 f(u) � a;b(u) du a > 0;
where

 a;b(u) = 1pa  
 u� ba

!
represents a chosen wavelet function family, named mother–wavelet . The param-
etera refers to a scale,b is a translation parameter or localization of the mother–
wavelet function and� a;b(u) is the conjugate complex of a;b(u) . The variation ofa has a dilatation effect (whena > 1) and a contraction effect (whena < 1) of
the mother–wavelet function. Therefore, it is possible to analyze the long and short
period features of the signal or the low and high frequency aspects of the signal. Asb varies, the functionf is locally analyzed in the vicinities of this point.
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Such a transform is called the continuous wavelet transform (CWT ), because the
scale and localization parameters assume continuous values. The CWT of a time
series can be visually represented by an image or a field of isolines. It is also pos-
sible to get the inverse function of this transform, namely:

IW
 
f (u) = 1C 

Z 1
�1

Z 1
0

1a2 W 
f (a; b) � a;b(u) da db;

whereC is a constant that depends on the chosen wavelet function.

The CWT is equivalent to a mathematician microscope, whose magnification is
given by the inverse of the dilatation parameter and the optical ability is given by
the choice of the mother-wavelet function (Foufola-Georgoiu and Kumar, 1994).

A Morlet mother–wavelet is formed by a plane wave modulated by a gaussian func-
tion and it is given by

 (t) = �� 1
4
�ei�t � e� �2

2
� e�t

2

2 ;
where� is a non dimensional value. Ordinarily� is assumed to be equal to5 to
make the highest and lowest values of be approximately equal to1=2, thus the
admissibility condition is satisfied (Daubechies, 1992). A graph of this function is
presented in Fig. 2, in the left, the real part, and on the right, the complex one.
Since this wavelet is a complex function it is possible to analyze the phase and the
modulus of the decomposed signal.

Figure 2. Graph of real and complex part of Morlet mother–wavelet

Another mother–wavelet known as mexican–hat or Maar is the second derivative of
the gaussian probability density function, expressed as

 (t) = 2p3 � 1
4
e�t

2

2
�
1� t2� :
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This function has an infinite support; nevertheless its effective support is in the
interval [-5,5] as can be seen in Fig. 3. It is a isotropic function in high-order di-
mension.

Figure 3. Graph of mexican-hat mother–wavelet .

4 Discrete wavelet transform

In the CWT derivation, most of the information related to close scales or times
is redundant. These procedures result in a high computational cost, that in some
cases, could be solved using an adequate discrete wavelet transform (DWT ), which
uses discrete values of scale (j) and localization (k). In such case, one may have
redundant representations or not, depending on the discretization scheme used. To
avoid redundancies, one can choose wavelet functions that form an orthogonal basis
and define the DWT as

Df
j
k =

Z 1
�1 f(u) � jk(u) du;

where  jk(u) = 2� j
2  �2�ju� k� :

Such sets of wavelet functions are orthogonal and their respective functions are
translated and dilated.

Signalsf(u) are represented by series such as

f(u) = 1X
j=�1

1X
k=�1

djk  jk(u);
where jk(u) =  (2ju� k) are wavelet functions anddjk are wavelet coefficients

djk = Z f(u) jk(u)du:
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As a property of the wavelet analysis, it is possible to show that the amplitude
of the wavelet coefficients is associated with abrupt signal variations or ”details´´
of higher frequency (Meyer, 1990; Daubechies, 1992; Chui, 1992b). On the other
hand, the Fourier transform is unable to recognize this transition region. In the
Fourier analysis only the presence of the involved frequencies is detected. No in-
formation on the spatial localization of these frequencies is given.

The most simple orthogonal mother-wavelet function is the Haar wavelet

 (u) =
8>>>>><>>>>>:

1; 0 � u < 1
2

�1; 1=2 � u < 1
0; otherwise:

The DWT using Haar wavelet detects signal abrupt variations, i.e., one localization
feature in the physical space.

