
Development of Computer Graphics and Digital Image Processing Applications on
the iPhone

Luciano Godoy Fagundes
Programa de Pós-Graduação em Computação Aplicada

Instituto Nacional de Pesquisas Espaciais
São José dos Campos, São Paulo, Brazil

luciano_fagundes@yahoo.com

Rafael Santos
Lab. Associado de Computação e Matemática Aplicada

Instituto Nacional de Pesquisas Espaciais
São José dos Campos, São Paulo, Brazil

rafael.santos@lac.inpe.br

Abstract—The iPhone is one of the most powerful, complete
and versatile portable phones on the market. There are
presently more than 150.000 applications available for the
iPhone, and its users had downloaded more than three billion
applications so far. The iPhone have several capabilities that
makes it an interesting platform for the development of appli-
cations that use image processing, computer graphics and/or
pattern recognition algorithms: it is stable, popular, powerful,
flexible and of course portable. What can a developer expect
from the platform? What, in practical terms, can be done to
implement those types of algorithms, and at what price? This
survey paper (written as part of a short course presented at
Sibgrapi’ 2010) shows some concepts and practical issues on the
developing of image processing, computer graphics and pattern
recognition applications on the iPhone. Code snippets will be
provided, and issues such as memory management, capabilities
and limitations will be discussed.

Keywords-iPhone; mobile computing; image processing; pat-
tern recognition;

I. INTRODUCTION

A revolution is on its way and you are invited! Computer
Science had mostly evolved around a growing number of
processors, faster memory and larger disk space. However,
nowadays a revolution with much more modest specifica-
tions is changing the way people use computers. Mobile
devices have become a new platform for computing. This
time, the revolution is not centered on bigger computers but
it has in its core portability and the end-user experience.
Apple brought to the world a set of “pocket computers”
called iPhone/iPod Touch/iPad which, besides serving as
portable media devices, may also contain different types of
sensors and communicate with networks through wi-fi and
bluetooth – some devices even allow the user to make phone
calls!

On a highly controlled environment, Apple has built a
set of rules on how to develop software for its devices
and opened their APIs to a world wide community of
developers. The extremely intuitive UIs plus a market of
around 150.000.000 customers and a world wide competition
led developers to quickly evolve beyond the standard Apple
UIKit components and start building their own interfaces.

In order to build this new class of applications where the
user nearly needs no training at all to start using them,
software developers have been using technologies that were,
until some short time ago, used only in proof-of-concept
applications: neural networks for advanced gesture recog-
nition, signal processing techniques for speech recognition,
location services for finding the nearest coffee shop, image
processing, augmented reality and others.

Specifically for this paper, we will focus on the main
capabilities of iPhone/iPod Touch/iPad1 devices and how
those devices can be used for image processing and graphical
information presentation. The next sections will describe the
devices’ capabilities, tools used for Software development,
how to deliver your applications to the world wide com-
munity of users and some simple examples that shows the
basic steps on how to build simple but fully functional image
processing applications on the iPhone.

A. Developing for the iPhone and iPad

There are two official lines of development that Apple
makes available for their developer community. There is
an uncontrolled, unrestricted line that is composed of Apps
built on the top of HTML5 and there is a more sensitive
and controlled environment composed by the realm of the
Native Apps. HTML5 is an open standard (at the moment
that this paper is being written it is still not finalized by
its committee) and it is fully supported by the Safari Web
browser that can be used to run Web Apps on the devices [1].
HTML5 has its own way to interact with the devices and
use several of their capabilities. Developers will be limited
only by the HTML 5 constraints.

The other side of the story is the realm of Native Apps.
Native Apps are deployed on the device themselves and use
Apple frameworks to have direct access to the full set of
device capabilities. As the Native Apps are the one that can
be developed with the widest scope, those are the ones that
will be focused from now on.

1From this point on, we will focus more on the iPhone. Although most of
the concepts are appliable to these three devices, there are some limitations
due to the sensors and capabilities of the devices.

Figure 1: Screenshot of the Xcode IDE.

B. XCode 3.x and iOS 4 SDK

In June 2010, Apple has renamed their iPhone OS to iOS.
It has been renamed to synchronize the OS with a wider
variety of devices. By the end of 2010, iPod Touches, iPads
and iPhone should be sharing the same iOS 4 software.

For iOS Native Apps to be developed, developers must
agree with rules previously defined by Apple (more about
this will be discussed at the “App Store” section). Among
those rules, the developers agree that they will develop their
Apps on some of the following languages: Objective C, C,
Objective C++ and/or C++. Those are a few of the languages
officially supported by the Apple development tools. Un-
fortunately, those tools only work on MacOS devices what
requires that developers to own a computer manufactured by
Apple in order to work.

Apple offers a set of development tools. They are free
of charge and anyone that owns an Apple computer can
install them from their MacOS installation CD/DVD. If
the bundled software is not available on the CD it is
probably because it is outdated and developers would be able
to subscribe for free on the iPhone development program
(http://developer.apple.com/iphone) and have
access to the latest version of the development tools.

After installing the development tools, developers will
have access to several applications and utilities. The most
important for a beginner will be XCode. XCode is the main
piece of the development environment (Figure 1). It is a full
featured IDE (Integrated Development Environment) that
can be used to write your own Objective-C/C++ code. At the
current version (3.x), XCode works integrated with Interface
Builder (Figure 2) that is a WYSIWYG (What You See is
What You Get) editor for building UI (User Interfaces) for
your Apps with the standard Apple components.

Another important piece of the development environment
is the iPhone/iPad Simulator. This enables the developers
with a virtual device where most of the features can be tested

Figure 2: Screenshot of the Interface Builder GUI.

even if the developer does not own a physical device.
The simulator is very close to the real device but there

are a few limitations. From the image processing perspective,
the main limitation is the lack of a camera. Developers can
use the simulator to get images from the user folder but they
cannot acquire images from the camera what specially limits
the development of Enhanced Reality Apps. For apps that
requires access to the camera, the developer must own a real
device.

Another important remark about the development environ-
ment is that with a free subscription a developer can have
access to all the development tools but the main limitation
is that you cannot deploy your Apps on your device. For
being able to use the device, a developer must enroll for a
paid subscription that by the time this paper has been written
costs US$99,00 per year.

C. The App Store

For developers, the real revolution came on the shape of
the App Store. The App Store has been the first environment
that enabled individual developers to distribute their work
formally to nearly the entire world with minimum marketing
effort.

Apple has embedded the App Store in all their devices. It
basically allows users to browse and search among all the
available Apps. Users can access the App Store from their
personal computers, their devices or the web. Registered
users can buy Apps directly from their devices with a single
click.

