THE UNIVERSITY
of LIVERPOOL

HPF Programming 5 Day Course Slides

Dr. A C Marshall (funded by JISC/NTI)

with acknowledgements to Steve Morgan, Dave
Watson and Mike Delves.

©University of Liverpool



Lecture 1:

Overview, Objects

and EXxpressions




Course Philosophy I

The course:
O assumes a familiarity with a high level language;

O stresses modern scientific programming syntax, for
example, array language, modules, defined types,
recursion and overloaded operators;

O gives many examples;



Fortran Evolution I

History:

O

O

FORmMula TRANSslation.

first compiler: 1957.

first official standard 1972: ‘Fortran 66’.
updated in 1980 to Fortran 77.

updated further in 1991 to Fortran 90.

next upgrade due in 1996 - remove obsolescent
features, correct mistakes and add limited basket
of new facilities such as ELEMENTAL and PURE user-
defined procedures and the FORALL statement.

Fortran is now an ISO/IEC and ANSI standard.



Drawbacks of Fortran 77'

Fortran 77 was limited in the following areas,

1.

awkward ‘punched card’ or ‘fixed form’ source for-
mat;

. inability to represent intrinsically parallel operations;

lack of dynamic storage;

non-portability;

. ho user-defined data types;

lack of explicit recursion;

reliance on unsafe storage and sequence association
features.



Fortran 90 New featuresl

Fortran 90 supports,
1. free source form;
2. array syntax and many more (array) intrinsics;
3. dynamic storage and pointers;
4. portable data types (KINDS);
5. derived data types and operators;
6. recursion;
7. MODULES
O procedure interfaces;
O enhanced control structures;
O user defined generic procedures;

O enhanced I/0O.



Language Obsolescence I

Fortran 90 has a number of features marked as obso-
lescent, this means,

O they are already redundant in Fortran 77;

O better methods of programming already existed in
the Fortran 77 standard;

O programmers should stop using them;

O the standards committee’s intention is that many
of these features will be removed from the next
revision of the language, Fortran 95;



Obsolescent Features I

The following features are labelled as obsolescent and
will be removed from the next revision of Fortran, For-
tran 95,

O

O

the arithmetic IF statement;
ASSIGN statement;

ASSIGNed GOTO statements;
ASSIGNed FORMAT statements;
Hollerith format strings;

the PAUSE statement:

REAL and DOUBLE PRECISION DO-loop control expres-
sions and index variables;

shared DO-loop termination;
alternate RETURN;

branching to an ENDIF from outside the IF block;



Undesirable Features I

fixed source form layout - use free form;

implicit declaration of variables - use IMPLICIT NONE;
COMMON blocks - use MODULE;

assumed size arrays - use assumed shape;
EQUIVALENCE statements;

ENTRY statements;

the computed GOTO statement - use IF statement:



Object Oriented FacilitiesI

Fortran 90 has some Object Oriented facilities such as:

O

O

data abstraction — user-defined types;
data hiding — PRIVATE and PUBLIC attributes;
encapsulation — Modules and data hiding facilities;

inheritance and extensibility — super-types, opera-
tor overloading and generic procedures;

polymorphism — user can program his / her own
polymorphism by generic overloading;

reusability — Modules;



Example I

Example Fortran 90 program:

MODULE Triangle_Operations
IMPLICIT NONE

CONTAINS

FUNCTION Area(x,y,z)
REAL :: Area ! function type
REAL, INTENT(C IN ) :: x, y, =z
REAL :: theta, height
theta=AC0S ((x**2+y**2-2z*%2) /(2.0*x*y))
height=x*SIN(theta); Area=0.5*y*height
END FUNCTION Area

END MODULE Triangle_Operations

PROGRAM Triangle

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c, Area

PRINT*, ’Welcome, please enter the&

&lengths of the 3 sides.’

READ*, a, b, ¢

PRINT*,’Triangle’’s area: ’,Area(a,b,c)
END PROGRAM Triangle

10



Source Form I

Free source form:
O 132 characters per line;
O ‘Y’ comment initiator;
O ‘&’ line continuation character;
O ‘;’ statement separator;
O significant blanks.

Example,

PRINT*, "This line is continued &
&0n the next line"; END ! of program

11



Character Set I

The following are valid in a Fortran 90 program:

O alphanumeric:

a-z, A-Z, 0-9, and _ (the underscore)

O symbolic:
Symbol Description Symbol Description

space = equal

+ plus - minus

* asterisk / slash

( left paren ) right paren

, comma . period
single quote " double quote

: colon ; semicolon

! shriek & ampersand

% percent < less than

> greater than $ dollar

question mark

12



Significance of BIanksI

In free form source code blanks must not appear:

O within keywords

INTEGER :: wizzy ! is a valid keyword
INT EGER :: wizzy ! is not

O within names

REAL :: running total ! is a valid name
REAL :: running total ! is not

Blanks must appear:
O between two separate keywords

O between keywords and names not otherwise sepa-
rated by punctuation or other special characters.

INTEGER FUNCTION fit(i) ! is valid
INTEGERFUNCTION fit(i) ! is not
INTEGER FUNCTIONfit(i) ! is not

Blanks are optional between some keywords mainly ‘END
< construct>' and a few others; if in doubt add a blank
(it looks better t00).

13



NamesI

In Fortran 90 variable names (and procedure names etc.)
O must start with a letter

REAL :: al ! valid name
REAL :: 1a ! not valid name

O may use only letters, digits and the underscore

CHARACTER :: atoz ! valid name
CHARACTER :: a-z ! not valid name
CHARACTER :: a_z ! OK

O underscore should be used to separate words in long
names

CHARACTER(LEN=8) :: user_name ! valid name
CHARACTER(LEN=8) :: username ! different name

O may not be longer than 31 characters

14



Comments I

It is good practise to use lots of comments, for example,

PROGRAM Saddo
!

! Program to evaluate marriage potential
!

LOGICAL :: TrainSpotter ! Do we spot trains?
LOGICAL :: SmellySocks ! Have we smelly socks?
INTEGER :: i, j ! Loop variables

O everything after the ! is a comment;

O the ! in a character context does not begin a com-
ment, for example,

PRINT*, "No chance of ever marrying!!!"

15



Statement Ordering I

The following table details the prescribed ordering:

PROGRAM, FUNCTION, SUBROUTINE, MODULE Or BLOCK DATA statement

USE statement

IMPLICIT NONE

PARAMETER IMPLICIT statements
statement
FORMAT PARAMETER Derived-Type Definition,
and ENTRY | and DATA | Interface blocks, Type
statements| statements declaration statements,

Statement function state-
ments and specification
statements

DATA Executable constructs
statements

CONTAINS statement

Internal or module procedures

END statement

16



Intrinsic Types I

Fortran 90 has three broad classes of object type,
O character;
O boolean;
O numeric.

these give rise to six simple intrinsic types, known as
default types,

CHARACTER :: sex ! letter
CHARACTER (LEN=12) :: name ! string
LOGICAL :: wed ! married?
REAL :: height

DOUBLE PRECISION :: pi I 3.14...
INTEGER :: age ! whole No.
COMPLEX ::val ! x + iy

17



Literal Constants I

A literal constant is an entity with a fixed value:

12345
1.0
-6.6E-06

"Mau’dib"

! INTEGER

! REAL

! REAL: -6.6%10%*(-6)
.FALSE. I LOGICAL
.TRUE. ! LOGICAL

! CHARACTER

|

’Mau’’dib’ CHARACTER

Note,

O

O

O

there are only two LOGICAL values;

REALS contain a decimal point, INTEGERS dO not,
REALS have an exponential form

character literals delimited by " and ’;

two occurrences of the delimiter inside a string pro-
duce one occurrence on output;

there is only a finite range of values that numeric
literals can take.

18



Implicit Typing I

Undeclared variables have an implicit type,
O if first letterisI, J, K, L, Mor N then type is INTEGER;
O any other letter then type is REALS.

Implicit typing is potentially very dangerous and should
always be turned off by adding:

IMPLICIT NONE
as the first line after any USE statements.
Consider,

DO 30 I = 1.1000
30 C(.)I;I'i‘INUE

in fixed format with implicit typing this declares a REAL
variable D030I and sets it to 1.1000 instead of performing
a loop 1000 times!

19



Numeric and Logical Declarationsl

With IMPLICIT NONE variables must be declared. A sim-
plified syntax follows,

< type> [,< attribute-list >] ::< variable-list >&
[ =< value > ]

The following are all valid declarations,

REAL 10X
INTEGER 201,
LOGICAL, POINTER 11 ptr
REAL, DIMENSION(10,10) :: y, z
INTEGER . k=4

The DIMENSION attribute declares an array (10 x 10).

20



Character Declarationsl

Character variables are declared in a similar way to nu-
meric types. CHARACTER variables can

O refer to one character;

O refer to a string of characters which is achieved by
adding a length specifier to the object declaration.

The following are all valid declarations,

CHARACTER (LEN=10)
CHARACTER
CHARACTER (LEN=32)

CHARACTER (LEN=10) ,
CHARACTER (LEN=32) ,

:: name

:: sex

:: str

DIMENSION(10,10) :: Harray
POINTER :: Pstr

21



Constants (Parameters) I

Symbolic constants, oddly known as parameters in For-
tran, can easily be set up either in an attributed decla-
ration or parameter statement,

REAL, PARAMETER :: pi = 3.14159
CHARACTER (LEN=x) , PARAMETER :: &
son = ’bart’, dad = "Homer"

CHARACTER constants can assume their length from the
associated literal (LEN=x).

Parameters should be used:
O if it is known that a variable will only take one value;

O for legibility where a ‘magic value’ occurs in a pro-
gram such as r;

O for maintainability when a ‘constant’ value could
feasibly be changed in the future.

22



Initialisation I

Variables can be given initial values:
O can use initialisation expressions,

O may only contain PARAMETERS or literals.

REAL :: x, y =1.0D5
INTEGER :: 1 =5, j =100
CHARACTER(LEN=5) :: light = ’Amber’
CHARACTER (LEN=9) :: gumboot = ’Wellie’
LOGICAL :: on = .TRUE., off = .FALSE.
REAL, PARAMETER :: pi = 3.141592

REAL, PARAMETER :: radius = 3.5

REAL :: circum = 2 * pi * radius

gumboot Wwill be padded, to the right, with blanks.

In general, intrinsic functions cannot be used in initial-
isation expressions, the following can be: REPEAT, RE-
SHAPE, SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER,
TRIM, LBOUND, UBOUND, SHAPE, SIZE, KIND, LEN, BIT_SIZE
and numeric inquiry intrinsics, for, example, HUGE, TINY,
EPSILON.

23



EXxpressions I

Each of the three broad type classes has its own set
of intrinsic (in-built) operators, for example, +, // and
.AND.,

The following are valid expressions,
O NumBabiesBorn+l — numeric valued
O "Ward "//Ward — character valued

O TimeSinceLastBirth .GT. MaxTimeTwixtBirths — |lOQ-
ical valued

Expressions can be used in many contexts and can be
of any intrinsic type.

24



Assignment I

Assignment is defined between all expressions of the
same type:

Examples,

a=>s

c = SIN(.7)*12.7 ! SIN in radians
name = initials//surname

bool (a.EQ.b.OR.c.NE.d)

The LHS is an object and the RHS is an expression.

25



Intrinsic Numeric Operationsl

The following operators are valid for numeric expres-
sions,

O *xx exponentiation, dyadic operator, for example,
10*xx2, (evaluated right to left);

O * and / multiply and divide, dyadic operators, for
example, 10%x7/4;

O + and - plus and minus or add and subtract, monadic
and dyadic operators, for example, 10+7-4 and -3;

Can be applied to literals, constants, scalar and array
objects. The only restriction is that the RHS of *x*
must be scalar.

