

CAP-394 INTRODUCTION TO DATA SCIENCE

Rafael Santos - rafael.santos@inpe.br Gilberto Ribeiro - gilberto.queiroz@inpe.br www.lac.inpe.br/~rafael.santos/cap394.html

Updated in 2019

About this Lecture

Where are we?

Raw Data and Tidy Data

Raw Data

- Data in databases, spreadsheets...
- □ Images, videos, audio...
- □ Time series...
- □ Logs, text, JSON files, XML files...

Based on Coursera's "Getting and Cleaning Data" course.

Tidy Data

- One table with all the data (or linked tables).
 - Each variable in its column.
 - Each observation in its row.
 - Variable names in the first row, with good, clear names.
- "Tidiness" is not an absolute feature!
 - Depends on what we have and what we want to do.

6 ≔	incidentLocation 1	Iocation
	4000 MT PLEASANT AV	(39.2910056,-76.5636502)
	1000 W BALTIMORE ST	(39.2889640,-76.6339440)
	1000 STAMFORD RD	(39.2963480,-76.7101510)

Based on Coursera's "Getting and Cleaning Data" course.

Raw Data to Tidy Data

- Create a Code Book that describes how we can get from Raw Data to Tidy Data.
- □ A simple (formatted) text file with:
 - Sources for the raw data.
 - More detail on the variables.
 - What was {selected, enhanced, preprocessed} and how.
 - Instruction on how the data was processed.
- Code Books essential to reproducibility!

Based on Coursera's "Getting and Cleaning Data" course.

Introduction to R

"R Programming"

Introduction to R

https://github.com/rafaeldcsantos/CAP-394

References

References

O'REILLY®

Paul Teetor

Use R !	
Jim Albert Maria Rizzo	
R by Example	
Concepts to Code	
	🙆 Springer

References

O'REILLY[®]

Joseph Adler

References

O'REILLY*

The Practical Developer @ThePracticalDev

Your Project

Research in Data Science

Basic

- New algorithms and variations.
- Reference implementations.
- Support tools (e.g. databases, data access, abstraction, automation).

Applied

- □ Get your data, start doing:
 - Cleaning, munging.
 - **D** EDA, visualization.
 - Basic model creation.
- ...with real data, in a reproducible way.

Are we going the Basic way?

- There is *nothing* basic to it!
- 1. Develop a new (or derived) algorithm.
 - Justify why!
 - Package and document it extensively!
 - Add reproducible test cases!
 - Publish your code!
- 2. Develop a data access or analysis tool.
 - Better if it is thematic.
 - Document, add test cases, etc.

Are we going the Applied way?

- 1. Think about your data.
 - Where is it? How can you access it?
 - How is it stored, formatted?

- 2. Which are interesting questions about it?
 - Can we answer those questions with the data or do we need more data?
 - Can we get more data?

- 3. Create code to explore it.
 - Explore its structure, completeness, features.
 - Do some basic statistics, EDA, visualization.
 - Don't worry about failures in the code: worry about failures in the data!

- 4. Consider hypotheses about your data.
 - Make sure it makes (at lease some) sense!
 - Check the data again!
 - Learn how to create models.
 - Apply and evaluate models on your data.

- 5. Communicate and document your results.
 - Intermediary results if they help to tell a story about the data.
 - Even bad results if they can teach us something!
 - Have you been using notebooks?
 - Can you create a new data product?