The upside of the App Store is that it takes care of all
the logistics behind selling Apps worldwide. Developers
are free to choose in what countries they want their Apps
to be available and their prices, they are also responsible
for filling in the App description (all that is done on-line
at http://itunesconnect.apple.com) with textual

information and also providing snapshots of their Apps.
This goes automatically to the App Store and it is what
the customers will see. The description will be filled for at
least one language (English) but it also allows developers to
enter localized data that will be used as needed by the App
Store from different countries.

The App Store will take care of selling, delivering and
charging customers by the Apps. App Store will also open
a connection between the end-users and the developers.
Developers will have to take care of technical support,
customer care, etc. Apple charges developers 30% of the
App price in order to keep all this logistics going. For
example, on a US$ 0.99 App, the developer would get
US$ 0.69.

The downside of the App Store is that it is a very crowded
environment. As this is a huge market, tens of thousands of
App developers are fighting for the same space. Apple has
continuously improved their search mechanisms but it has
not been enough to make developers happy. It is still very
hard to highlight your App on the middle of the hundreds
of thousands of the Apps available today.

Another polemic item of the App Store is its approval
process. Differently than HTML 5, Apple reserves to itself
the right to not make your App available if they do not
consider it appropriate for their devices. The main critics
for the approval process is the lack of clear guidelines on
what Apple considers appropriate or not. During the WWDC
2010 keynote, Steve Jobs (Apple CEO) has listed the most
likely causes for an App to be rejected: 1) The App does not
do what you say it does; 2) Use of private API (APIs that
exist on iOS but are not publicly available to developers) and
3) App Crashes. For the most of the developers, those three
reasons are not deal breakers for building Apps. However,
it is important to highlight that there is a risk that one spent
time and money to build an App that will be rejected to enter
the store. As the only official way to deliver your Apps to
the larger world wide customer base is the App Store, it
would mean that your App would face an early retirement
and the developer would take the hit.

II. BASIC IMAGE PROCESSING ON THE IPHONE

From the image processing perspective, the APIs are the
same for all iOS devices. All iOS devices share the same
low level functionalities. The main difference would be the
hardware capabilities themselves; the performance growth
goes from iPod Touch to iPhone to iPad (it is important
to highlight that iPhone 4 and iPad share the same Apple
A4 processor). Among other capabilities, the camera is also
a major component for image processing. At this moment,
only iPhone devices are enabled with cameras and iPhone 4
devices has two cameras (on the back and front).

In order to share the same APIs among all devices,
Apple made the developers in charge of identifying device
capabilities and deciding what features should or should not

be enabled during runtime. To make sure that the Apps
handle the device limitations appropriately, this is one of
the tests that Apple runs during their approval process and a
misbehavior would imply on a rejection of the App. For
example, an App that is supposed to run on iPod, iPad
and iPhone should be smart enough to disable the camera
capability on iPad and iPod and enable the camera capability
on an iPhone. If this checking is not in place, App will not
make it to the App Store.

The main example for this paper is an App that let the
user select an image from the Photo library, apply some
basic image processing techniques and save the modified
image back into the Photo library. This basic example should
enable developers with the basic tools they need to start
building more serious image processing Apps.

A. Some classes for image loading and display
In this section we will present some classes that are used

for image processing and representation on the iPhone and
similar devices.

UIImageView is part of the UIKit library. This library
is from where developers can get the main UI components
such as scrollers, buttons, sliders, etc. UIImageView is a
component whose purpose is to show images (it contains
a reference to an instance of UIImage, which represents a
digital image). There are several reasons why developers
use UIImageView instead of drawing the images directly
to the screen, among them are: autoresizing of the image
in several different ways, autorotation to the several device
orientations (portrait, landscape, etc), memory management,
built-in animations, etc.

Creation of an instance of UIImageView is simple, as
shown in the code snippet in listing 1.

Listing 1: Creating an instance of UIImageView.
// Create an instance of UIImageView with a fixed size
// and position.
UIImageView *imgView =

[[UIImageView alloc] initWithFrame(10,10,100,100)]];
// Create an instance of UIImage with a URL for a image.
UIImage *img =

[[UIImage alloc] initWithURL: <<URL of the image>>];
// Associate the image with the UIImageView.
imgView.image = img;
[img release];

Comments on the code shown in listing 1 shows the
different steps in image creation and association with the
GUI component. As the UIImageView instance retains a
reference for the UIImage object, the image object can be
released.

There are better ways to work with images than loading
them statically from the internet. That is why Apple has pre-
pared a framework that allow developers to get pictures from
the local Photo library or the built-in camera (iPhone only);
that is done with the classes UIImagePickerController and
UIImagePickerControllerDelegate.

Most of the Apple frameworks use this delegate pattern.
The App asynchronously requests a functionality to an ob-
ject and set its delegate. The object handles the functionality

and sends messages to its delegate with updates about the
original request.

On this specific case, the component responsible by
getting an image from the Photo library or camera is the
UIImagePickerController. Its delegate must implement the
UIImagePickerControllerDelegate; another protocol that also
needs to be implemented is the UINavigationControllerDel-
egate; this last protocol must be implemented not because
of any image loading or processing capabilities, but for
allowing the end-user to navigate inside their photo library
if needed; the default implementation for this protocol is
usually enough for most needs and nothing else needs to be
added to the code for handling navigation events.

The code snippet in listing 2 shows how to create a dialog
that allows the user to select an image from his/her photo
library.

Listing 2: Creating a dialog to load images from the user’s
photo library.

// This method will be called when the load button is
// pressed.
-(void)buttonLoadPressed
{
UIImagePickerController *ipc =
[[UIImagePickerController alloc] init];

// Get images from the photo library.
ipc.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;

// This class will deal with the dialog.
ipc.delegate = self;
// Show the picker controller.
[self presentModalViewController:ipc animated:YES];
}

After the user selects an image from its photo library, the
method shown in listing 3 is called.

Listing 3: Code called when the user select an image from the
photo library.

-(void) imagePickerController:
(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
// Call a method to display the image selected in the
// dialog.
[self displayImage:[info
objectForKey:@"UIImagePickerControllerOriginalImage"]];
// Dismiss the dialog and release the image picker.
[self dismissModalViewControllerAnimated:YES];
[picker release];
}

The method shown in listing 3 receives a dictionary with
several image-related information, including the image itself.
From that point on, the App can do whatever needs to be
done with the received image.

There are also error conditions that would trigger different
messages to the delegate; one of those is the method
imagePickerControllerDidCancel which is called when the
user does not pick an image.