Example,
a=b-c
f = -3%6/5

26



Intrinsic Character Operationsl

Consider,

CHARACTER(LEN=%), PARAMETER :: stril "abcdef"
CHARACTER (LEN=%) , PARAMETER :: str2 = "xyz"

substrings can be taken,
O stril is ‘abcdef’
O str1(1:1) is ‘a’ (not str1(1) — illegal)
O str1(2:4) is ‘bed’

The concatenation operator, //, is used to join two
strings.

PRINT*, strl//str2
PRINT*, str1(4:5)//str2(1:2)

would produce

abcdefxyz
dexy

27



Relational Operators I

The following relational operators deliver a LOGICAL re-
sult when combined with numeric operands,

.GT. > | greater than

.GE. >= | greater than or equal to
.LE. <= | less than or equal to
LT. < | less than

.NE. /= | not equal to

.EQ. == | equal to

For example,

bool = i .GT. j
boule = 1 > j

IF (i .EQ. j) ¢ =D
IF (i == j) c =D

When using real-valued expressions (which are approxi-
mate) .EQ. and .NE. have no real meaning.

REAL :: Tol = 0.0001
IF (ABS(a-b) .LT. Tol) same = .TRUE.

28



Intrinsic Logical Operationsl

A LOGICAL or boolean expression returns a .TRUE. / .FALSE.
result. The following are valid with LOGICAL operands,

O .NOT. — .TRUE. if operand is .FALSE..

O .AND. — .TRUE. if both operands are .TRUE.;

O .0R. — .TRUE. if at least one operand is .TRUE.;
O .EQV. — .TRUE. if both operands are the same;
O .NEQV. — .TRUE. if both operands are different.

For example, if T is .TRUE. and F is .FALSE.
O .NOT. T is .FALSE., .NOT. F is .TRUE..
O T .AND. F is .FALSE., T .AND. T is .TRUE..
O T .0R. Fis .TRUE., F .0R. F is .FALSE..
O T .EQV. F is .FALSE., F .EQV. F is .TRUE..

O T .NEQV. F is .TRUE., F .NEQV. F is .FALSE..

29



Operator Precedence I

Operator Precedence Example
user-defined monadic Highest .INVERSE.A
%k . 10%%x4
* or / . 89*55
monadic + or - . -4
dyadic + or - . 5+4
// . strl//str2
.GT., >,.LE., <=, etc . A>B
.NOT. . .NOT.Bool
.AND. . A.AND.B
.OR. . A.OR.B
.EQV. or .NEQV. . A.EQV.B
user-defined dyadic Lowest X.DOT.Y

Note:
O in an expression with no parentheses, the highest
precedence operator is combined with its operands
first;

O in contexts of equal precedence left to right evalu-
ation is performed except for *x.

30



Precedence Example I

The following expression,
x = a+b/5.0-c**xd+1*e

iS equivalent to
X = a+b/5.0-(c**d)+1*e

as *xx is highest precedence. This is equivalent to
x = a+(b/5.0)-(c*x*d)+(1*e)

as / and *x are next highest. The remaining operators’
precedences are equal, so we evaluate from left to right.

31



Lecture 2:
Control Constructs



Control Filow I

Control constructs allow the normal sequential order of
execution to be changed.

Fortran 90 supports:

O conditional execution statements and constructs,
(IF ... and IF ... THEN ... ELSE ... END IF);

O loops, (DO ... END DO);

O multi-way choice construct, (SELECT CASE);

32



IF Statement I

Example,
IF (bool_val) A = 3
The basic syntax is,
IF (< logical-expression >) < exec-stmt >

If < logical-expression> evaluates to .TRUE. then execute
< exec-stmt > otherwise do not.

For example,
IF (x .GT. y) Maxi = x

means ‘if x is greater than y then set Maxi to be equal
to the value of x'.

More examples,

IF (a*b+c <= 47) Boolie = .TRUE.
IF (i .NE. O .AND. j .NE. 0) k = 1/(i*j)
IF (i /=0 .AND. j /= 0) k = 1/(i*j) ! same

33



Visualisation of the IF Statementl

Consider the IF statement
IF (I > 17) Print*, "I > 17"

this maps onto the following control flow structure,

IF (1 > 17)

1 > 17

PRI NT*, "1 > 17" | <= 17

! Next statenent

34



IF ... THEN ... ELSE Construct

The block-IF is a more flexible version of the single line
IF. A simple example,

IF (i .EQ. 0) THEN
PRINT*, "I is Zero"
ELSE

PRINT*, "I is NOT Zero"
ENDIF

note the how indentation helps.
Can also have one or more ELSEIF branches:

IF (i .EQ. 0) THEN

PRINT*, "I is Zero"
ELSE IF (i .GT. O0) THEN

PRINT*, "I is greater than Zero"
ELSE

PRINT*, "I must be less than Zero"

ENDIF

Both ELSE and ELSEIF are optional.

35



Visualisation of the IF ... THEN Constructl

Consider the IF ... THEN construct

IF (I > 17) THEN
Printx, "I > 17"
END IF

this maps onto the following control flow structure,

IF (I > 17) THEN

1> 17

PRINT*, "I > 17" | <= 17

END I F

36



Visualisation of the IF ... THEN ... ELSE Construct

Consider the IF ... THEN ... ELSE construct

IF (I > 17) THEN
Printx, "I > 17"
ELSE
Print*, "I <= 17"
END IF

this maps onto the following control flow structure,

IF (1>17) THEN

> 17 ELSE

PRI NT*, "1>17" PRI NT*, "|<=17"

END I F

37



IF ... THEN .... ELSEIF Construct

The IF construct has the following syntax,

IF (< logical-expression >) THEN
< then-block >

[ ELSEIF (< logical-expression >)THEN
< elseif-block >

e ]

[ ELSE
< else-block > ]

END IF

The first branch to have a true < logical-expression >
is the one that is executed. If none are found then the
< else-block >, if present, is executed.

For example,

IF (x .GT. 3) THEN
CALL SUB1

ELSEIF (x .EQ. 3) THEN
A = B*C-D

ELSEIF (x .EQ. 2) THEN
A = B*B

ELSE
IF (y .NE. 0) A=B

ENDIF

IF blocks may also be nested.

38



Visualisation of IF ... THEN .. ELSEIF Construct

Consider the IF ... THEN ... ELSEIF construct

IF (I > 17) THEN
Printx, "I > 17"
ELSEIF (I == 17)
Printx, "I == 17"
ELSE
Printx, "I < 17"
END IF

this maps onto the following control flow structure,

IF (I > 17) THE

1 > 17 | >= 17

PRINT*, "1>17" ELSEI F(1==17) THEN

| == 17 ELSE

PRINT*, "l ==17" PRI NT*, "1<17"

ENDI F

39



Nested and Named IF Constructsl

All control constructs can be both named and nested.

outa: IF (a .NE. 0) THEN
PRINT*, "a /= O"
IF (¢ .NE. 0) THEN
PRINT*, "a /= 0 AND c /= O"
ELSE
PRINT*, "a /= 0 BUT c == O"
ENDIF
ELSEIF (a .GT. 0) THEN outa
PRINT*, "a > O"
ELSE outa
PRINT*, "a must be < 0"
ENDIF outa

The names may only be used once per program unit and
are only intended to make the code clearer.

40



Conditional Exit LoopsI

Can set up a DO loop which is terminated by simply
jumping out of it. Consider,

i=20
DO
i=1+1
IF (i .GT. 100) EXIT
PRINT*, "I is", i
END DO
! if i>100 control jumps here
PRINT*, "Loop finished. I now equals", i

this will generate

I is 1
I is 2
I is 3
I is 100

Loop finished. I now equals 101

The EXIT statement tells control to jump out of the
current DO loop.

41



Conditional Cycle LoopsI

Can set up a DO loop which, on some iterations, only
executes a subset of its statements. Consider,

i=0
DO
i=1i+1
IF (i >= 50 .AND. i <= 59) CYCLE
IF (i > 100) EXIT
PRINT*, "I is", i
END DO
PRINT*, "Loop finished. I now equals", 1

this will generate

I is 1

I is 2

I is 49
I is 60
I is 100

Loop finished. I now equals 101

CYCLE forces control to the innermost active D0 state-
ment and the loop begins a new iteration.

42



Named and Nested LoopsI

Loops can be given names and an EXIT or CYCLE state-
ment can be made to refer to a particular loop.

Ol outa: DO

1] inna: DO

2| e

3| IF (a.GT.b) EXIT outa ! jump to line 9
4| IF (a.EQ.b) CYCLE outa ! jump to line O
5| IF (c.GT.d) EXIT inna ! jump to line 8
6l IF (c.EQ.a) CYCLE ! jump to line 1
7| END DO inna

8| END DO outa

9l

The (optional) name following the EXIT or CYCLE high-
lights which loop the statement refers to.

Loop names can only be used once per program unit.

43



Indexed DO Loops I

Loops can be written which cycle a fixed number of
times. For example,

DO i1 =1, 100, 1
i is 1,2,3,...,100
1 100 iterations

END DO

The formal syntax is as follows,

DO < DO-var>=< exprl>,< expr2> [ ,< expr3> ]
< exec-stmts >
END DO

The number of iterations, which is evaluated before
execution of the loop begins, is calculated as

MAX(INT((< expr2 >-< exprl >+< expr3 >)/< expr3>),0)
If this is zero or negative then the loop is not executed.

If < expr3> is absent it is assumed to be equal to 1.

44



Examples of Loop CountsI

A few examples of different loops,
1. upper bound not exact,

loopy: DO i =1, 30, 2
'i is 1,3,5,7,...,29
! 15 iterations

END DO loopy

2. negative stride,

DO j = 30, 1, -2
... ' jis 30,28,26,...,2
... 1 15 iterations

END DO

3. a zero-trip loop,

DO k = 30, 1, 2
. ! O iterations
!

loop skipped
END DO

4. missing stride — assume it is 1,

DO 1

w

0
=1,2,3,...,30
30 iterations

1,
i

END DO

45



Scope of DO Variablesl

1. I is recalculated at the top of the loop and then
compared with < expr2 >,

2. if the loop has finished, execution jumps to the
statement after the corresponding END DO,

3. I retains the value that it had just been assigned.

For example,

DO i = 4, 45, 17

PRINT*, "I in loop = ",i
END DO
PRINT*, "I after loop = ",i

will produce

in loop = 4
in loop = 21
in loop = 38
after loop = b5

H H H H

An index variable may not have its value changed in a
loop.

46



SELECT CASE Construct II

Simple example

SELECT CASE (i)
CASE (3,5,7)
PRINT*,"i is prime"
CASE (10:)
PRINT*,"i is > 10"
CASE DEFAULT
PRINT*, "i is not prime and is < 10"
END SELECT

An IF .. ENDIF construct could have been used but a
SELECT CASE is neater and more efficient. Another exam-

ple,

SELECT CASE (num)
CASE (6,9,99,66)
! IF(num==6.0R. .. .OR.num==66) THEN
PRINT*, "Woof woof"
CASE (10:65,67:98)
! ELSEIF((num >= 10 .AND. num <= 65) .0OR.
PRINT*, "Bow wow"
CASE DEFAULT
! ELSE
PRINT*, "Meeeoow"
END SELECT
! ENDIF

47



Visualisation of SELECT CASEI

Consider the SELECT CASE construct

SELECT CASE (I)

CASE(1); Printx*, "I==1"
CASE(2:9); Printx, "I>=2 and I<=9"
CASE(10); Print*, "I>=10"

CASE DEFAULT; Print*, "I<=0"

END SELECT CASE

this maps onto the following control flow structure,

SELECT CASE (1)

CASE( 1) CASE(2: 9 CASE(10:) CASE DEFAULT

PRI NT*,
PRI NT*, "[==1" | 522 d 1<=9 PRI NT*, "I>=10" PRI NT*, "] <=0"
"1>=2 an <=g"

T

END SELECT CASE

48



SELECT CASE Construct III

This is useful if one of several paths must be chosen
based on the value of a single expression.