It is possible to build up wavelet functions using a mathematical tool known as
multi-resolution analysis formed by a pairfV j; �jg, in such a way that there are
sequences of embedded approximating spacesV j � V j�1 and the functions�jk
formed a Riesz basis forV j of L2(R=Z) (Mallat, 1991; Daubechies, 1992; Jawerth
and Sweldens, 1994), being

Vj = span
n�jk(x)o :

In this technique, a mother-wavelet function is generated from a scaling function.
It obeys the scale relation

�(x) = 2X
k
h(k)�(2x� k);

where�(x) is known as the scale function, andh(k) is a low pass filter. Then, the
mother–wavelet functions are build as

 (x) =X
k
g(k)�(2x� k);

whereg(k) = (�1)k+1h(1 � k) is a high–pass band filter. From this mother–
wavelet, it is possible to build up functions jk that can be dilated and contracted.
They also formed a Riesz basis for the “detail´´ spacesW j = V j�1 � V j. This
represents the difference of information betweenV j andV j�1, i.e.,

(�j�1 � �j)f(x) = Qjf(x);
where the projections are

�jf(x) =X
k

Df; �jkE�jk(x);
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and the details are Qjf(x) =X
k

Df;  jkE jk(x):
This procedure allows that a basis with compact support and arbitrary smoothness
degree can be build up. They form a orthogonal system, i.e.,

Z 1
�1  (2�jx� k)  (2�`x� n) dx =

8><>: 2�j if j = ` andk = n;
0 otherwise.

This means that no redundant informations are stored.

The Daubechies orthogonal wavelet functions are examples of that type of con-
struction. Those functions do not have analytical expressions and are not symmet-
ric. Theh(k) coefficients are zero fork < 0 and fork � 2K, whereK is related

to the smoothness order of the wavelet. The support of� = �K is [0; K2 � 1]. Ta-

ble 1 presents this coefficients forK = 2; 3 and4. Fig. 4 shows typical examples
of Daubechies orthogonal function families forK = 3 and4.

Table 1
Scale coefficienth(k) for Daubechies orthogonal functions

K = 2 K = 3 K = 4

k h(k) h(k) h(k)

0 0.341506350946110 0.235233603892082 0.162901714025649

1 0.591506350946109 0.570558457915722 0.505472857545914

2 0.158493649053890 0.325182500263116 0.446100069123380

3 -0.0915063509461096-0.0954672077841637 -0.0197875131178224

4 -0.0604161041551981 -0.132253583684520

5 0.0249073356548795 0.0218081502370886

6 0.0232518005354909

7 -0.00749349466518071

To obtain two dimensional multi–resolution analysis, the most commonly used
method is the tensor product (Mallat, 1991; Daubechies, 1992). This procedure can
be used to construct separable bi-orthogonal multi-resolution analysis ofL2(T),
whereT = R=Z � R=Z. Starting from an univariate orthogonal multi-resolution
analysisfV j; V jg, the vector spaces

Vj = V j � V j
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K = 3

K = 4

Figure 4. Typical examples of Daubechies orthogonal scale and wavelet function families.

are formed by tensor product of two identical subspacesVj, then

Vj = span
n
�jk;l(x; y) = �jk(x)�j`(y)o :

Consider also the vector spacesWj spanned by the three families of wavelet

�j
k;`

(1)(x; y) = �jk(x) j`(y); �j
k;`

(2)(x; y) =  jk(x)�j`(y); �j
k;`

(3)(x; y) =  jk(x) j`(y):
The following relations hold

Vj � Vj�1; Vj�1 = Vj �Wj:
The difference of information betweenVj andVj�1 is given by

(�j�1 � �j)f(x; y) = Qj(1)f(x; y) +Qj(2)f(x; y) +Qj(3)f(x; y);
where the projections are

�jf(x; y) =X
k

X
`

Df;�jk;`E�jk;`(x; y)

9



and three detail projections are

Qj(a)f(x; y) =X
k

X
`

�f;�j
k;`

(a)
�
�j
k;`

(a)(x; y);
for a = 1; 2 and3.