Storing the image back in the iPhone is quite simple:
the code snippet shown in listing 4 shows a method that
uses the image associated with UIImageView to store it.
The method is called when the user clicks on a specific
button, but the method that does the image storing is the
UIImageWriteToSavedPhotosAlbum, which does all
the work for us.

Listing 4: Code called when the user click a button to store the
image.

// This method will be called when the save button is
// pressed.
-(void)buttonSavePressed
{
// Save the image on the photos album.
UIImageWriteToSavedPhotosAlbum([imageView image],

nil,nil,nil);
}

B. Image Representation

Images are represented as instances of the class
UIImage. Although this class contains several useful meth-
ods (e.g. to draw images, to create images from different
sources) we will often need to process the images’ pixels.
To do this we recommend the use of the helper class
ImageHelper (see [2]) that contains several macros and
class methods, including:

• Methods to convert between instances of UIImage and
arrays of characters for direct pixel access;

• Macros to get and set pixels in these arrays of charac-
ters;

• Methods to get images from views;
• Methods to scale an image and to center it around a

view;

Using methods in this class makes manipulation of the
pixels easy, as seen in the code snippet shown in listing 5,
which gets an image from a view, processes it (converts it
to grayscale) and display it.

Listing 5: Code called when the user decides to process an
image.

// This method will be called with the process button is
// pressed.
-(void)buttonProcessPressed
{
// Get the image from the image view. Return if there is
// no image.
UIImage *image = [imageView image];
if (image == nil) return;
// Get the bytes from the image.
unsigned char *inbits = (unsigned char *)
[ImageHelper bitmapFromImage:image];

// Alloc memory for the bytes for the output image.
unsigned char *outbits =

(unsigned char *)malloc(image.size.width*
image.size.height*4);

// The main image processing loop. Scan all image pixels
// and create output values from the input. In this
// case we will convert the color image to a gray-level
// one using the average of the red, green and blue
// pixels.
for(int h=0;h<image.size.height;h++)
for(int w=0;w<image.size.width;w++)
{
int r = inbits[redOffset(w,h,image.size.width)];
int g = inbits[greenOffset(w,h,image.size.width)];
int b = inbits[blueOffset(w,h,image.size.width)];
int gray = (r+g+b)/3;
outbits[redOffset(w,h,image.size.width)] = gray;
outbits[greenOffset(w,h,image.size.width)] = gray;
outbits[blueOffset(w,h,image.size.width)] = gray;
outbits[alphaOffset(w,h,image.size.width)] =

inbits[alphaOffset(w,h,image.size.width)];
}

// Create the output image from its bytes.
UIImage *output = [ImageHelper imageWithBits:outbits

withSize:image.size];
// Change the view.
[self displayImage:output];
}

C. Quartz2D

Quartz 2D is a set of APIs that allow developers to do
basic drawing in addition to image manipulation. It provides
basic drawing commands such as “draw an ellipse”, “fill a
rect”, “draw a rect”, “draw an image”, etc.

Drawing commands are issued to a graphics
context, which is represented by an instance of
CGContextRef, which may be created in several
different ways. One way to do this is through the method
CGBitmapContextCreate which creates a bitmap
graphics context. It is relatively simple to wrap code around
instances of CGContextRef to draw on a bitmap graphics
context and then return this context as an instance of
UIImage, as shown in listing 6, which creates and returns
an image containing a pie chart based on some predefined
values.

Listing 6: Code to create a pie chart and return it as an UIImage.
-(UIImage *)drawPieChart
{
// Define an area where the chart will be draw. Use
// the size of the view on the iPhone.
CGRect workArea =
CGRectMake(0,0,self.view.frame.size.width,

self.view.frame.size.height);
// Set the center of the pie chart.
int pixelsWide = workArea.size.width;
int pixelsHigh = workArea.size.height;
CGPoint chartCenter =

CGPointMake(pixelsWide/2,pixelsHigh/2);
// Manually creates a a Graphics Context.
CGContextRef ctx=NULL;
CGColorSpaceRef colorSpace;
void* bitmapData;
int bitmapByteCount;
int bitmapBytesPerRow;
// Calculate dimensions of the image.
bitmapBytesPerRow =(pixelsWide*4); //RGBA
bitmapByteCount =(bitmapBytesPerRow*pixelsHigh);
// Allocate image buffer
bitmapData=malloc(bitmapByteCount);
if(bitmapData==NULL)
{
return NULL;
}

// Create an instance of RGB color space.
colorSpace = CGColorSpaceCreateDeviceRGB();
// Create a Graphic Context with this buffer -- whatever
// we draw will be drawn on the buffer.
ctx =
CGBitmapContextCreate(bitmapData,

pixelsWide,pixelsHigh,
8, // Bits per component
bitmapBytesPerRow,
colorSpace,
kCGImageAlphaPremultipliedLast);

// Returns NULL if context creation fails.
if (ctx == NULL)
{
free(bitmapData);
return NULL;
}
// Release color space because it is no longer needed.
CGColorSpaceRelease(colorSpace);
// Clear drawing area.
CGContextClearRect(ctx, workArea);
// Create a sample array of values
NSMutableArray * dataSet = [[NSMutableArray alloc] init];
[dataSet addObject:[NSNumber numberWithInt:10]];
[dataSet addObject:[NSNumber numberWithInt:15]];
[dataSet addObject:[NSNumber numberWithInt:30]];
[dataSet addObject:[NSNumber numberWithInt:5]];
[dataSet addObject:[NSNumber numberWithInt:18]];
// Create an array of colors for each pie slice.
NSMutableArray * colors = [[NSMutableArray alloc] init];
[colors addObject:[UIColor blueColor]];
[colors addObject:[UIColor greenColor]];
[colors addObject:[UIColor redColor]];
[colors addObject:[UIColor grayColor]];
[colors addObject:[UIColor whiteColor]];
// Sum all values in the array.
float total = 0;
for (NSNumber * iTmp in dataSet)
{
total+=[iTmp intValue];

}
// Plots the Pie Chart
float startDegree = 0;
float endDegree = 0;
float radius = (workArea.size.width/2)-15; // margin
// Plot Items
int item;
CGContextSetStrokeColorWithColor(ctx,

[UIColor blackColor].CGColor);
for(int i=0;i<dataSet.count;i++)
{
item = [(NSNumber*)[dataSet objectAtIndex:i] intValue];
endDegree += (item*360.0f)/total;
CGContextSetFillColorWithColor(ctx,

((UIColor*)[colors objectAtIndex:i]).CGColor);
CGContextSetLineWidth(ctx, 5);
CGContextMoveToPoint(ctx,chartCenter.x,chartCenter.y);
CGContextAddArc(ctx,chartCenter.x,chartCenter.y,

radius,
startDegree*M_PI/180.0f,
endDegree*M_PI/180.0f,
0);

CGContextFillPath(ctx);
startDegree = endDegree;
}

// Create image to be returned from the
// graphics context.
CGImageRef img = CGBitmapContextCreateImage(ctx);
UIImage* ret = [UIImage imageWithCGImage:img];
// Free up all remaining memory.
free(CGBitmapContextGetData(ctx));
CGContextRelease(ctx);
CGImageRelease(img);
return ret;
}

Listing 6 shows how to create a graphics context with an
associated bitmap, and demonstrates the use of several draw-
ing/painting methods (CGContextSetStrokeColor-
WithColor, CGContextSetFillColorWithColor,
CGContextMoveToPoint, CGContextAddArc,
CGContextFillPath, etc.). More examples of drawing
on a bitmap will be shown later in this article.