The syntax is as follows,

[ < name >:] SELECT CASE (< case-expr>)
[ CASE (< case-selector >)[ < name > ]
< exec-stmts> | ...
[ CASE DEFAULT [ < name > ]
< exec-stmts > |
END SELECT [ < name > |

Note,

O the < case-expr> must be scalar and INTEGER, LOGICAL
or CHARACTER valued;

O the < case-selector> is a parenthesised single value
or range, for example, (.TRUE.), (1) or (99:101);

O there can only be one CASE DEFAULT branch;

O control cannot jump into a CASE construct.

49



PRINT Statement I

This is the simplest form of directing unformatted data
to the standard output channel, for example,

PROGRAM Owt
IMPLICIT NONE
CHARACTER (LEN=%) , PARAMETER :: &
long_name = "Llanfair...gogogoch"
REAL :: x, y, Z
LOGICAL :: lacigol
x=1; y=2; z =3
lacigol = (y .eq. x)
PRINT*, long_name
PRINT*, "Spock says ""illogical&
&Captain"" "
PRINT*, "y = ",X," Y = n’y’n 7 = ",Z
PRINT*, "Logical val: ",lacigol
END PROGRAM Owt

produces on the screen,
Llanfair...gogogoch
Spock says "illogical Captain"

X= 1.000 Y= 2.000 Z = 3.000
Logical val: F

50



PRINT Statement I

Note,
O each PRINT statement begins a new line;
O the PRINT statement can transfer any object of in-
trinsic type to the standard output;
O strings may be delimited by the double or single
quote symbols, " and ’;
O two occurrences of the string delimiter inside a string

produce one occurrence on output;

51



READ Statement I

READ accepts unformatted data from the standard input
channel, for example, if the type declarations are the
same as for the PRINT example,

READ*, long_name
READ*, x, y, z
READ*, lacigol

accepts
Llanphairphwyll...gogogoch
0.4 5. 1.0el12
T

Note,
O each READ statement reads from a newline:

O the READ statement can transfer any object of in-
trinsic type from the standard input;

52



Mixed Type Numeric Expressionsl

In the CPU calculations must be performed between
objects of the same type, so if an expression mixes type
some objects must change type.

Default types have an implied ordering:
1. INTEGER — lowest
2. REAL
3. DOUBLE PRECISION
4. COMPLEX — highest

The result of an expression is always of the highest type,
for example,

O INTEGER * REAL gives a REAL, (3%2.0 is 6.0)

O REAL * INTEGER gives a REAL, (3.0*2 is 6.0)

O DOUBLE PRECISION * REAL gives DOUBLE PRECISION,

O COMPLEX * < anytype > gives COMPLEX,

O DOUBLE PRECISION * REAL * INTEGER gives DOUBLE PRECISION.

The actual operator is unimportant.
53



Mixed Type Assignment I

Problems often occur with mixed-type arithmetic; the
rules for type conversion are given below.

O INTEGER = REAL (or DOUBLE PRECISION)

The RHS is evaluated, truncated (all the decimal
places lopped off) then assigned to the LHS.

O REAL (or DOUBLE PRECISION) = INTEGER

The RHS is promoted to be REAL and stored (ap-
proximately) in the LHS.

For example,

REAL :: a=1.1, b = 0.1

INTEGER :: i, j, k

i= 3.9 ! i will be 3

j =-0.9 ' j will be O
k=a-b>» ! k will be 1 or O

Note: as a and b stored approximately, the value of k is
uncertain.

54



Integer Division I

Confusion often arises about integer division; in short,
division of two integers produces an integer result by
truncation (towards zero). Consider,

REAL :: a, b, c, d, e

a = 1999/1000 LHS is 1
= -1999/1000 LHS is -1
= (1999+1) /1000 LHS is 2

= 1999.0/1000
= 1999/1000.0

LHS is 1.999
LHS is 1.999

o A0 C

O ais (about) 1.000
O b is (about) -1.000
O cis (about) 2.000
O dis (about) 1.999
O e is (about) 1.999

Great care must be taken when using mixed type arith-
metic.

55



Intrinsic Procedures I

Fortran 90 has 113 in-built or intrinsic procedures to
perform common tasks efficiently, they belong to a num-
ber of classes:
O elemental such as:
¢ mathematical, for example, SIN or LOG.
¢ numeric, for example, SUM or CEILING;

¢ character, for example, INDEX and TRIM;

¢ bit, for example, IAND and IOR;
O inquiry, for example, ALLOCATED and SIZE;
O transformational, for example, REAL and TRANSPOSE;

O miscellaneous (hon-elemental SUBROUTINES), for ex-
ample, SYSTEM CLOCK and DATE AND TIME.

Note all intrinsics which take REAL valued arguments also
accept DOUBLE PRECISION arguments.

56



Type Conversion FunctionsI

It is easy to transform the type of an entity,
O REAL(i) converts i to a real approximation,
O INT(x) truncates x to the integer equivalent,
O DBLE(a) converts a to DOUBLE PRECISION,

O TIACHAR(c) returns the position of CHARACTER c in the
ASCII collating sequence,

O ACHAR(i) returns the 3" character in the ASCII col-
lating sequence.

All above are intrinsic functions. For example,

PRINT*, REAL(1), INT(1.7), INT(-0.9999)
PRINT#*, IACHAR(’C’), ACHAR(67)

are equal to

1.000000 1 O
67 C

57



Mathematical Intrinsic FunctionsI

Summary,

AC0S (x) arccosine

ASIN(x) arcsine

ATAN(x) arctangent

ATAN2(y,x) | arctangent of complex num-
ber (z,y)

C0S (x) cosine where z is in radians

COSH(x) hyperbolic cosine where z is in
radians

EXP(x) e raised to the power z

LOG(x) natural logarithm of x

LOG10(x) logarithm base 10 of z

SIN(x) sine where z is in radians

SINH(x) hyperbolic sine where z is in
radians

SQRT (x) the square root of z

TAN (x) tangent where z is in radians

TANH(x) tangent where x is in radians

58



Numeric Intrinsic Functionsl

Summary,

ABS(a) absolute value

AINT(a) truncates a to whole REAL
number

ANINT (a) nearest whole REAL number

CEILING(a) smallest INTEGER greater than
or equal to REAL number

CMPLX(X,y) convert to COMPLEX

DBLE (x) convert to DOUBLE PRECISION

DIM(x,y) positive difference

FLOOR(a) biggest INTEGER less than or
equal to real number

INT (a) truncates a into an INTEGER

MAX(al,a2,a3,...) | the maximum value of the
arguments

MIN(al,a2,a3,...) | the minimum value of the
arguments

MOD(a,p) remainder function

MODULO(a,p) modulo function

NINT(x) nearest INTEGER tOo a REAL
number

REAL (a) converts to the equivalent
REAL value

SIGN(a,b) transfer of sign —
ABS(a) *(b/ABS(b))

59



L ecture 3:
Arrays



Arrays (or matrices) hold a collection of different values
at the same time. Individual elements are accessed by
subscripting the array.

A 15 element array can be visualised as:

And a 5 x 3 array as:

Dimension 1

Every array has a type and each element holds a value
of that type.

60



Array Terminology I

Examples of declarations:

REAL, DIMENSION(15) 0 X
REAL, DIMENSION(1:5,1:3) :: Y, Z

The above are explicit-shape arrays.
Terminology:

O rank — number of dimensions.
Rank of X is 1; rank of Y and Z is 2.

O bounds — upper and lower limits of indices.

Bounds of X are 1 and 15; Bound of Y and Z are 1
and 5 and 1 and 3.

O extent — number of elements in dimension;
Extent of X is 15; extents of Y and Z are 5 and 3.

O size — total number of elements.
Size of X, Y and Z is 15.

O shape — rank and extents;
Shape of X is 15; shape of Y and Z is 5,3.

O conformable — same shape.
Y and Z are conformable.

61



Declarations I

Literals and constants can be used in array declarations,

REAL, DIMENSION(100) :: R

REAL, DIMENSION(1:10,1:10) :: S

REAL :: T(10,10)
REAL, DIMENSION(-10:-1) 0 X

INTEGER, PARAMETER :: 1da = 5
REAL, DIMENSION(O:1da-1) 0 Y

REAL, DIMENSION(1+lda*1lda,10) :: Z
O default lower bound is 1,
O bounds can begin and end anywhere,

O arrays can be zero-sized (if 1da = 0),

62



Visualisation of ArraysI

REAL, DIMENSION(15)

REAL, DIMENSION(-4:0,0:2)
REAL, DIMENSION(5,3)
REAL, DIMENSION(0:4,0:2)

OaQw>

Individual array elements are denoted by subscripting the
array name by an INTEGER, for example, A(7) 7" element
of A, or C(3,2), 3 elements down, 2 across.

Aﬂ)i | | iAﬂ&

B(-4,0) = < B(-4,2)
ca1) L T___o____C___] C(1,3)
D(0,0) D(0,2)

B(0,0) L
C(5,1) .
D(4,0)

] B(0,2)
- C(5,3)
D(4,2)

63



Array Conformance I

Arrays or sub-arrays must conform with all other objects
in an expression:

O a scalar conforms to an array of any shape with the
same value for every element:

Cc=1.0 ! is valid

O two array references must conform in their shape.
Using the declarations from before:

T T T T

I I I I
F—+-d-- F—+-d--

| | | |
L — L - J_ L — L - J_

L C=D L Val i d
T a7 T a7

| | | |
- T~ 777~ - T~ 777~

| | | |

T T

I I

| |
__J‘-_—“__ T T T T

| | B =A I I I I
Y e

| |

T I nval i d

A and B have the same size but have different shapes
so cannot be directly equated.

64



Array Element Ordering I

Organisation in memory:

O Fortran 90 does not specify anything about how
arrays should be located in memory. It has no
storage association.

O Fortran 90 does define an array element ordering for
certain situations which is of column major form,

The array is conceptually ordered as:

first elt PN PN
l l
7| AN
C(1,1) [ R I B N o )
l l
| |
| |
I R I R
| |
| |
| |
L — Jd - |- L - —
| |
l l
| |
N I T B
C(5,1) 1 1 C(5,3)
| |
N4 N4

last elt

c(1,1),c(2,1),..,Cc(5,1),Cc(1,2),C(2,2),..,C(5,3)

65



Array Syntax I

Can reference:

O whole arrays

o A =0.0
sets whole array A to zero.

¢ B=C+D
adds C and D then assigns result to B.

O elements

o A(1) = 0.0
sets one element to zero,

¢ B(0,0) = A(3) + C(5,1)
sets an element of B to the sum of two other

elements.
O array sections

¢ A(2:4) = 0.0
sets A(2), A(3) and A(4) to zero,

¢ B(-1:0,1:2) = C(1:2,2:3) + 1.0

adds one to the subsection of C and assigns to
the subsection of B.