In order to get symmetry, it has been developed a procedure using two multi-
resolution analysis, formed by pairsfV j; �jg, fV �j; ��jg, with defined orthog-
onal relations. This has led to the construction of the Daubechies bi-orthogonal
spline families. This kind of wavelet family is usually used in numerical analysis
or situations where symmetry is important. More details about these families see in
Daubechies(1992).

5 Scalogram and variance analysis

The wavelet transform is a transform that preserves the energy. In analogy with
the terminology adopted in Fourier analysis, the squared modulus of the wavelet
coefficients of the CWT is called scalogram and the product of two CWT of distinct
functions is called cross-scalogram (Flandrin, 1988). The scalogram informs if the
analyzed signal has multi-scale characteristics and which scales participate in the
processes depicted by the signal.

Focusing on the measurement and characterization of the local kinetic energy in
each scale in turbulence flow, the variance wavelet analysis or the wavelet spectrum
has been originally defined byMeneveau(1991) as

S(a) = Z 1
�1W

 
f (a; t)dt:

It is also possible to derive the wavelet spectrum starting from the DWT . In such
case, considering signals with zero average andN = 2J elements, the total energy
contained in each scalej is expressed by

E(kj) = ds
2 � ln(2) 2(j�J)

2J�jX
k=1

h djk i2 ;
with the wave number kj = 2�

2j ds;
whereds is the interval of the observed samples (Katul et al., 1994; Percival and
Walden, 2000). In terms of the scale the resolution is performed only on octaves.
In the Fourier analysis, the wave number is spaced linearly. The deviations of the
energy around their mean value can be quantified by the variance ofE(kj), which
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is essentially a fourth order moment (flatness) of the wavelet coefficient. Thus, the
standard deviation of the energy is defined as

�E(kj) = ds
2 � ln(2) 2(J�j)+1

8<:2J�jX
k=1

h djk i4 � 2J�jX
k=1

h djk i2
9=;

1
2 :

In Fig. 5(a) a comparison between wavelet and Fourier spectra are presented for the
zonal wind component from a micro-meteorological tower in Rebio Jaru (Amazon
region). It is easily noticed that the wavelet spectrum is smoothed. Wavelet trans-
form coefficients are influenced by local events; whereas in the Fourier transform,
the coefficients are functions of the domain as a whole. This makes the wavelet
spectrum a better measurement of the variance attributed to localized events. An-
other advantage of such spectrum is that it can be build up even when there are gaps
in the time series. This makes the long period analysis easier and feasible. The lo-
cal maximum in this spectrum provides information on scales in which important
characteristics or coherent events contribute significantly.

(a) wavelet spectrum (b) wavelet co-spectrum

Figure 5. One example of wavelet spectrum of the zonal wind component and
co-spectrum of temperature and vertical wind component of turbulent signals from a mi-
cro-meteorological tower in Rebio Jaru (Amazon region) in (a) and (b) respectively. In (b),
a standard power law function is also shown in the upper part.
Source:Domingues et al.(2002)

Similarly, it is also possible to define a wavelet co-spectrum of two functionsf andg of their wavelet coefficientsdj in j scales, by means of

Cjw = ds
2j ln(2)

2jX
k=1

dj;(f)k dj;(g)k ;
wheredj;(f)k anddj;(g)k are the wavelet coefficients obtained in the wavelet transform
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of the functionsf ang respectively.

In Fig. 5(b) wavelet co-spectra of temperature and vertical wind component for 30
minutes periods of part of one morning, from a micro-meteorological tower in Re-
bio Jaru (Amazon region), is presented. In the upper part of this graph a theoretical
power law line for this kind of spectra data is also shown.

Some relations among wavelet coefficients and higher order moments, as symmetry
and flatness, have also been defined (Meneveau, 1991; Katul et al., 1994; Percival
and Walden, 2000; Vidakovic, 2000).

6 How to choose a wavelet function?

An issue that is always emerging in the application of wavelet techniques is the
choice of the wavelet function appropriate to an specific signal. In order to demon-
strate the possibilities of this transform and its dependence on the characteristics
of the chosen wavelet, a synthetic sinusoidal signal which contains two different
frequencies(�=8; �=2) is analyzed by means of the mexican hat mother-wavelet
and the Morlet mother-wavelet in Fig. 6.