D. A basic, complete example

So far we saw some code snippets that demonstrates
which classes can be used for basic image reading, storing
and processing and for drawing over a bitmap graphics
context. To better demonstrate we will present the complete
code for a basic iPhone image processing application.

Applications for the iPhone are created with the Xcode
IDE – there are wizards to create applications with different
styles, i.e. which have different sets of user interface widgets,
appropriate for different purposes [2]. For example, one of
the styles is “Navigation-based Application”, which orga-
nizes code to facilitate the creation of applications based
on lists and tables for interaction with the user; another
is “Utility Application”, which facilitates the creation of
applications with a two-sided view for interaction with the
user.

Most of the applications will have rich user interfaces,
which can be easily created with the Interface Builder tool
(see figure 2). Interface Builder allows the user to select
different GUI components and to link code to process data
entry and display into these components.

Since Interface Builder is interactive, we will not use
it on this example: we will, instead, create the GUI of
our basic application programmatically (components will be
created through code). To do so, we must create the iPhone
application in Xcode as a “View-based Application” – Xcode

will create the bare code to a view (a window to receive user
interaction and/or to display information, and where we must
add the GUI components) and to an app delegate (roughly
speaking, the main part of the application, where the view
will be created and displayed).

Our application will be a very simple one, but with code
organized in such a way to be easily modified and extended.
It will contain a view for displaying an image, and three
buttons: one to load a image file from the iPhone’s photo
library) into the view, one to process the image with a
specific algorithm and one to store back the image in the
photo library.

Four source code files will be generated by Xcode.
Assumming we chose “HelloImages” as a name, these files
will be:

• HelloImagesAppDelegate.h, shown in listing 7, which
is the header file for the application delegate.

• HelloImagesAppDelegate.m, shown in listing 8, which
is the source code for the application delegate.

• HelloImagesViewController.h, shown in listing 9,
which is the header file for the view/controller.

• HelloImagesViewController.m, shown in listing 10,
which is the source code file for the view/controller,
and which will contain both the programmatically-
constructed GUI and the methods that will do the image
processing.

Of course when creating a new view-based application
the source code will be empty, please refer to comments on
listings 7 to 8 for what must be written to add functionality
to the application.

The header file for the application delegate (listing 7)
declares that the class will inherit from NSObject and
implement the protocol UIApplicationDelegate; and also
declare some objects as properties of this class.

Listing 7: HelloImagesAppDelegate.h, header file for
the application delegate.

#import <UIKit/UIKit.h>

@class HelloImagesViewController;

// Our interface extends NSObject and implement the
// protocol UIApplicationDelegate.
@interface HelloImagesAppDelegate :
NSObject <UIApplicationDelegate>
{
// Contains its window and the view controller.
UIWindow *window;
HelloImagesViewController *viewController;
}

// Properties of this app delegate.
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

HelloImagesViewController *viewController;

@end

The source code for the application delegate, shown in
listing 8, declares the class itself. It contains the declaration
for the method didFinishLaunchingWithOptions,
which adds the main view; and the method dealloc which
release resources allocated by this class.

Listing 8: HelloImagesAppDelegate.m, source code file
for the application delegate.

#import "HelloImagesAppDelegate.h"
#import "HelloImagesViewController.h"

@implementation HelloImagesAppDelegate

@synthesize window;
@synthesize viewController;

// This method will be called when the application has
// finished launching -- it will create the main view and
// add it to the app’s window.
- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions

{
[window addSubview:viewController.view];
[window makeKeyAndVisible];
return YES;
}

// This method will release resources used in this class.
- (void)dealloc
{
[viewController release];
[window release];
[super dealloc];
}

@end

The header file for the view/controller (listing 9) con-
tains the declaration for the class (which will inherit from
UIViewController) and for the implementation of some
protocols. It also must contain the declarations for methods
we will define on the class source code.

Listing 9: HelloImagesViewController.h, header file
for the view/controller.

#import <UIKit/UIKit.h>
#import "ImageHelper.h"

// Our interface extends UIViewController and implement
// the protocols UINavigationControllerDelegate,
// UIImagePickerControllerDelegate and
// UIScrollViewDelegate, used to react to some
// user interactions.
@interface HelloImagesViewController:

UIViewController <UINavigationControllerDelegate,
UIImagePickerControllerDelegate,
UIScrollViewDelegate>

{
UIScrollView *scrollView;
UIImageView *imageView;
}

// We will implement and use this method.
- (void)displayImage:(UIImage *)image;

@end

The source code for the view/controller (listing 10) is
where we will create the GUI, register events for user
interaction and do the image processing.

Listing 10: HelloImagesViewController.m, source
code file for the view/controller.

#import "HelloImagesViewController.h"

@implementation HelloImagesViewController

// Implement loadView to create a view hierarchy
// programmatically, without using a nib.
- (void)loadView
{
// Create a view to hold the components.
UIView *contentView =
[[UIView alloc] initWithFrame:
[[UIScreen mainScreen] applicationFrame]];

contentView.backgroundColor = [UIColor blackColor];

// Create a UIButton programatically.
UIButton *load = [UIButton buttonWithType:

UIButtonTypeRoundedRect];
// Set its position on the view.

load.frame = CGRectMake(4.0f,4.0f,100.0f,24.0f);
// Set its title.
[load setTitle:@"Load" forState:UIControlStateNormal];
// Tell the application which method to call when the
// button is pressed.
[load addTarget:self action:@selector(buttonLoadPressed)

forControlEvents:UIControlEventTouchUpInside];
// Add the button to the view.
[contentView addSubview:load];

// Create a button labeled "process", which when
// pressed will call the buttonProcessPressed method.
UIButton *process = [UIButton buttonWithType:

UIButtonTypeRoundedRect];
process.frame = CGRectMake(108.0f,4.0f,100.0f,24.0f);
[process setTitle:@"Process"

forState:UIControlStateNormal];
[process addTarget:self

action:@selector(buttonProcessPressed)
forControlEvents:UIControlEventTouchUpInside];

[contentView addSubview:process];

// Create a button labeled "save", which when pressed
// will call the buttonSavePressed method.
UIButton *save = [UIButton buttonWithType:

UIButtonTypeRoundedRect];
save.frame = CGRectMake(212.0f,4.0f,100.0f,24.0f);
[save setTitle:@"Save" forState:UIControlStateNormal];
[save addTarget:self action:@selector(buttonSavePressed)

forControlEvents:UIControlEventTouchUpInside];
[contentView addSubview:save];

// Create a scrollView to hold the image.
scrollView = [[[UIScrollView alloc]

initWithFrame:CGRectMake(4.0f,32.0f,312.0f,444.0f)]
autorelease];

scrollView.delegate = self;
// Add it to the view.
[contentView addSubview:scrollView];
// Set this applications’ view.
self.view = contentView;
[contentView release];
}

// This method will be called whenever the image changes.
-(void)displayImage:(UIImage *)image
{
// Recreate the UIImageView instance.
imageView = [[[UIImageView alloc] initWithImage:image]
autorelease];

// Add it to the view.
[scrollView addSubview:imageView];
scrollView.contentSize = image.size;
}

// This method will be called when the load button is
// pressed.
-(void)buttonLoadPressed
{
// Create an image pick controller.
UIImagePickerController *ipc =
[[UIImagePickerController alloc] init];

// Get images from the photo library.
ipc.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;

// This class will deal with the dialog.
ipc.delegate = self;
// Show it.
[self presentModalViewController:ipc animated:YES];
}

// This method will be called with the process button is
// pressed.
-(void)buttonProcessPressed
{
// Get the image from the image view. Return if there is
// no image.
UIImage *image = [imageView image];
if (image == nil) return;
// Get the bytes from the image.
unsigned char *inbits = (unsigned char *)
[ImageHelper bitmapFromImage:image];

// Alloc memory for the bytes for the output image.
unsigned char *outbits =

(unsigned char *)malloc(image.size.width*
image.size.height*4);

// The main image processing loop. Scan all image pixels
// and create output values from the input. In this
// case we will convert the color image to a gray-level
// one using the average of the red, green and blue
// pixels.
for(int h=0;h<image.size.height;h++)
for(int w=0;w<image.size.width;w++)

{
int r = inbits[redOffset(w,h,image.size.width)];
int g = inbits[greenOffset(w,h,image.size.width)];
int b = inbits[blueOffset(w,h,image.size.width)];
int gray = (r+g+b)/3;
outbits[redOffset(w,h,image.size.width)] = gray;
outbits[greenOffset(w,h,image.size.width)] = gray;

outbits[blueOffset(w,h,image.size.width)] = gray;
outbits[alphaOffset(w,h,image.size.width)] =

inbits[alphaOffset(w,h,image.size.width)];
}

// Create the output image from its bytes.
UIImage *output = [ImageHelper imageWithBits:outbits

withSize:image.size];
// Change the view.
[self displayImage:output];
}

// This method will be called when the save button is
// pressed.
-(void)buttonSavePressed
{
// Save the image on the photos album.
UIImageWriteToSavedPhotosAlbum([imageView image],

nil,nil,nil);
}

// This method will be called when we finish the
// selection of an image.
-(void) imagePickerController:
(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
[self displayImage:[info objectForKey:

@"UIImagePickerControllerOriginalImage"]];
[self dismissModalViewControllerAnimated:YES];
[picker release];
}

// This method will be called if the image selection
// dialog is dismissed (cancelled)
-(void) imagePickerControllerDidCancel:

(UIImagePickerController *)picker
{
[self dismissModalViewControllerAnimated:YES];
[picker release];
}

// Release the resources used in this class.
- (void)viewDidUnload
{
[scrollView release];
[imageView release];
[super viewDidUnload];
}

// Dealloc memory used in this class.
- (void)dealloc
{
[super dealloc];
}

@end

The most relevant methods of the class
HelloImagesViewController.m (listing 10) are:

• loadView is called when the view is created, and is
where we will programmatically create the GUI for our
application. On this method we can see the creation of
three instances of UIButton, corresponding to the three
buttons on our application. The buttons will be posi-
tioned on fixed locations on the application window.
Each button will also have an associated selector – a
method that will be called when that button is pressed.

• displayImage is an auxiliary method that will be called
when we need to redisplay an image. It basically recre-
ates the instance of UIImageView that is responsible for
showing the image. The UIImageView component will
be contained by an instance of UIScrollView which will
automatically allow the scrolling of images which are
larger than the device’s screen.

• buttonLoadPressed is the selector method that will
be called when the “Load” button is pressed. It will,
in turn, create an instance of UIImagePickerController
that will allow the user to pick an image from the
photo library. Control will be passed to that dialog,
which will call yet another method depending on the

Figure 3: Screenshot for the first application: GUI just loaded.

users’ selection (selection of an image or canceling the
selection).

• buttonProcessPressed is the selector method that will
be called when the “Process” button is pressed. It will
scan the pixels on the image and, in this example,
convert a color image to a gray-level one by averaging
the red, green and blue values for each pixel. This
method uses the auxiliary class ImageHelper (see [2]).

• buttonSavePressed is the selector method that will be
called when the “Save” button is pressed. It will store
the image associated to the instance of UIImageView
into the photo library.

• imagePickerController is the method that will be
called when the user selects an image from the photo
library. It will get that image reference and use it to
call the displayImage method.

• imagePickerControllerDidCancel is the method that
will be called when the user decides to cancel the
selection of an image from the photo library.

• viewDidUnload will be called when the view is un-
loaded; it will release the objects used in the class.

• dealloc will be called when there is the need to deal-
locate memory allocated by this class.

These methods define the basic behaviour of our appli-
cation, which can be seen in the screenshots in figures 3
to 6.

To demonstrate the simplicity of the example, we devel-
oped two other versions of the selector method buttonPro-
cessPressed, to illustrate how other image processing algo-
rithms could be used instead of the gray-level conversion.
For those other examples, we didn’t change the code for the
header files or the application delegate source code; only the
code for the buttonProcessPressed method was changed.

The second version of the buttonProcessPressed selector
method is shown in listing 11. It also scans the image’s

Figure 4: Screenshot for the first application: user pressed the
“Load” button.