66



Whole Array Expressionsl

Arrays can be treated like a single variable in that:

O can use intrinsic operators between conformable ar-
rays (or sections),

B =C * D — Bxx2

this is equivalent to concurrent execution of:

B(-4,0) = C(1,1)*D(0,0)-B(-4,0)**2 ! in
B(-3,0) = C(2,1)*D(1,0)-B(-3,0)**2 ! in

Bi;4,1) C(1,2)*D(0,1)-B(-4,1)**2 ! in ||

B(0,2) C(5,3)*D(4,2)-B(0,2)**2 ! in ||
O elemental intrinsic functions can be used,

B = SIN(C)+C0S(D)

the function is applied element by element.

67



Array Sections — Visualisation

Given,

:: P

REAL, DIMENSION(1:6,1:8)

| | | |
F— — A= == = —
| | | |
| | | |
| | | i
ST T T T T T T
| | | |
i Wi Bt el il
|

P(2:6:2,1:7:3)

P(1:3,1:4)

I I I I I
T [ (R
I I I I I
I I I I I
CTT T T T T T T
I I I I I
T T AT I T T T T
I I I I I
F— - H - -l = =+ —

P(1:6:2,1:8:2)

P(2:5,7:7)

P(2:5,7)

Consider the following assignments,

5
© ©
c c &
(o] ©

-
~ ~ (O
(o I <
LN ] ..)
$Z 4R
ooa ®n ©
s 0w

i
o ZTZ
O © (aFRNa W
— O n
(.
A, v ~ ~
Mmoo
—— —— e o0
N~ I~
)) e o0
H <+ — -
— - AN NN
M om o0 ©
— - AN NN
o/ o/

O P(2:5,7) is a 1D section (scalar in dimension 2)
whereas P(2:5,7:7) is a 2D section.

68



subscript-triplets specify sub-arrays. The general form

IS

Array Sections I

[< bound1 >]:[< bound2 >][:< stride >]

The section starts at < bound1 > and ends at or before
< bound2 >. < stride > is the increment by which the

locations are selected.

< boundl >, < bound2 > and < stride > must all be

scalar integer expressions. Thus

AC:) !
A(3:9) !
A(3:9:1) !
A(m:n) !
A(m:n:k) !
A(8:3:-1) !
A(8:3) !
A(m:) !
A(:n) !
A(C::2) !
A(m:m) !
A(m) !

the whole array

A(m) to A(n)
as above

A(m) to A(n)
A(m) to A(n)
A(8) to A(3)
A(8) to A(3)
from A(m) to
from default
from default

in steps of 1

in steps of k

in steps of -1

step 1 => Zero size
default UPB

LWB to A(n)

LWB to UPB step 2

1 element section
scalar element - not a section

are all valid sections.

69



Array 1/0O I

The conceptual ordering of array elements is useful for
defining the order in which array elements are output.
If A is a 2D array then:

PRINT*, A
would produce output in the order:
A(1,1),A(2,1),A(3,1),..,A(1,2),A(2,2),..
READ*, A
would assign to the elements in the above order.

This order could be changed by using intrinsic functions
such as RESHAPE, TRANSPOSE or CSHIFT.

70



Array I/O ExampIeI

Consider the matrix A:

l l
| |
- L
| |
2 , 5 , 8
. -
| |
| |
| |

The following PRINT statements

PRINT*, ’Array element =’.a(3,2)

PRINT*, ’Array section =’,a(:,1)

PRINT*, ’Sub-array =’ a(:2,:2)

PRINT*, ’Whole Array =’,a

PRINT*, ’Array Transp’’d =’ TRANSPOSE(a)
END PROGRAM QOwt

produce on the screen,

Array element =
Array section =
Sub-array

Whole Array =
Array Transposed =

e N
DN NN
N W bW
N O

o o

0 O

w N

o

O ©

71



Array Inquiry IntrinsicsI

These are often useful in procedures, consider the dec-
laration:

REAL, DIMENSION(-10:10,23,14:28) :: A
O LBOUND(SOURCE[,DIM]) — lower bounds of an array (or
bound in an optionally specified dimension).
¢ LBOUND(A) is (/-10,1,14/) (array);
¢ LBOUND(A,1) is -10 (scalar).
O UBOUND(SOURCE[,DIM]) — upper bounds of an array
(or bound in an optionally specified dimension).
0 SHAPE(SOURCE) — shape of an array,
© SHAPE(A) is (/21,23,15/) (array);
© SHAPE((/4/)) is (/1/) (array).

O SIZE(SOURCE[,DIM]) — total number of array elements
(in an optionally specified dimension),

o SIZE(A,1) is 21;
o SIZE(A) is 7245.

O ALLOCATED(SOURCE) — array allocation status;

72



Array Constructors I

Used to give arrays or sections of arrays specific values.
For example,

IMPLICIT NONE

INTEGER S |
INTEGER, DIMENSION(10) :: ints
CHARACTER(len=5), DIMENSION(3) :: colours
REAL, DIMENSION(4) : heights
heights = (/5.10, 5.6, 4.0, 3. 6/)

colours = (/’RED ’,’GREEN’,’BLUE ’/)

! note padding so strings are 5 chars
ints = (/ 100, (i, i=1,8), 100 /)

O constructors and array sections must conform.
O must be 1D.
O for higher rank arrays use RESHAPE intrinsic.

O (i, i=1,8) is an implied D0 and is 1,2,..,8, it is pos-
Sible to specify a stride.

73



T he RESHAPE Intrinsic FunctionI

RESHAPE is a general intrinsic function which delivers an
array of a specific shape:

RESHAPE (SOURCE, SHAPE)
For example,
A = RESHAPE((/1,2,3,4/),(/2,2/))
A is filled in array element order and looks like:
1 3
2 4

Visualisation,

T T T 1:3
152!3!4 >--T;-

RESHAPE

74



Array Constructors in Initialisation Statementsl

Arrays can be initialised

INTEGER, DIMENSION(4) :: solution = (/2,3,4,5/)
CHARACTER (LEN=%) , DIMENSION(3) :: &
lights = (/’RED ’,’BLUE ’,’GREEN’/)

In the second statement all strings must be same length.
Named array constants may also be created:

INTEGER, DIMENSION(3), PARAMETER :: &
Unit_vec = (/1,1,1/)
REAL, DIMENSION(3,3), PARAMETER :: &
unit_matrix = &
RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/))

75



Allocatable Arrays I

Fortran 90 allows arrays to be created on-the-fly; these
are known as deferred-shape arrays:

O Declaration:

INTEGER, DIMENSION(:), ALLOCATABLE :: ages ! 1D
REAL, DIMENSION(:,:), ALLOCATABLE :: speed I 2D

Note ALLOCATABLE attribute and fixed rank.
O Allocation:

READ*, isize
ALLOCATE (ages(isize), STAT=ierr)
IF (ierr /= 0) PRINT*, "ages : Allocation failed"

ALLOCATE(speed(0:isize-1,10) ,STAT=ierr)
IF (ierr /= 0) PRINT*, "speed : Allocation failed"

O the optional STAT= field reports on the success of
the storage request. If the INTEGER variable ierr is
zero the request was successful otherwise it failed.

76



Deallocating Arrays I

Heap storage can be reclaimed using the DEALLOCATE
statement:

IF (ALLOCATED(ages)) DEALLOCATE(ages,STAT=ierr)

O it is an error to deallocate an array without the
ALLOCATE attribute or one that has not been previ-
ously allocated space,

O there is an intrinsic function, ALLOCATED, which re-
turns a scalar LOGICAL values reporting on the status
of an array,

O the STAT= field is optional but its use is recom-
mended,

O if a procedure containing an allocatable array which
does not have the SAVE attribute is exited without
the array being DEALLOCATEd then this storage be-
comes inaccessible.

77



Masked Array Assignment — Where Statementl

This is achieved using WHERE:
WHERE (I .NE. 0) A = B/I

the LHS of the assignment must be array valued and
the mask, (the logical expression,) and the RHS of the
assignment must all conform;

For example, if

and,

|
|
—
oN
N | O
~—

then

= (2 )

Only the indicated elements, corresponding to the non-
zero elements of I, have been assigned to.

78



Where Construct I

O there is a block form of masked assignment:

WHERE(A > 0.0)

B = LOG(A)

C = SQRT(A)
ELSEWHERE

B =0.0"!' C is NOT changed
ENDWHERE

O the mask must conform to the RHS of each assign-
ment; A, B and C must conform;

O WHERE ... END WHERE is not a control construct and
cannot currently be nested:

O the execution sequence is as follows: evaluate the
mask, execute the WHERE block (in full) then execute
the ELSEWHERE block;

O the separate assignment statements are executed
sequentially but the individual elemental assignments
within each statement are (conceptually) executed
in parallel.

79



Vector-valued Subscriptsl

A 1D array can be used to subscript an array in a di-
mension. Consider:

(/134’8312,10/)
(/1,2,2/)

INTEGER, DIMENSION(5) :: V
INTEGER, DIMENSION(3) :: W

O AC(V) is A(1), A(4), A(8), A(12), and A(10).

V
[ I
S A A
1 4 8 10 12

O the following are valid assignments:

ACV) =

3.5
C(1:3,1) =

A(W)

O it would be invalid to assign values to A(W) as A(2)
is referred to twice.

O only 1D vector subscripts are allowed, for example,

A(1) = suM(C(V,W))

80



Random Number Intrinsic I

O RANDOM_NUMBER (HARVEST) will return a scalar (or array

of) pseudorandom number(s) in the range 0 < x <
1.

For example,

REAL :: HARVEST
REAL, DIMENSION(10,10) :: HARVEYS
CALL RANDOM_NUMBER (HARVEST)
CALL RANDOM_NUMBER (HARVEYS)

O RANDOM SEED([SIZE=< int >]) finds the size of the
seed.

O RANDOM SEED([PUT=< array>]) seeds the random num-
ber generator.

CALL RANDOM_SEED(SIZE=isze)
CALL RANDOM_SEED(PUT=IArr(1l:isze))

81



Vector and Matrix Multiply IntrinsicsI

There are two types of intrinsic matrix multiplication:

O DOT_PRODUCT(VEC1, VEC2) — inner (dot) product of
two rank 1 arrays.

For example,
DP = DOT_PRODUCT(A,B)
IS equivalent to:
DP = A(1)*B(1) + A(2)*B(2) + ...

For LOGICAL arrays, the corresponding operation is
a logical .AND..

DP = LA(1) .AND. LB(1) .OR. &
LA(2) .AND. LB(2) .OR.

O MATMUL(MAT1, MAT2) — ‘traditional’ matrix-matrix mul-
tiplication:

¢ if MAT1 has shape (n,m) and MAT2 shape (m,k)
then the result has shape (n, k);

¢ if MAT1 has shape (m) and MAT2 shape (m, k) then
the result has shape (k);

¢ if MAT1 has shape (n,m) and MAT2 shape (m) then
the result has shape (n);

For LOGICAL arrays, the corresponding operation is
a logical .AND..

82



Maximum and Minimum Intrinsicsl

There are two intrinsics in this class:

O MAX(SOURCE1,SOURCE2[,SOURCE3[,...]1]1)— maximum
values over all source objects

O MIN(SOURCE1l,SOURCE2[,SOURCE3[,...]1])— minimum val-
ues over all source objects

Scan from left to right, choose first occurrence if there
are duplicates

MAX( X)

71 9/-2] 4] 8/10] 2| 7/10] 2| 1

%

O MAX(1,2,3) is 3

O MIN((/1,2/),(/-3,4/)) is (/-3,2/)

O MAX((/1,2/),(/-3,4/)) is (/1,4/)

83



Array Location IntrinsicsI

There are two intrinsics in this class:

O MINLOC(SOURCE[,MASK])— Location of a minimum value
in an array under an optional mask.

O MAXLOC(SOURCE[,MASK])— Location of a maximum value
in an array under an optional mask.