In the upper panel of this figure the signal representation is given. In the others,
the Fourier spectrum and after it the scalogram using Morlet mother-wavelet and
mexican–hat mother–wavelet are presented. In Fourier spectrum only the frequency
localization is given. No information about time localization is possible. In both
wavelet scalograms, the time localization of the period changes can be clearly de-
tected. It is also possible to observe that there is a better frequency localization
of Morlet wavelet transform, although it has a worse time localization, this is ex-
pected by the Heisenberg’s uncertainty principle (Daubechies, 1990). The wavelet
variance can be used to determine the exact values of the characteristic frequen-
cies. In the example this is possible only for the Morlet-wavelet, which has the
best localization in frequency domain and could be compared with the frequencies
showed in the Fourier spectrum. It is also possible to observe that the high values of
the modulus of the wavelet coefficients indicate a transition region among different
types of movements.

Some recommendations can be useful, although this procedure can be developed in
several ways.

� The shape of the chosen wavelet function must translate the characteristics of
the time series. For example, to represent a time series with abrupt variations
or steps, the Haar wavelet may be the most convenient; in the analysis of time
series with smoother variations, the mexican hat and Morlet wavelet can be rec-
ommended.

12



Figure 6. Representation of an oscillatory function with low and high frequencies spatially
displaced and the respective Fourier spectrum and wavelet scalogram for Morlet and mex-
ican hat mother–wavelet.

� When the analysis is focused on amplitude and phase changes, a complex wavelet,
as the Morlet wavelet, can be the most appropriate. This helps to retrieve the os-
cillatory behavior of the data.

� In an exploratory analysis of data, non–orthogonal wavelet functions seem help-
ful, because they allow a redundancy in the information.

� To synthesize data and make compressions, orthogonal wavelet functions are
used, since they represent the signal in a more compact way.

� When a quantitative information about a process is needed, orthogonal wavelet
functions are the better choice (Kumar and Foufoula-Georgoiu, 1997). When
only the wavelet spectrum is analyzed qualitatively, this choice does not seem to
affect the results. This has been established byKatul et al.(1994) andTorrence
and Compo(1998), for turbulence data and series of climatic data.

7 Applications

In the analysis, wavelet techniques are basically used in two ways: as an integra-
tion nucleus of the analysis to get information about the processes and/or as a char-
acterization basis of the processes. Some selected papers, here shortly described,
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reveals applications in a wide range of phenomena. Ranging from issues related to
atmospheric-ocean interactions to nearby space conditions, all aspects are related
to the atmosphere as a whole.

Several authors have discussed the problem of choosing the Daubechies orthogonal
wavelet functions for turbulent signals, for exampleKatul and Vidakovic(1996,
1998); Vidakovic (2000) . They have found that the best choice is a function that
produce less unbalance on the signal energy, i.e., in which less coefficients are
needed to represent the signal. These authors have developed a threshold procedure,
that they denominate as Lorentz threshold, to identify the most relevant coefficients.

Weng and Lau(1994) have studied the organization of the tropical convection in
the west Pacific, using the DWT together with the Haar wavelet and the CWT to-
gether with the Morlet wavelet. Initially, they used the tool in an application with
the Haar wavelet in synthetic time series of dynamical systems, with double pe-
riod. Subsequently they applied this recognition pattern to an infrared data series,
obtained from satellite high resolution images, using both Haar wavelet and Morlet
wavelet.

Liu (1994) has defined a coherence wavelet function using a Morlet wavelet to
study the interactions between the wind and the oceanic waves.Torrence and Compo
(1998) have discussed the practical applicability of such information in character-
izing the cross correlation, since there are some difficulties in the analysis of the re-
sulting information. In these study , the conventional treatment given to the Fourier
analysis affects the temporal localization of the wavelet analysis.