Figure 5: Screenshot for the first application: user selected
an image from the photo library and it is being shown in the
UIImageView component.

pixels one by one, using methods on the ImageHelper class,
changing the output pixels using a different combination of
the bands on the input image – the RGB values on the output
image will be assigned to the GBR bands from the input
image (there is another band, alpha or transparency, that
will not be changed).

Listing 11: Method buttonProcessPressed on
HelloImagesViewController.m, second version.

// This method will be called with the process button is
// pressed.
-(void)buttonProcessPressed1
{
// Get the image from the image view. Return if there is
// no image.
UIImage *image = [imageView image];
if (image == nil) return;
// Get the bytes from the image.
unsigned char *inbits = (unsigned char *)
[ImageHelper bitmapFromImage:image];

Figure 6: Screenshot for the first application: user pressed the
“Process” button which processes the image and displays it.

// Alloc memory for the bytes for the output image.
unsigned char *outbits =

(unsigned char *)malloc(image.size.width*
image.size.height*4);

// The main image processing loop. Scan all image pixels
// and create output values from the input. In this
// case we change the image’s bands order to GBR.
for(int h=0;h<image.size.height;h++)
for(int w=0;w<image.size.width;w++)
{
outbits[redOffset(w,h,image.size.width)] =

inbits[greenOffset(w,h,image.size.width)];
outbits[greenOffset(w,h,image.size.width)] =

inbits[blueOffset(w,h,image.size.width)];
outbits[blueOffset(w,h,image.size.width)] =

inbits[redOffset(w,h,image.size.width)];
outbits[alphaOffset(w,h,image.size.width)] =

inbits[alphaOffset(w,h,image.size.width)];
}

// Create the output image from its bytes.
UIImage *output = [ImageHelper imageWithBits:outbits

withSize:image.size];
// Change the view.
[self displayImage:output];
}

Results of the application of the code on listing 11 are
shown in figure 7.

The third version of the buttonProcessPressed selector
method is shown in listing 12. It scans the image’s pixels
but instead of creating a value for the output pixels based
only on the input pixels on the same position it applies the
Sobel operator [3] for edge detection. This operator requires
the calculation of a value using pixel values around the pixel
of interest, being significantly slower than the other image
processing examples shown so far. Results for processing the
test image on our application with that method are shown
in figure 8.

Listing 12: Method buttonProcessPressed on
HelloImagesViewController.m, third version.

// This method will be called with the process button is
// pressed.
-(void)buttonProcessPressed1
{
// Get the image from the image view. Return if there is
// no image.
UIImage *image = [imageView image];
if (image == nil) return;
// Get the bytes from the image.
unsigned char *inbits = (unsigned char *)

Figure 7: Screenshot for the second application: user pressed
the “Process” button which processes the image and displays it.

[ImageHelper bitmapFromImage:image];
// Alloc memory for the bytes for the output image.
unsigned char *outbits =

(unsigned char *)malloc(image.size.width*
image.size.height*4);

// The main image processing loop. Scan all image pixels
// and create output values from the input. In this
// case we will calculate the Sobel filter using a 3x3
// neighborhood around the central pixel.
for(int h=1;h<image.size.height-1;h++)
for(int w=1;w<image.size.width-1;w++)
{
// Calculate the horizontal gradient for each band.
int gx_r =
(-1)*inbits[redOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[redOffset(w,h-1,image.size.width)]+
(-1)*inbits[redOffset(w+1,h-1,image.size.width)]+
(1)*inbits[redOffset(w-1,h+1,image.size.width)]+
(2)*inbits[redOffset(w,h+1,image.size.width)]+
(1)*inbits[redOffset(w+1,h+1,image.size.width)];
int gx_g =
(-1)*inbits[greenOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[greenOffset(w,h-1,image.size.width)]+
(-1)*inbits[greenOffset(w+1,h-1,image.size.width)]+
(1)*inbits[greenOffset(w-1,h+1,image.size.width)]+
(2)*inbits[greenOffset(w,h+1,image.size.width)]+
(1)*inbits[greenOffset(w+1,h+1,image.size.width)];
int gx_b =
(-1)*inbits[blueOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[blueOffset(w,h-1,image.size.width)]+
(-1)*inbits[blueOffset(w+1,h-1,image.size.width)]+
(1)*inbits[blueOffset(w-1,h+1,image.size.width)]+
(2)*inbits[blueOffset(w,h+1,image.size.width)]+
(1)*inbits[blueOffset(w+1,h+1,image.size.width)];
// Calculate the vertical gradient for each band.
int gy_r =
(-1)*inbits[redOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[redOffset(w-1,h,image.size.width)]+
(-1)*inbits[redOffset(w-1,h+1,image.size.width)]+
(1)*inbits[redOffset(w+1,h-1,image.size.width)]+
(2)*inbits[redOffset(w+1,h,image.size.width)]+
(1)*inbits[redOffset(w+1,h+1,image.size.width)];
int gy_g =
(-1)*inbits[greenOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[greenOffset(w-1,h,image.size.width)]+
(-1)*inbits[greenOffset(w-1,h+1,image.size.width)]+
(1)*inbits[greenOffset(w+1,h-1,image.size.width)]+
(2)*inbits[greenOffset(w+1,h,image.size.width)]+
(1)*inbits[greenOffset(w+1,h+1,image.size.width)];
int gy_b =
(-1)*inbits[blueOffset(w-1,h-1,image.size.width)]+
(-2)*inbits[blueOffset(w-1,h,image.size.width)]+
(-1)*inbits[blueOffset(w-1,h+1,image.size.width)]+
(1)*inbits[blueOffset(w+1,h-1,image.size.width)]+
(2)*inbits[blueOffset(w+1,h,image.size.width)]+
(1)*inbits[blueOffset(w+1,h+1,image.size.width)];
// Calculate (and normalize) the gradient magnitude
// for each band.
int edge_r = sqrt(gx_r*gx_r+gy_r*gy_r)/5.635;
int edge_g = sqrt(gx_g*gx_g+gy_g*gy_g)/5.635;
int edge_b = sqrt(gx_b*gx_b+gy_b*gy_b)/5.635;
// Use the edge values as the output pixel values.
outbits[redOffset(w,h,image.size.width)] = edge_r;

Figure 8: Screenshot for the third application: user pressed the
“Process” button which processes the image and displays it.

outbits[greenOffset(w,h,image.size.width)] = edge_g;
outbits[blueOffset(w,h,image.size.width)] = edge_b;
// Keep the alpha channel unchanged.
outbits[alphaOffset(w,h,image.size.width)] =

inbits[alphaOffset(w,h,image.size.width)];
}

// Create the output image from its bytes.
UIImage *output = [ImageHelper imageWithBits:outbits

withSize:image.size];
// Change the view.
[self displayImage:output];
}

III. DRAWING ON AN IPHONE

As in many other platforms, when we want do draw some-
thing on the screen of the iPhone we must use a graphics
context – an abstraction that can receive drawing commands
which will be mapped to a more concrete implementation,
such as a screen or a printable page. As mentioned in
section II-C there are several ways to create a graphics
context for the iPhone, we will present another example that
creates and uses a graphics context that can be converted into
an image for displaying.