A 1D example,
MAXLOC(X) = (/6/)

71 9/-2| 4] 8/10] 2| 7/10] 2| 1

A

A 2D example. If

O -1 1 6 -4
Array=| 1 -2 5 4 -3
3 8 3 =7 O

then
O MINLOC(Array) is (/3,4/)
O MAXLOC(Array,Array.LE.7) is (/1,4/)

O MAXLOC(MAXLOC(Array,Array.LE.7)) is (/2/) (array val-
ued).

84



Array Reduction Intrinsicsl

O PRODUCT (SOURCE[,DIM][,MASK])— product of array ele-

ments (in an optionally specified dimension under
an optional mask);

O SUM(SOURCE[,DIM][,MASK])— sum of array elements (in

an optionally specified dimension under an optional
mask).

The following 1D example demonstrates how the 11
values are reduced to just one by the SUM reduction:

SUMW = 58

7| 9/-2| 4| 8(10] 2| 7|10] 2| 1
FNF\N+\+| [+ +/+/+ ¢

= 58

Consider this 2D example, if

a=(133)
O PRODUCT(A) is 720
O PRODUCT(A,DIM=1) is (/2, 12, 30/)
O PRODUCT(A,DIM=2) is (/15, 48/)

85



Array Reduction Intrinsics (Cont’d)I

These functions operate on arrays and produce a result
with less dimensions that the source object:

O ALL(MASK[,DIM])— .TRUE. if all values are .TRUE., (in
an optionally specified dimension);

O ANY(MASK[,DIM])— .TRUE. if any values are .TRUE., (in
an optionally specified dimension);

O COUNT(MASK[,DIM])— number of .TRUE. elements in
an array, (in an optionally specified dimension);

O MAXVAL (SOURCE[,DIM][,MASK])— maximum Value in an
array (in an optionally specified dimension under an
optional mask);

O MINVAL(SOURCE[,DIM][,MASK])— minimum value in an
array (in an optionally specified dimension under an
optional mask);

If DIM is absent or the source array is of rank 1 then the
result is scalar, otherwise the result is of rank n — 1.

86



Lecture 4:

Program Units and

Interfaces




Program UnitsI

Fortran 90 has two main program units

O main PROGRAM,

the place where execution begins and where control
should eventually return before the program termi-
nates. May contain procedures.

0 MODULE.

a program unit which can contain procedures and
declarations. It is intended to be attached to any
other program unit where the entities defined within
it become accessible.

There are two types of procedures:

[0 SUBROUTINE,

a parameterised named sequence of code which per-
forms a specific task and can be invoked from within
other program units.

0 FUNCTION,

as a SUBROUTINE but returns a result in the function
name (of any specified type and kind).

87



Main Program Syntax I

PROGRAM Mai n

oL,
CONTAINS ! Internal Procs
SUBROUTI NE Subl(..)
| Executable stnts
END SUBROUTI NE Sub1l
I etc.
FUNCTI ON Funkyn(...)
| Executable stnts
END FUNCTI ON Funkyn
END PROGRAM Mai n

[ PROGRAM [ < main program name > | |
< declaration of local objects >

< executable stmts >
[ CONTAINS

< internal procedure definitions > ]
END [ PROGRAM [ < main program name > | |

88



Program Examplel

PROGRAM Main
IMPLICIT NONE
REAL :: x
READ*, x
PRINT*, FLOOR(x) ! Intrimsic
PRINT*, Negative(x)
CONTAINS
REAL FUNCTION Negative(a)
REAL, INTENT(IN) :: a
Negative = -a
END FUNCTION Negative
END PROGRAM Main

89



Introduction to Proceduresl

The first question should be: “Do we really need to
write a procedure?”

Functionality often exists,
O intrinsics, Fortran 90 has 113,

O libraries, for example, NAg £190 Numerical Library
has 3004, BLAS, IMSL, LaPACK, Uniras

O modules, number growing, many free! See WWW/.

Library routines are usually very fast, sometimes even
faster than Intrinsics!

90



Subroutines I

Consider the following example,

PROGRAM Thingy
IMPLICIT NONE

CONTAINS
SUBROUTINE OutputFigures (Numbers)
REAL, DIMENSION(:), INTENT(IN) :: Numbers
PRINT*, "Here are the figures'", Numbers
END SUBROUTINE OutputFigures
END PROGRAM Thingy

Internal subroutines lie between CONTAINS and END PROGRAM
statements and have the following syntax

SUBROUTINE < procname >[ (< dummy args>) |
< declaration of dummy args >
< declaration of local objects >

< executable stmts >
END [ SUBROUTINE [< procname> | ]

Note that, in the example, the IMPLICIT NONE statement
applies to the whole program including the SUBROUTINE.

91



Functions I

Consider the following example,

PROGRAM Thingy
IMPLICIT NONE

CONTAINS
REAL FUNCTION F(x,y)
REAL, INTENT(IN) :: x,y
F = SQRT(x*x + y*y)
END FUNCTION F
END PROGRAM Thingy

Functions also lie between CONTAINS and END PROGRAM
statements. They have the following syntax:

[< prefix >] FUNCTION < procname >( [< dummyargs >])
< declaration of dummy args >
< declaration of local objects >

< executable stmts, assignment of result >
END [ FUNCTION [ < procname> | ]

It is also possible to declare the function type in the
declarations area instead of in the header.

92



Argument Association I

Recall, on the SUBROUTINE slide we had an invocation:
CALL OutputFigures(NumberSet)

and a declaration,
SUBROUTINE OutputFigures(Numbers)

NumberSet iS an actual argument and is argument asso-
ciated with the dummy argument Numbers.

For the above call, in OutputFigures, the name Numbers
is an alias for NumberSet. Likewise, consider,

PRINT*, F(a,b)
and
REAL FUNCTION F(x,y)

The actual arguments a and b are associated with the
dummy arguments x and y.

If the value of a dummy argument changes then so does
the value of the actual argument.

93



Local Objects I

In the following procedure

SUBROUTINE Madras(i,j)
INTEGER, INTENT(IN) :: i, j
REAL :ra
REAL, DIMENSION(i,j):: x

a, and x are know as local objects. They:
O are created each time a procedure is invoked,
O are destroyed when the procedure completes,
O do not retain their values between calls,
O do not exist in the programs memory between calls.

x Will probably have a different size and shape on each
call.

The space usually comes from the programs stack.

94



External Procedures I

Fortran 90 allows a class of procedure that is not con-
tained within a PROGRAM or a MODULE — an EXTERNAL pro-
cedure.

This is the old Fortran 77-style of programming and is
more clumsy than the Fortran 90 way.

Differences:
O they may be compiled separately,

O may need an explicit INTERFACE to be supplied to the
calling program,

O can be used as arguments (in addition to intrinsics),

O should contain the IMPLICIT NONE specifier.

95



Subroutine Syntax I

Syntax of a (non-recursive) subroutine declaration:

SUBROUTI NE Ext _1(...)
L.

CONTAINS ! Internal Procs

SUBROUTI NE Int_1(...)
| Executable stnts

END SUBRQUTINE Int_1
I etc.

FUNCTION Int_n(...)

| Executable stnts

END FUNCTION Int_n

END SUBRCQUTI NE Ext 1

SUBROUTI NE Ext _2(...)
I etc
END SUBROUTI NE Ext 2

SUBROUTINE < procname >[ (< dummy args >) |
< declaration of dummy args >
< declaration of local objects >

< executable stmts >
[ CONTAINS
< internal procedure definitions > ]
END [ SUBROUTINE [< procname > ] ]

96



External Subroutine ExampIeI

An external procedure may invoke a further external pro-
cedure,

SUBROUTINE subi(a,b,c)
IMPLICIT NONE
EXTERNAL sum_sq ! Should declare or use an INTERFACE

REAL :: a, b, ¢c, s
CALL sum_sq(a,b,c,s)
END SUBROUTINE subl

calls,

SUBROUTINE sum_sq(aa,bb,cc,ss)
IMPLICIT NONE
REAL, INTENT(IN) :: aa, bb, cc
REAL, INTENT(OUT) :: ss
Ss = aa%*aa + bb*xbb + cc*cc
END SUBROUTINE sum_sq

o7



Function Syntax I

Syntax of a (non-recursive) function:

[< prefix >] FUNCTION < procname >( [< dummy args >])
< declaration of dummy args >
< declaration of local objects >

< executable stmts, assignment of result >
[ CONTAINS
< internal procedure definitions > ]
END [ FUNCTION [ < procname > | |

here < prefix >, specifies the result type. or,

FUNCTION < procname >( [< dummy args >])
< declaration of dummy args >
< declaration of result type >
< declaration of local objects >

< executable stmts, assignment of result >
[ CONTAINS
< internal procedure definitions > |
END [ FUNCTION [ < prochame > | |

here, < procname > must be declared.

98



External Function ExampIeI

O A function is invoked by its appearance in an expres-
sion at the place where its result value is needed,

total = total + largest(a,b,c)

O external functions should be declared as EXTERNAL or
else the INTERFACE should be given,

INTEGER, EXTERNAL :: largest
O The function is defined as follows,

INTEGER FUNCTION largest(i,j,k)
IMPLICIT NONE
INTEGER :: i, j, k
largest = i
IF (j .GT. largest) largest =
IF (k .GT. largest) largest =
END FUNCTION largest

B .

or equivalently as,
FUNCTION largest(i,j,k)
IMPLICIT NONE
INTEGER :: i, j, k
INTEGER :: largest

END FUNCTION largest

99



Argument Intent I

Hints to the compiler can be given as to whether a
dummy argument will:

O only be referenced — INTENT(IN);
O be assigned to before use — INTENT(OUT);

O be referenced and assigned to — INTENT(INOUT);

SUBROUTINE example(argl,arg2,arg3)
REAL, INTENT(IN) :: argl
INTEGER, INTENT(OUT) :: arg2
CHARACTER, INTENT(INOUT) :: arg3
REAL :: r
r = argl*ICHAR(arg3)
arg2 = ANINT(r)
arg3 = CHAR(MOD(127,arg2))
END SUBROUTINE example

The use of INTENT attributes is recommended as it:
O allows good compilers to check for coding errors,
O facilitates efficient compilation and optimisation.

Note: if an actual argument is ever a literal, then the
corresponding dummy must be INTENT(IN).

100



Scoping RulesI

Fortran 90 is not a traditional block-structured lan-
guage:

O the scope of an entity is the range of program unit
where it is visible and accessible;

O internal procedures can inherit entities by host as-
sociation.

O objects declared in modules can be made visible by
use-association (the USE statement) — useful for
global data;

101



Host Association — Global DataI

Consider,

PROGRAM CalculatePay
IMPLICIT NONE
REAL :: Pay, Tax, Delta
INTEGER :: NumberCalcsDone = O
Pay = ...; Tax = ... ; Delta = ...
CALL PrintPay(Pay,Tax)
Tax = NewTax(Tax,Delta)
CONTAINS
SUBROUTINE PrintPay(Pay,Tax)
REAL, INTENT(IN) :: Pay, Tax
REAL :: TaxPaid
TaxPaid = Pay * Tax
PRINT*, TaxPaid
NumberCalcsDone = NumberCalcsDone + 1
END SUBROUTINE PrintPay
REAL FUNCTION NewTax(Tax,Delta)
REAL, INTENT(IN) :: Tax, Delta
NewTax = Tax + Delta*Tax
NumberCalcsDone = NumberCalcsDone + 1
END FUNCTION NewTax
END PROGRAM CalculatePay

Here, NumberCalcsDone iS a global variable. It is available
in all procedures by host association.