Fast numerical algorithms were developed for representations of periodic functions
in bi-orthogonal multi-resolution analysis in two dimensions. It had showed that in
the Fourier domain the decomposition and reconstruction algorithms had a matrix
representation in terms of permutations and block diagonal matrices. Illustrative
examples using bi-orthogonal spline wavelets applied to METEOSAT meteorolog-
ical satellite images compression are presented in Fig. 7. In these examples the
bi-orthogonal familyf�1; �1;5g are used. The procedure for compression is a sim-
ple truncation: we only keep the wavelet coefficients larger than a certain threshold� (Domingues et al., 1995).

Briggs and Levine(1997) have applied DWT techniques in an exploratory analysis,
in checking forecasting fields since the conventional measurements still reveals
inadequate. This technique allowed a convenient compacting and filtering the fields
partitioning, what helps in the physical interpretation of the results.

Torrence and Compo(1998) have investigated time series associated to El Niño/south
oscillations phenomena to compare wavelet analysis techniques with the results al-
ready known. These authors have implemented a Monte Carlo technique to set up
the confidence limits in the variance wavelet analysis in sea surface temperature
time series. Periods between 2-8 years are found in the data sets before 1920 and
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(a) (b) (c)

Figure 7. Illustrative example using Daubechies bi–orthogonal spline wavelet applied to
METEOSAT image compression. (a) the original image, corresponding to November21th,
1994 at 9:00am local time (45oW ) is shown; (b) reconstruction images using� = �1 and
�� = �1;5, and40% of the 262,144 wavelet coefficients, those that are larger than the
threshold� = 10; and (c) the same using� = 100 and only8% of the wavelet coefficients.
Source:Domingues et al.(1995)

2-4 years after 1960. This shows the non stationarity of the phenomena in the time
scales presents in the data set.

The DWT can also be used to discriminate mesocyclones in Doppler radar data
(Desrochers and Yee, 1999) and to characterize the structures of convective systems
(Yano et al., 2001b,a).

In relation to the solar irradiance and climatic reconstructions,Oh et al.(2003) have
conducted a multi-resolution time series analysis. The decomposition through the
DWT has been made in order to facilitate the identification of the common charac-
teristics between these time series and the climatic forcing physically associated.

The CWT together with the Morlet wavelet has been used in the detection and
processing of magnetotelluric transients originated by atmospheric electrical dis-
charges (Zhang et al., 1997). To examine the transient signals in audio-frequencies,
the dominant energy sources are concentrated in thunderstorms both nearby and at
great distances. The energy associated with such transients is well localized in time
and therefore, the CWT can be used in the decomposition of the recorded data and
in the amplitude and phase analysis of such pulses, distinguishing them from the
noisy background.

More recently, in a preliminary study,Ageyev et al.(2003) have used the DWT together
with the Haar wavelet to analyze sferics signals produced by lightnings, in order to
obtain information on the electromagnetic field, morphological structure of the ion-
ized channel and on the behavior of the discharge electric current.

Lawrence and Jarvis(2003), studying simultaneous observations of planetary waves
from 30 to 220 km, used the conjugate Fourier transform together with the CWT using

15



Morlet. This analysis has shown that the relation between planetary waves activ-
ity at different altitudes have a high degree of complexity, since there are pulses
localized at several altitudes and these series show a non-continuous behavior.

In Fig. 8, an example of DWT applied to geomagnetic minutely signals from Kakioka
(Japan) using Daubechies orthogonal wavelet family2 is presented. From top to
bottom in this figure, the Dst index, the H-component of the geomagnetic field and
the first three levels of the wavelet coefficients are presented for the moderate storm
from November7 � 8; 1978. These abrupt variations of the horizontal component
of the geomagnetic field are emphasized by the largest amplitudes of the wavelet
coefficients and the storm period is identified (Mendes et al., 2004).

Analyzing geomagnetic time series,Kovács et al.(2001), have used a Daubechies
orthogonal DWT to identify and to isolate the intermittent sections of the signal
from the background noise. Some coherent events, could also be statistically an-
alyzed: Among other multi-scale tools.Lui (2002) used a CWT together with a
Morlet wavelet to analyze the wavelike characteristics of magnetic and electric data
of phenomena as auroras occurring in the magnetosphere/ionosphere coupling re-
gions. They have defined a bi-coherence wavelet analysis to examine the coupling
on non-linear wave, based in the co-spectrum wavelet.