In the example on this section we will create an image
containing three histograms calculated from the pixels of
another image, selected by the user. The three histograms
represents the distribution of the pixels of the original image
in the red, green and blue channel.

In order to create the image with the histogram we will
declare another method that can be used in the same code
framework shown before. The first thing we need to do
is declare the method on the header file for the view/-
controller (file HelloImagesViewController.h), by adding the
declaration -(UIImage *)createHistograms;. The
declaration of the method itself is shown in listing 13.

Listing 13: Method createHistograms which will calculate
and draw the RGB histograms of an image.

// This method will scan the pixels of an image and
// create three histograms, one for each of the R,G,B

// bands on the image. The histograms will be plotted in
// the graphical context. The graphical context is
// represented as a bitmap, which will be converted to an
// UIImage and returned.
-(UIImage *)createHistograms
{
// Declare some constants for the histogram plot.
int margin = 10;
float binW = 2;
int histogramW = (256*binW);
int histogramH = 140;
// Define an area where the graphics will be drawn.
CGRect workArea =
CGRectMake(0,0,

histogramW+2*margin,
2*margin+2*margin+3*histogramH);

// Manually creates a graphics context.
int pixelsWide = workArea.size.width;
int pixelsHigh = workArea.size.height;
CGContextRef ctx = NULL;
CGColorSpaceRef colorSpace;
void* bitmapData;
int bitmapByteCount;
int bitmapBytesPerRow;
bitmapBytesPerRow =(pixelsWide*4); // RGBA
bitmapByteCount =(bitmapBytesPerRow*pixelsHigh);
// Allocate an image buffer for the graphics context.
bitmapData = malloc(bitmapByteCount);
if(bitmapData == NULL)
{
return NULL;
}

// Create an instance of RGB color space.
colorSpace = CGColorSpaceCreateDeviceRGB();
// Create a Graphic Context with this buffer -- whatever
// we draw will be drawn on the buffer.
ctx =
CGBitmapContextCreate(bitmapData,

pixelsWide,pixelsHigh,
8, // Bits per component
bitmapBytesPerRow,
colorSpace,
kCGImageAlphaPremultipliedLast);

// Returns NULL if context creation fails.
if (ctx == NULL)
{
free(bitmapData);
return NULL;
}
// Release color space because it is no longer needed.
CGColorSpaceRelease(colorSpace);
// Clear drawing area (paints it using a dark gray
// color).
CGContextSetRGBFillColor(ctx,0.3,0.3,0.35,1);
CGContextFillRect(ctx,workArea);
// Use a thick white line to draw the histograms.
CGContextSetStrokeColorWithColor(ctx,

[UIColor whiteColor].CGColor);
CGContextSetLineWidth(ctx,3.0);
// The red histogram.
CGContextMoveToPoint(ctx,margin,pixelsHigh-margin);
CGContextAddLineToPoint(ctx,margin,

pixelsHigh-(margin+histogramH));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-(margin+histogramH));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-margin);
// The green histogram.
CGContextMoveToPoint(ctx,margin,

pixelsHigh-(margin*2+histogramH));
CGContextAddLineToPoint(ctx,margin,

pixelsHigh-(margin*2+histogramH*2));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-(margin*2+histogramH*2));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-(margin*2+histogramH));
// The blue histogram.
CGContextMoveToPoint(ctx,margin,

pixelsHigh-(margin*3+histogramH*2));
CGContextAddLineToPoint(ctx,margin,

pixelsHigh-(margin*3+histogramH*3));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-(margin*3+histogramH*3));
CGContextAddLineToPoint(ctx,margin+histogramW,

pixelsHigh-(margin*3+histogramH*2));
// Draw it all.
CGContextStrokePath(ctx);
// Get the image data and calculate the histograms.
UIImage *image = [imageView image];
if (image != nil)
{
unsigned char *inbits =
(unsigned char *)[ImageHelper bitmapFromImage:image];

// Allocate memory for the three histograms, clear
// the memory to avoid nasty surprises.
int *redHisto = malloc(256 * sizeof(int));
memset(redHisto,0,256*sizeof(int));
int *greenHisto = malloc(256 * sizeof(int));
memset(greenHisto,0,256*sizeof(int));
int *blueHisto = malloc(256 * sizeof(int));

memset(blueHisto,0,256*sizeof(int));
// Scan the image pixels to fill the histograms.
for(int h=0;h<image.size.height;h++)

for(int w=0;w<image.size.width;w++)
{
redHisto[

inbits[redOffset(w,h,image.size.width)]]++;
greenHisto[

inbits[greenOffset(w,h,image.size.width)]]++;
blueHisto[

inbits[blueOffset(w,h,image.size.width)]]++;
}

// Let’s get the largest value to normalize the
// histogram height.
int max = -1;
for(int b=0;b<256;b++)

{
max = MAX(max,redHisto[b]);
max = MAX(max,greenHisto[b]);
max = MAX(max,blueHisto[b]);
}

// Select a thick line to draw the histogram bars.
CGContextSetLineWidth(ctx,2.0);
// Draw the red histogram bars.
CGContextSetFillColorWithColor(ctx,

[UIColor redColor].CGColor);
for(int b=0;b<256;b++)

{
CGContextFillRect(ctx,

CGRectMake(margin+b*binW,
pixelsHigh-(margin+histogramH),binW,
(histogramH*(1.0*redHisto[b]/max))));

}
// Draw the green histogram bars.
CGContextSetFillColorWithColor(ctx,

[UIColor greenColor].CGColor);
for(int b=0;b<256;b++)

{
CGContextFillRect(ctx,

CGRectMake(margin+b*binW,
pixelsHigh-(2*margin+2*histogramH),binW,
(histogramH*(1.0*greenHisto[b]/max))));

}
// Draw the blue histogram bars.
CGContextSetFillColorWithColor(ctx,

[UIColor blueColor].CGColor);
for(int b=0;b<256;b++)

{
CGContextFillRect(ctx,

CGRectMake(margin+b*binW,
pixelsHigh-(3*margin+3*histogramH),binW,
(histogramH*(1.0*blueHisto[b]/max))));

}
}

// Create image from the graphics context.
CGImageRef img = CGBitmapContextCreateImage(ctx);
UIImage *ret = [UIImage imageWithCGImage:img];
// Free up all remaining memory.
free(CGBitmapContextGetData(ctx));
CGContextRelease(ctx);
CGImageRelease(img);
free(redHisto); free(greenHisto); free(blueHisto);
return ret;
}

The method createHistograms, shown in listing 13, im-
plements the following steps:

• Creates a bitmap with an area large enough to contain
all the three histograms. Some constants allow the easy
manipulation of scales and margins, which affect the
size of this area. Since the image this method created
will be displayed within an instance of UIScrollView
it may be larger than the physical dimensions of the
screen.