102



Scope of Names I

Consider the following example,

PROGRAM Proggie
IMPLICIT NONE

REAL ::

CALL sub(A)
CONTAINS
SUBROUTINE Sub(D)

REAL ::
REAL ::

C =
D =
B =

END SUBROUTINE Sub
END PROGRAM Proggie

D
:: C
Ax*x3
D**3 + C
C

A, B, C

D is dummy (alias for A)

local C (diff from Proggie’s C)
A cannot be changed

D can be changed

B from Proggie gets new value

In Sub, as A is argument associated it may not be have
its value changed but may be referenced.

C in Sub is totally separate from C in Proggie, changing
its value in Sub does not alter the value of C in Proggie.

103



SAVE Attribute and the SAVE Statementl

SAVE attribute can be:

O applied to a specified variable. NumInvocations iS

initialised on first call and retains its new value be-
tween calls,

SUBROUTINE Barmy(argl,arg?2)
INTEGER, SAVE :: NumInvocations = O
NumInvocations = NumInvocations + 1

applied to the whole procedure, and applies to all
local objects.

SUBROUTINE Mad(argl,arg?2)
REAL :: saved

SAVE

REAL :: saved_an_all

Variables with the SAVE attribute are static objects.

Clearly, SAVE has no meaning in the main program.

104



Procedure Interfaces I

For EXTERNAL procedures it is possible to provide an ex-
plicit interface for a procedure. Consider:

SUBROUTINE expsum( n, k, x, sum )! in interface
USE KIND_VALS:0ONLY long

IMPLICIT NONE

INTEGER, INTENT(IN) :: n ! in interface
REAL(long), INTENT(IN) :: k,x ! in interface
REAL(long), INTENT(OUT) :: sum ! in interface
REAL(long), SAVE :: cool_time

sum = 0.0

DOi1i=1, n

sum = sum + exp(-ixk*x)

END DO

END SUBROUTINE expsum ! in interface

The explicit INTERFACE for this routine is given by the
statements which appear in the declarations part of any
program unit that calls expsum:

INTERFACE ! for EXTERNAL procedures
SUBROUTINE expsum( n, k, x, sum )
USE KIND_VALS:ONLY long
INTEGER, INTENT(IN) :: n
REAL(long), INTENT(IN) :: k,x
REAL(long), INTENT(OUT) :: sum
END SUBROUTINE expsum
END INTERFACE

Interfaces replace any EXTERNAL statements and are not
needed for internal (or module) procedures.

105



What Appears in an Interface?l

An interface only contains:
O the SUBROUTINE or FUNCTION header,
O (if not included in the header) the FUNCTION type,

O declarations of the dummy arguments (including at-
tributes),

O the END SUBROUTINE or END FUNCTION statement
Interfaces are only ever needed for EXTERNAL procedures

and remove the need for any other form of declaration
of that procedure.

106



Interface Example I

The following program includes an explicit interface,

PROGRAM interface_example
IMPLICIT NONE

INTERFACE

SUBROUTINE expsum(N,K,X,sum)
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: K,X
REAL, INTENT(OUT) :: sum
END SUBROUTINE expsum

END INTERFACE

REAL :: sum
CALL expsum(10,0.5,0.1,sum)

END PROGRAM interface_example

Explicit interfaces permit separate compilation, optimi-
sation and type checking.

107



Required Interfaces I

Explicit interfaces are mandatory if an EXTERNAL proce-
dure has:

O dummy arguments that are assumed-shape arrays,
pointers or targets;

O OPTIONAL arguments;
O an array valued or pointer result (functions);

O a result that has an inherited LEN=* length specifier
(character functions);

and when the reference:
O has a keyword argument;
O is a defined assignment;
O is a call to the generic name;

O is a call to a defined operator (functions).

108



Lecture 5:

Array Arguments,

Intrinsics and Modules




Dummy Array Argumentsl

There are two main types of dummy array argument:
O explicit-shape — all bounds specified;

REAL, DIMENSION(8,8), INTENT(IN) :: expl_shape

The actual argument that becomes associated with
an explicit-shape dummy must conform in size and
shape.

O assumed-shape — no bounds specified, all inherited
from the actual argument;

REAL, DIMENSION(:,:), INTENT(IN) :: ass_shape

An explicit interface must be provided.

O dummy arguments cannot be (unallocated) ALLOCAT-
ABLE arrays.

109



Assumed-shape Arrays I

Should declare dummy arrays as assumed-shape arrays:

PROGRAM Main
IMPLICIT NONE
REAL, DIMENSION(40) 0 X
REAL, DIMENSION(40,40) :: Y

CALL gimlet(X,Y)
CALL gimlet(X(1:39:2),Y(2:4,4:4))
CALL gimlet(X(1:39:2),Y(2:4,4)) ! invalid
CONTAINS
SUBROUTINE gimlet(a,b)
REAL, INTENT(IN) :: a(:), b(:,:)

END SUBROUTINE gimlet
END PROGRAM

Note:

O the actual arguments cannot be a vector subscripted
array,

O the actual argument cannot be an assumed-size ar-
ray.

O in the procedure, bounds begin at 1.

110



Automatic Arrays I

Other arrays can depend on dummy arguments, these
are called automatic arrays and:

O their size is determined by dummy arguments,

O they cannot have the SAVE attribute (or be initialised);

Consider,

PROGRAM Main
IMPLICIT NONE
INTEGER :: IX, IY
CALL une_bus_riot(IX,2,3)
CALL une_bus_riot(IY,7,2)
CONTAINS
SUBROUTINE une_bus_riot(A,M,N)
INTEGER, INTENT(IN) :: M, N
INTEGER, INTENT(INOUT) :: A(:,:)
REAL :: A1(M,N) I auto
REAL :: A2(SIZE(A,1),SIZE(A,2)) ! auto

END SUBROUTINE
END PROGRAM

The SIZE intrinsic or dummy arguments can be used to
declare automatic arrays. A1 and A2 may have different

sizes for different calls.
111



SAVE Attribute and ArraysI

Consider,

SUBROUTINE subil(dim)
INTEGER, INTENT(IN) :: dim
REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: X
REAL, DIMENSION(dim) D

~

IF (.NOT.ALLOCATED(X)) ALLOCATE(X(20,20))

As X has the SAVE attribute it will retain its allocation
status between calls otherwise it would disappear.

As Y depends on a dummy argument it cannot be given
SAVE attribute.

112



Array-valued FunctionsI

Functions can return arrays, for example,

PROGRAM Maian
IMPLICIT NONE
INTEGER, PARAMETER ::m =6
INTEGER, DIMENSION(M,M) :: iml, im2

IM2 = funnie(IM1,1) ! invoke
CONTAINS
FUNCTION funnie(ima,scal)
INTEGER, INTENT(IN) :: ima(:,:)
INTEGER, INTENT(IN) :: scal
INTEGER, DIMENSION(SIZE(ima,1) ,SIZE(ima,2)) &
:: funnie
funnie(:,:) = ima(:,:)*scal
END FUNCTION funnie
END PROGRAM

Note how the DIMENSION attribute cannot appear in the
function header.

113



Modules — An OverviewI

The MODULE program unit provides the following facilities:

O

O

global object declaration;
procedure declaration (includes operator definition);
semantic extension;

ability to control accessibility of above to different
programs and program units;

ability to package together whole sets of facilities;

114



Module - General FormI

MODULE Nodul e
I TYPE Definitions

I dobal data
[

I etc ..
CONTAI NS
SUBROUTI NE Sub(. .)
| Executable stnts
CONTAI NS
SUBROUTI NE I nt1(..)

END SUBROUTI NE Int1

I etc.
SUBROQUTINE Intn(..)

END SUBROUTI NE | nt 2n
END SUBROUTI NE Sub

I etc.
FUNCTI ON Funky(..)

| Executable stnts
CONTAI NS

I etc

END FUNCTI ON Funky
END MODULE Nodul e

MODULE < module name >
< declarations and specifications statements >
[ CONTAINS
< definitions of module procedures > |
END [ MODULE [ < module name> ] ]

115



Modules — Global DataI

Fortran 90 implements a new mechanism to implement
global data:

O declare the required objects within a module;
O give them the SAVE attribute;
O USE the module when global data is needed.

For example, to declare pi as a global constant

MODULE Pye
REAL, SAVE :: pi = 3.142
END MODULE Pye

PROGRAM Area
USE Pye
IMPLICIT NONE
REAL :: r
READ*, r
PRINT*, "Area= " ,pi*r*r
END PROGRAM Area

MODULES should be placed before the program.

116



Stack Simulation I

2 o
Push( 2) Push(6) | 2| Push(1)
6 2
16 12 | ]
Pop Pop Pop

117



Implementation of a StackI

o 20 0
A Push( 2) A Push( 6)
Pos Pos
2060 1 1 2016111 1 o
A Push(1) A
Pos Pos
216111 1+ 1 1 |1 2161 1 1 1 1 1 1 s
A Pop A Pop
Pos Pos
20 0 o o |2 o
$ Pop $
Pos Pos

118



Module Global Data Examplel

For example, the following defines a very simple 100
element integer stack

MODULE stack
INTEGER, PARAMETER :: stack_size = 100
INTEGER, SAVE :: store(stack_size), pos=0
END MODULE stack

and two access functions,

SUBROUTINE push(i)
USE stack
IMPLICIT NONE

END SUBROUTINE push
SUBROUTINE pop(i)
USE stack

IMPLICIT NONE

END SUBROUTINE pop

A main program can now call push and pop which simu-
late a 100 element INTEGER stack — this is much neater
than using COMMON block.

119



Visualisation of Global Storagel

MODULE St ack

| NTEGER, PARAMETER :: stack_size = 100

| NTEGER, SAVE :: store(stack_size), pos =0
END MODULE St ack

A AN
SUBROUM NE Push(i) SUBRQUTI NE Pop(i)
USE St ack USE St ack
I etc I etc
END SUBROUTI NE Push END SUBROUTI NE Pop

Both procedures access the same (global) data in the
MODULE.

120



Modules — Interface Declarationl

It is good practice (and often mandatory) to explicitly
declare procedure interfaces, however, in a single pro-
gram there will be:

O a large number of procedures;

O a large amount of duplicated source with great op-
portunity for text mismatch;

can put all interfaces in a MODULE, all interfaces are visible
when the module is used.

121



Modules Interface Declaration Examplel

Consider the following module containing procedure in-
terfaces:

MODULE my_interfaces
INTERFACE
SUBROUTINE subi(A,B,C)
I etc
END SUBROUTINE subl
SUBROUTINE sub2(time,dist)
I etc
END SUBROUTINE sub2
END INTERFACE
END MODULE my_interfaces

PROGRAM use_of_module
USE my_interfaces
CALL sub1((/1.0,3.14,0.57/),2,’Yobot’)
CALL sub2(t,d)
END PROGRAM use_of_module
SUBROUTINE subi1(A,B,C)

END SUBROUTINE subl
SUBROUTINE sub2(time,dist)

END SUBROUTINE sub2

The module containing the interfaces is used in the main
program.

122



Modules — Procedure Declarationl

Placing interfaces in modules for visibility purposes has
the following problems,

O procedures may be inter-related and hence call one
another;

O the procedure interfaces need to be explicit to one
another;

O using the module means that each procedure would
contain its own interface declaration which is an
error.

SUBROUTINE Subl(A,B,C)
USE my_interfaces ! contains Subl stuff

The solution to this is to package the actual procedures
in the module; the interfaces become visible and the
above problems are solved.

These are now called module procedures and are encap-
sulated into the module.