Fligge et al.(1999) have used successfully the CWT together with the Morlet
wavelet to treat more objectively the solar cycle variations correlated to some fea-
tures of the earth’s climate.

In a field where such techniques are not so disseminate, as cosmic rays studies,
Kudela et al.(2001) have applied the CWT together with the Morlet wavelet using
the same methodology proposed byTorrence and Compo(1998) to a long range
time series obtained by neutron monitors. Transitions among the detected frequen-
cies have been clearly identified in the wavelet spectra.

Solutions to many interesting atmospheric flow problems may exhibit localized
singular features, such as sharp transition layers, propagating steep fronts or pro-
nounced spikes. Reliable approximations of these problems present a challenging
computational task. Uniform griding is not a practical option since high resolution
is only needed in small regions, where irregularities occur. Therefore, significant
improvements in accuracy and computational efficiency may be obtained by eco-
nomical wavelet adapting function representation on sparse grid points to the nu-
merical solution of partial differential equations as discussed byDomingues et al.
(2003).

Although the possible applications of this technique is far from being exhausted,
the works mentioned in this work, are evidences of the comprehensiveness of its
use in signal analysis.
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Figure 8. Geomagnetic field data set for Kakioka station and wavelet coefficients ampli-
tudesd1; 2; 3 = jd1;2;3j, respectatively at levels1; 2 and3, for the geomagnetic storm of
November, 7-8, 1978.
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8 Final remarks

The wavelet transform reveals where the energy is transferred in the analyzed sig-
nals and at which frequencies this occurs. From the physical point of view this
evidenced in a certain way, the real meaning of this tool. This work is far from be-
ing a complete review on the subject, but it is an attempt to characterize the efforts
oriented to the atmospheric wavelet applications, by a selection of some relevant
updated published papers.

To assure a complete understanding and to check the consistency of the obtained
results in the investigation of atmospheric phenomena using this technique, a good
knowledge of the wavelet tool is required.

There are several wavelet families, as the Meyer wavelet that has been used by
Yano et al.(2001b,a), the wavelet packets defined inCoifman et al.(1992); Meyer
(1989) and the multi-wavelet worked out byLilly and Park(1995); Zanandrea et al.
(2000). In the great majority of atmospheric applications, the Morlet, mexican hat,
Haar and Daubechies families of wavelet functions have been extensively used.
This preference may be attributed to the availability of special softwares to derive
CWT and DWT based on these wavelet families.

In the Atmospheric Sciences, the applications of wavelet analysis are systemati-
cally increasing, as it can be noticed by the number of publications in the relevant
journals and congresses in the last decade. In spite of the initial effort required for
the proper formalism, currently the wavelet transforms had turn out to be a very
useful tool in atmospheric signal analysis, creating an encouraging new horizon to
the research activities.

Appendix

Some relevant web pages in wavelet analysis:
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Theoretical information

www.wavelet.org

dmsun4.bath.ac.uk/resource/warehouse.htm

www.uni-stuttgart.de/iag/

www.cosy.sbg.ac.at/~uhl/wav.html

norum.homeunix.net/~carl/wavelet/

ftp.nosc.mil/pub/Shensa/Signal_process/

Softwares

Amara www.amara.com/current/wavesoft.html

FracLab/Scilab www-rocq.inria.fr/scilab/contributions.html

Lifting www.cs.kuleuven.ac.be/~wavelets/

Morlet ftp.nosc.mil/pub/Shensa/Signal_process/

Numerical Recipes www.nr.com/public-domain.html

Rice www-dsp.rice.edu/software/rwt.shtml

Wavelab/MatLab www-stat.stanford.edu/~wavelab/

WPLab www.math.wustl.edu/~victor/software/WPLab/

WaveTresh/R www.stats.bris.ac.uk/~wavethresh/software

Torrence and Compo(1998) paos.colorado.edu/research/wavelets/software.html
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