• Creates a graphics context based on that bitmap, mean-
ing that when we use drawing functions for primitives
such as lines and rectangles, they will be renderized on
that bitmap.

• Clears the bitmap with a dark gray color and draws the
basic shapes for the histograms with thick white lines.

• Creates the data structures (arrays) to hold the three
histograms and clear them.

• Reads the image associated with the UIImageView

Figure 9: Screenshot of the histogram application (histogram
corresponds to image shown in figure 5).

component and populates the histogram arrays.
• Draws each histogram with the data on the correspond-

ing array.
• Frees memory allocated in the method.
• Return an instance of UIImage which was created with

the bitmap associated to the graphics context.
With that method that creates an UIImage from the data

on another UIImage we can modify the selector method
associated with the “Process” button. The modification is
shown in the code snippet in listing 14.

Listing 14: Selector method for the “Process” button.
// This method will be called with the process button is
// pressed.
-(void)buttonProcessPressed
{
// Calls createHistogram that will draw on an image
// for us.
UIImage *chart = [self createHistograms];
[self displayImage:chart];
}

Figure 9 shows the screenshot for the application. Part
of the histograms is not shown because the plotting area is
larger than the device screen, but it can be scrolled to display
the other regions.

An important last note on using graphic contexts to
draw on the iPhone: the Quartz graphics environment origin
(0.0,0.0) is located in the lower left corner, differently from
other environment and platforms.

IV. COMMENTS ON PERFORMANCE AND LIMITATIONS

Differently from the traditional desktop, iPhones and
similar devices are not upgradable (or even user-serviceable).
As such, developers need to deal with their capabilities and
limitations on their own. There are at least a few issues
that developers must be aware before starting developing
applications for such devices.

A. Memory and storage management
The memory and storage capacity have been increasing

in each new generation of devices. However, developing
for those devices can be challenging, specially if your
application may also be required to run on earlier hardware
generations. In general, as available memory and storage can
change from device to device, Apple built their frameworks
to make easier for developers to be prepared for bottleneck
situations.

As this can change from time to time, these lines should
not be seen as a final recommendation; developers should
always stay in touch with Apple to be aware of the latest
best-practices and guidelines. Here are a few best practices
that one may want to follow:

• As this paper is written, the recommendation from
Apple regarding storage usage is that each application
should do its best to avoid using more than 100MB
of storage space. As far as this team knows, there is
not physical or logical lock to reenforce this limit but
that is what can be found at the Apple website in order
to make sure users can take better advantage of their
device storage.

• Memorywise, Apple has no logical size limits, however,
as memory is a lot more critical than storage space, the
recommendation is that the application uses as little
memory as possible. iOS has a memory policy that may
be more or less restrictive depending on the device. In a
nutshell, the way it works is that the operating system
continuously monitor the running applications; if the
device starts running low on memory, iOS will start
sending “Memory warning” events to all applications.
This should be the trigger for the application to release
as much memory as possible (clear images, release
hidden UI components, etc).
If, even with the “Memory warning” alarms the device
still is low on memory, iOS will start killing the
running applications. The current iOS policy for killing
applications starts from the highest memory users to the
lowest. This mean that it is always possible for your
application to be killed but if you keep a very small
memory footprint, it is more likely that it will be one
of the last applications to be terminated.

B. CPU and pseudo-multithreading
iOS itself is not a fully multithreaded OS. In fact, Apple

has implemented a “user-facing” multithreaded OS only in
its newest version, iOS4. For users, applications will feel
like if they were running in parallel when, in fact, they are
not.

In order to build this “user-facing” multithreaded OS,
Apple has enhanced their frameworks with hooks that tell the
developers about the several applications’ states. The main
best-practice that Apple recommends for multitasking is
that applications should continuously save their states. This

means that applications should be smart enough to keep their
current state safe before they enter into the background and
they will have to reload this state right after the user decides
to bring the application back to the foreground mode.

The reason why Apple recommends that you continuously
save your state (as in checkpoints of a game) is because
when the user shifts from one app to the other or just
closes an application, iOS will give just a few seconds to
the application shutdown itself; if the application does not
shutdown on time (and this time may vary from application
to application) iOS will kill the application and the state
will be lost. This hard cut is necessary to provide a nice
user experience. The end-user would not feel like using a
multithreaded environment it he/she had to wait a very long
time to switch from application to application.

The bottom line here is: do not expect to show the users
a window asking if they really want to close the application
or if they want to save their current work. On an iOS device,
users expect that those implementation details are all handled
by the application. They know that they can close their
application at any time they want and their work will be
there for them when they get back.

From the hardware perspective, this paper will not make
available any performance comparisons or benchmark in-
formation. The reason for that is because Apple has not
released, up to date, any official information about it. There
are informal reviews that can be found over the web but
it is a team decision to not use unofficial data that could
compromise the accuracy of this paper.

V. CONCLUSION

This paper presented the basics on software development
for the iPhone and related platforms, with demonstration on
code that does some basic image processing and drawing
tasks. Due to the lack of space, more techniques and sample
code were not shown but will be available from the authors
at the Sibgrapi 2010 tutorial.

Since most of the fun of the iPhone is just its user
experience developers must learn to follow a strict set
of guidelines to avoid creating unresponsive applications
that may be terminated by the operating system at any
time. While the platform is not suitable for large-scale or
processing-intensive applications, there are several possibil-
ities of using it as a remote device for image processing,
computer graphics and pattern recognition applications.

REFERENCES

[1] R. Wagner, Ed., "Safari WebKit Development for iPhone OS
3.0". Wiley Publishing Inc., 2010.

[2] E. Sadun, Ed., "The iPhone Developer’s Cookbook – Building
Applications with the iPhone 3.0 SDK", 2nd ed. Addison-
Wesley, 2010.

[3] R. C. Gonzalez and P. Wintz, Digital Image Processing.
Reading, Massachusetts: Addison-Wesley, 1987.