123



Modules — Procedure Encapsulationl

Module procedures are specified after the CONTAINS sep-
arator,

MODULE related_procedures

IMPLICIT NONE

! INTERFACEs of MODULE PROCEDURES do
! not need to be specified they are
! already present’
CONTAINS

SUBROUTINE sub1(A,B,C)

! Can see Sub2’s INTERFACE

END SUBROUTINE subil
SUBROUTINE sub2(time,dist)
I Can see Subl’s INTERFACE

END SUBROUTINE sub2
END MODULE related_procedures

The main program attaches the procedures by
use-association

PROGRAM use_of_module
USE related_procedures ! includes INTERFACES

CALL sub1((/1.0,3.14,0.57/),2,’Yobot?)
CALL sub2(t,d)

END PROGRAM use_of_module

sub1l can call sub2 or vice versa.

124



Encapsulation - Stack exampIeI

We can also encapsulate the stack program,

MODULE stack
IMPLICIT NONE
INTEGER, PARAMETER :: stack_size = 100

INTEGER, SAVE :: store(stack_size), pos=0
CONTAINS

SUBROUTINE push(i)
INTEGER, INTENT(IN) :: i

END SUBROUTINE push
SUBROUTINE pop(i)
INTEGER, INTENT(OUT) :: i

END SUBROUTINE pop
END MODULE stack

Any program unit that includes the line:

USE stack

CALL push(2); CALL push(6);
CALL pop(i);

can access pop and push therefore use the 100 element
global integer stack.

125



The USE Renames FacilityI

The USE statement names a module whose public defi-
nitions are to be made accessible.

Syntax:

USE < module-name > &
[,< new-name > => < use-name >...]

module entities can be renamed,
USE Stack, IntegerPop => Pop

The module object Pop is renamed to IntegerPop when
used locally.

126



USE ONLY Statement I

Another way to avoid name clashes is to only use those
objects which are necessary. It has the following form:

USE < module-name > [ ONLY:< only-list >...]
The < only-list > can also contain renames (=>).
For example,

USE Stack, ONLY:pos, &
IntegerPop => Pop

Only pos and Pop are made accessible. Pop is renamed
to IntegerPop.

The ONLY statement gives the compiler the option of
including only those entities specifically named.

127



Bit Manipulation Intrinsic FunctionsI

Summary,
BTEST(i,pos) bit testing
TIAND(i, j) AND
IBCLR(i,pos) clear bit
IBITS(i,pos,len) bit extraction
IBSET(i,pos) set bit
IEOR(i, j) exclusive OR
IOR(i,j) inclusive OR
ISHFT(i,shft) logical shift
ISHFTC(i,shft) circular shift
NOT (i) complement
MVBITS (ifr,ifrpos, move bits (SUB-
len,ito,itopos) ROUTINE)

Variables used as bit arguments must be INTEGER valued.
The model for bit representation is that of an unsigned

integer, for example,

s1 B 0
0 . 0 O 0 | val ue
s1 B 2 0
0 . 0 1 1 | val ue
s1 B 0
0 B 0O 0 1 1] value

3

The number of bits in a single variable depends on the

compiler

128



Array Construction IntrinsicsI

There are four intrinsics in this class:

O MERGE (TSOURCE,FSOURCE,MASK)— merge two arrays un-
der a mask,

O SPREAD (SOURCE,DIM,NCOPIES)— replicates an array by
adding NCOPIES of a dimension,

O PACK(SOURCE,MASK[,VECTOR])— pack array into a one-
dimensional array under a mask.

O UNPACK(VECTOR,MASK,FIELD)— unpack a vector into
an array under a mask.

129



MERGE Intrinsic I

MERGE (TSOURCE,FSOURCE,MASK)— merge two arrays under
mask control. TSOURCE, FSOURCE and MASK must all con-
form and the result is TSOURCE where MASK is .TRUE. and
FSOURCE where it is .FALSE..

If,
T T F
wse = (17 F)
and
. 1 5 9
TSOURCE_<3 - 11)
and
(0 4 8
FSUURCE_<2 6 10)
we find

MERGE(TSOURCE, FSOURCE, MASK) =< ; 2 181 )

130



SPREAD Intrinsic I

SPREAD (SOURCE,DIM,NCOPIES)— replicates an array by add-
ing NCOPIES of in the direction of a stated dimension.

If Ais (/5, 7/), then

SPREAD(A,2,4)=(§ ? ? ?)
and
5 7
SPREAD(A, 1,4) = g ;
5 7

131



PACK Intrinsic I

PACK (SOURCE,MASK[,VECTOR])— pack a arbitrary shaped ar-
ray into a one-dimensional array under a mask. VECTOR,
if present, must be 1-D and must be of same type and
kind as SOURCE.

If
T T F
wse = (07 1)
and
A= 1 5 9
3 7 11
then

O PACK(A,MASK) is (/1, 5, 11/);
O PACK(A,MASK,(/3,4,5,6/)) is (/1, 5, 11, 6/).

O PACK(A,.TRUE.,(/1,2,3,4,5,6,7,8,9/)) is
(/1,3,5,7,9,11,7,8,9/).

132



UNPACK Intrinsic I

UNPACK (VECTOR,MASK,FIELD)— unpack a vector into an ar-
ray under a mask. FIELD, must conform to MASK and and
must be of same type and kind as VECTOR. T he result is
the same shape as MASK.

If
(9 b 1
FIELD_(7 = 3>
and
_ (T T F
MASK = ( r o T)
then
6 5 1
UNPACK((/6,5,4/),MASK,FIELD) =
7 7 |4
and

UNPACK((/3,2,1/),.NOT.MASK,FIELD):( 9 5 1)

133



TRANSFER Intrinsic I

TRANSFER converts (not coerces) physical representation
between data types; it is a retyping facility. Syntax:

TRANSFER (SOURCE,MOLD)
O SOURCE is the object to be retyped,

O MOLD is an object of the target type.

REAL, DIMENSION(10) :: A, AA
INTEGER, DIMENSION(20) :: B
COMPLEX, DIMENSION(5) :: C

A..; TRANSFER(B, (/ 0.0 /))
AA = TRANSFER(B, 0.0)
C = TRANSFER(B, (/ (0.0,0.0) /))

| NTEGER 0 : 01 0 1]|B
REAL 0 : 01 0 1A
REAL .. : 0 1 0 1]|AA
COVPLEX 0 : 0 1 0 1]|C

134



L_ecture 6:
Data Parallelism



Parallel Processing I

Parallelism:
O at least 2 processors working together,
O work is partitioned — use idle machines,
O more processors can give faster execution,
To make parallelism effective, need to:
O minimise (communication time)/(computation time),

O balance load over processors,

135



Processor Configurationsl

Processors can be interconnected in a number of ways:

! v
=l p -0 p
A A
\l \l
=l p -0 p
v} v}
o [ =T I N ~ T I A - T s - T il

Data is distributed (or ‘overlaid’) onto the processor
grids.

136



Parallel Programs I

Three main classes,
O Data Parallelism,
O Task Parallelism,
O Master-Slave (subtasks),

High Performance Fortran (HPF) concentrates on Data
Parallelism.

137



History of High Performance Fortran (HPF)I

The High Performance Fortran Forum (HPFF)
O is an informal group formed at Supercomputing '91,

O produced a draft standard was circulated in Nov
'92.

O communicated mainly by Email.

Their objectives were to design a language which:
1. supports data parallel programming,
2. obtains top performance on MIMD and SIMD,
3. supports code tuning.

The project was considered to be a success.

138



The Concept of HPFI

HPF is a set of extensions to the Fortran 90 language.
Fortran 90 considered a better platform than C or C+4++.

HPF targets the Data Parallel programming paradigm
which allows systems of interconnected processors to be
easily programmed,

O each processor runs same program (SPMD)

O each processor operates on part of the overall data
O HPF directives say which processor gets what data
O executable statements define parallelism

Much simpler than writing message passing code - HPF
brings parallel programming to the masses!

139



O

O

O

O

O

SPMD ModeII

SPMD model relies on:

arrays of processors,
distributed data,

some global data,

message passing between processors,

loose synchronisation,

IF (1 _AM P1) THEN
SEND( P2, hel | 0)
RECV( P2, acknow edge) [

ELSE ‘\\ RN
RECV( P1, hel | 0) N
SEND( P1, acknowl edge)

END | F

Processor 1

I|F (1 _AM P1) THEN

SEND P2, hel | 0)

RECV( P2, acknow edge)
ELSE

RECV( P1, hel | 0)

SENDX P1, acknowl edge)
END | F

Processor 2

140



Processor Communicationsl

Portable message passing systems,
O Message Passing Interface (MPI),
O Parallel Virtual Machine (PVM),

can operate on heterogeneous networks.

For example,

Send buffer
Receive buffer
Broadcast buffer
Synchronise

Send(to_pid,buffer,length)
Recv(from_pid,buffer,length)
Bcst(from_pid,buffer,length)
Barrier ()

141



HPF and Data Parallelisml

In an HPF program we:
O define conceptual processor grids,
O distribute data onto processors,

O perform calculations,
¢ Fortran 90,
¢ FORALL,
¢ INDEPENDENT loOpS,
¢ PURE procedures,
¢ EXTRINSIC (foreign) procedures,
¢ HPF intrinsics and library (MODULE),

142



Fortran 90 features in High Performance FortranI

Fortran 90 features:
O Fortran 77,
O array syntax (including WHERE),
O allocatable arrays,
O most Fortran 90 intrinsics,

O take care with storage and sequence association and
pointers!

143



Language Covered I

HPF features:
O processor arrangements,
O static alignment,
O static distribution,
O FORALL statement,
O INDEPENDENT looOps,
O PURE and EXTRINSIC procedures,

Many HPF features are now in Fortran 95.

144



HPF Directivesl

Can give ‘hints’ to the compiler:
'HPF$ < hpf-directive >

Examples of declarative statements:

'HPF$ PROCESSORS, DIMENSION(16) :: P
'HPF$ TEMPLATE, &

IHPF$ DIMENSION(4,4) i T1, T2
'HPF$ DISTRIBUTE :: A
'HPF$ DISTRIBUTE X(BLOCK)

'HPF$ DISTRIBUTE (CYCLIC) :r Y1, Y2

'HPF$ DISTRIBUTE (BLOCK,*) ONTO P :: A

Note: all HPF names must be different to Fortran 90
names.

Examples of executable statements,
'HPF$ INDEPENDENT, NEW(i)

Compiler is at liberty to ignore any (or all) directives.

145



PROCESSORS Declarationl

Can declare a conceptual processor grid.

'HPF$ PROCESSORS, DIMENSION(4) :: P1
'HPF$ PROCESSORS, DIMENSION(2,2) :: P2
'HPF$ PROCESSORS, DIMENSION(2,1,2) :: P3

All processor grids in the same program must have same
SIZE.

Conceptual grids do not have to be the same shape as
the underlying hardware.

146



DISTRIBUTE Directive I

Distribute objects ONTO processor grids:

REAL, DIMENSION(50) :: A

REAL, DIMENSION(10,10) :: B, C, D
'HPF$ DISTRIBUTE (BLOCK) ONTO P1 :: A '1-D
'HPF$ DISTRIBUTE (CYCLIC,CYCLIC) ONTO P2 :: B,C !2-D
'HPF$ DISTRIBUTE D(BLOCK,*) ONTO P1 I alt. syntax

There must be the same number of non-*x distributed
dimensions as the rank of the grid.

O BLOCK means give a continuous and, as far as possi-
ble, equal sized block of elements to each processor,

O CYCLIC means deal the elements out one at a time
in a round-robin fashion,

O * means ‘give this whole dimension to the proces-

SOor-.

If an object is distributed then it is said to be mapped
(or have a mapping).

