## ----IntroEDA-ImportanceViz_readdata------------------------------------- library(datasets) str(anscombe) # Let's reorg them into four data frames: anscombe1 <- data.frame(anscombe$x1,anscombe$y1) names(anscombe1) <- c("x","y") anscombe2 <- data.frame(anscombe$x2,anscombe$y2) names(anscombe2) <- c("x","y") anscombe3 <- data.frame(anscombe$x3,anscombe$y3) names(anscombe3) <- c("x","y") anscombe4 <- data.frame(anscombe$x4,anscombe$y4) names(anscombe4) <- c("x","y") ## ----IntroEDA-ImportanceViz_anmean--------------------------------------- paste(mean(anscombe1$x),mean(anscombe1$y)) paste(mean(anscombe2$x),mean(anscombe2$y)) paste(mean(anscombe3$x),mean(anscombe3$y)) paste(mean(anscombe4$x),mean(anscombe4$y)) ## ----IntroEDA-ImportanceViz_anstddev------------------------------------- paste(sd(anscombe1$x),sd(anscombe1$y)) paste(sd(anscombe2$x),sd(anscombe2$y)) paste(sd(anscombe3$x),sd(anscombe3$y)) paste(sd(anscombe4$x),sd(anscombe4$y)) ## ----IntroEDA-ImportanceViz_ansplot, fig.width=8, fig.height=8----------- library(ggplot2) # Let's add a label to each dataset. anscombe1$i <- "Set 1" anscombe2$i <- "Set 2" anscombe3$i <- "Set 3" anscombe4$i <- "Set 4" # Now we can merge the datasets. # https://stackoverflow.com/questions/16138693/rbind-multiple-data-sets allData <- rbind(anscombe1,anscombe2,anscombe3,anscombe4) # Create a plot with a linear regression plot over the points. # https://stackoverflow.com/questions/15633714/adding-a-regression-line-on-a-ggplot p <- ggplot(data = allData, aes(x = x, y = y)) + geom_point() + geom_smooth(method='lm',fullrange=TRUE) # Plot wrapped using the i column. # https://www3.nd.edu/~steve/computing_with_data/13_Facets/facets.html p + facet_wrap(~i)