147



Block Distribution I

Give equal sized chunks of an array to each processor.
For example,

PROGRAM Chunks

REAL, DIMENSION(20) -
'HPF$ PROCESSORS, DIMENSION(4) :: P
'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A

=

Processor 1 owns  Processor 2 owns  Processor 3owns  Processor 4 owns
A(L:5) | A(2:10) | A(11:15) | A(16:20)

OO0O000O000000O0O0000O0Q

4 I I I N

, ! ! ! N

2 3 4 N

O Array item 1 Processor 1

If an array, A has #A elements and is mapped onto #P
processors each processor gets a block of (a maximum)
of [#A/#P] elements.

In this case each processor gets five elements.

148



Cyclic Distribution I

Deal out elements of an array to processors in a round
robin fashion

PROGRAM Round_Robin

REAL, DIMENSION(20) :: A
'HPF$ PROCESSORS, DIMENSION(4) :: P
'HPF$ DISTRIBUTE (CYCLIC) ONTO P :: A

Processor 1 owns A(1::4) Processor 3 owns A(3::4)
Processor 2 owns A(2::4) Processor 4 owns A(4::4)

£0/01010/0{0/0/0/0/0{010/0{0:0:0/0/0!§

/1 23 4123 4123412341234
A1)

A
A

A(20)

O Array item 1 Processor 1

If an array, A has #A elements and is mapped onto #P
processors each processor gets (a maximum) total of
[#A/# P]| separate elements.

In this case each processor gets five elements.

149



2D Distribution ExampleI

PROGRAM Skwiffy

IMPLICIT

REAL, DIMENSION(4,4) -
'HPF$ PROCESSORS, DIMENSION(2,2) :: P
'HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO P

NONE

B=1; C=1; A=B + C
END PROGRAM Skwiffy

A(1,1) | | |
il
. Yoo d
_____ 0,0:0,0,
, 0101010
£ 100

A(4;1) : : :

O Array item

1 Processor 1

A(L4)

e

Processor P(1,1) owns P(1:2,1::2)
Processor P(2,1) owns P(3:4,1::2)
Processor P(1,2) owns P(1:2,3::2)
Processor P(2,2) owns P(3:4,3::2)

150



Visualisation of x Distributionl

A * instead of a distribution method means:

distribute this dimension”.

PROGRAM Skwiffy
IMPLICIT NONE
REAL, DIMENSION(4,4) :: A
'HPF$ PROCESSORS, DIMENSION(4) 20 Q
'HPF$ DISTRIBUTE (*,BLOCK) ONTO Q
B=1; C=1; A =B + C; PRINT*, A
END PROGRAM Skwiffy

A(L4)

7

A(1,1)
AN [ [ [
1121314 .7

N\ /

N\ 7

© O, 0] “i Processor 1 owns A(:,1)
0,0,0,0 Processor 2 owns A(:,2)
010 3 O 3 O Processor 3 owns A(:,3)

OO Processor 4 owns A(:,4)

O  Array item

1 Processor 1

Each processor gets the whole dimension.

,» B, C

:: A, B, C

“do not

151



Commentary I

ONTO clause can be absent,

BLOCK distribution is good when a computation ac-
cesses a group of ‘close neighbours’,

CYCLIC distribution is good for balancing the load,

collapsing a dimension is useful when a whole col-
umn or row is used in a single computation,

in general, all scalars are replicated (one copy on
each processor),

152



Distribution of Allocatablesl

Directives take effect at allocation, for example,

REAL, ALLOCATABLE, DIMENSION(:,:) :: A

INTEGER :: lerr
'HPF$ PROCESSORS, DIMENSION(10,10) :: P
'HPF$ DISTRIBUTE (BLOCK,CYCLIC) :: A

ALLOCATE(A(100,20) ,stat=ierr)
I-—=> A automatically distributed here
! block size in dim=1 is 10 elements
|
DEALLOCATE (A)
END

The blocksize is determined immediately after alloca-
tion.

Once allocated, these arrays behave in the same way as
regular arrays.

153



The Owner-Computes RuIeI

This is a rule oft-used in HPF Compilation Systems. It
says that:

the processor that owns the left-hand side element will
perform the calculation.

For example, in

DO i =1,n
a(i-1) = b(ix*6)/c(i+j)-a(i**i)
END DO

the processor that owns a(i-1) will perform the assign-
ment. The components of the RHS expression may

have to be communicated to this processor before the
assignment is made.

154



Scalar Variablesl

Unless explicitly mapped, scalar variables are generally
replicated, in other words, every processor has a copy
of the variable.

These copies must be kept up-to date (by the compiler).
Consider,

REAL, DIMENSION(100,100) :: X
REAL :: Scal
'HPF$ DISTRIBUTE (BLOCK,BLOCK) :: X

Scal = X(i,j)

The processor that owns X(i,j) updates its copy of Scal
and then broadcasts its new value to all other proces-
SOrs.

155



Examples of Good Distributionsl

Given the following assignments:

A(2:99) = (A(:98)+A(3:))/2 ! neighbour calculations
B(22:56)= 4.0*xATAN(1.0) ! section of B calculated
Cc(:) = SUM(D,DIM=1) ! Sum down a column

Assuming the ‘owner-computes’ rule, the following dis-
tributions would be examples of good HPF program-
ming,

I'HPF$ DISTRIBUTE (BLOCK) ONTO P A
'HPF$ DISTRIBUTE (CYCLIC) ONTO P :: B
C ! or (CYCLIC)
D ! or (x,CYCLIC)

'HPF$ DISTRIBUTE (BLOCK) ONTO P :
'HPF$ DISTRIBUTE (*,BLOCK) ONTO P ::

156



Successive Over Relaxation ExampleI

Successive over relaxation is used in many HPF kernels:

DO j = 2,n-1
DO i = 2,n-1
a(i,j)=(omega/4)*(a(i,j-1)+a(i,j+1)+ &
a(i-1,j)+a(i+1,j))+(1-omega)*a(i,j)
END DO
END DO

The calculation of a(i,j) uses its 4 neighbours.

a(i.J)

ai-1j)

ai+1,))

BLOCK distribution in both dimensions will be the most
effective distribution here.

157



Other Mappings I

'HPF$ DISTRIBUTE ONTO P :: A
'HPF$ DISTRIBUTE (BLOCK,BLOCK) :: B

O

distribution method missing — compiler dependent
distribution, usually BLOCK,

processor array missing — compiler dependent grid
(determined at runtime),

all directives missing — compiler dependent map-
ping, could be replicated.

158



HPF Programming Issues I

HPF is always a trade-off between parallelism and com-
munication,

O more processors, more communications,

O try to load balance, assume owner-computes rule,
O try to ensure data locality,

O use array syntax or array intrinsics,

O avoid storage and sequence association (and assumed-
Size arrays).

Need a good parallel algorithm.

159



The following will slow down an HPF program,

O

O

O

HPF Programming Issues III

complicated subscript expressions,
indirect addressing (vector subscripting),
sequential (non-parallelisable) DO-loops,
remapping objects,

ill-chosen mappings,

poor load balancing.

160



HPFacts I

Liverpools HPF Home Page
http://www.liv.ac.uk/HPC/HPCpage.html

has links to this course and other UK HPF material,
eg, EPCC and MCC.

Interactive HTML-based course

http://www.liv.ac.uk/HPC/HTMLHPFCourse/
HTMLFrontPageHPF .html

HPFF Home Page

http://www.erc.msstate.edu/hpff/home.html

HPF_LIBRARY: Public Domain Fortran 90 version

http://www.lpac.ac.uk/SEL-HPC/Materials/HPFlibrary
/HPFlibrary

The HPF book: HPF Handbook, by Koelbal et al.
ISBN 0-262-61094-9.

161



Lecture 7:

Alignment and
Distribution




More Distributions I

O BLOCK(m) — give processors m elements,

O CYCLIC(m) — distribute m elements in a round-robin
fashion, will be inefficient.

For example,

REAL, DIMENSION(20) :: A, B
'HPF$ PROCESSORS, DIMENSION(4) :: P
'HPF$ DISTRIBUTE A(BLOCK(9)) ONTO P
'HPF$ DISTRIBUTE B(CYCLIC(2)) ONTO P

Processor 1 owns A(1:9) | Processor 2 owns A(10:18)

PDO00000000000000O0 00 Q

/

L 1 1 2 3
A(L) A(20)
Processor 1 owns B(1:2), B(9:10) and B(17:18) Processor 3 owns B(5:6) and B(13:14)
Processor 2 owns B(3:4), B(11:12) and B(19:20) Processor 4 owns B(7:8) and B(15:16)
| | | | | | | | |

00 0'0 0'0 0'0 00 00 00 010 00 Q)

B(1 B(20
@) O Array item 1 Processor 1 (20)

162



2D ExampIeI

Consider the following 2D array A,

=

REAL, DIMENSION(4,9)
'HPF$ PROCESSORS, DIMENSION(2) -
'HPF$ DISTRIBUTE (BLOCK(3),CYCLIC(2)) ONTO P :: A

o

Processor P(1,1) owns A(1:3,1:2), A(1:3,5:6) and A(1:3,9:9)
Processor P(2,1) owns A(4:4,1:2), A(4:4,5:6) and A(4:4,9:9)
Processor P(1,2) owns A(1:3,3:4) and A(1:3,7:8)
Processor P(2,2) owns A(4:4,3:4) and A(4:4,7.8)

A(1,1) A(1,9)

\ \ \ \
\ \ \ \

N 1 | 2 | 1 | 2 | 1 %
1 1
\

Yoooooood
1 |O 0,0 0,000 00
0010 010 010 010
2 [ 0000000}

/ I I I I N

| | | |
| | | | \
| | | |

O  Array item

1 Processor 1

BLOCK(m) must ‘use up’ all the elements.

163



Alignment I

Arrays can be positioned relative to each other,
O enhances data locality,
O minimises communication,
O distributes workload,
O allows replicated or collapsed dimensions,

Two alighed elements will reside on the same physical
processor when distributed.

164



Alignment Syntax I

The ALIGN statement can be written in two ways.
The attributed form

'HPF$ ALIGN (:,:) WITH T(:,:) :: A, B, C
is equivalent to

IHPF$ ALIGN A(:,:) WITH T(:,:)
IHPF$ ALIGN B(:,:) WITH T(:,:)
IHPF$ ALIGN C(:,:) WITH T(:,:)

which is more long-winded.

The effect here is that A(i,j), B(i,j) and C(i,j) will
reside on the same processor as T(i,j).

Can only DISTRIBUTE T; A, B and C are linked to T and
will follow.

165



Example and Visualisationl

Simple example,

REAL, DIMENSION(10) A, B, C
'HPF$ ALIGN (:) WITH C(:) A, B
A
R I R Can only
C . . . . . . . . . _>D|StrlbuteC

O

Array item

Aligned items

The alignment says: A(i) and B(i) reside on same pro-
cessor as C(i). Because of the ‘:'s, A, B and C must
conform. If we have

'HPF$ ALIGN (j) WITH C(j) :: A, B

then there is no requirement that the arrays conform.

166



Simple 2D Alignment Examplel

Given,

REAL, DIMENSION(10,10) :: A, B
'HPF$ ALIGN A(:,:) WITH B(:,:)

This says: Vi, j, elements A(i,j) and B(i,j) are local.

The following align statement is equivalent but does not
imply shape conformance:

'HPF$ ALIGN A(i,j) WITH B(i,j)

167



Visualisation of Simple Alignment Example

O0OWOOO0OO0O0OO0
O 0000
O 000 0
O 00O O 0O
O 0000
O O00O0Od
O O00O0Od
O O00O0Od

O00O0Od

O

Array item Aligned items

This alignment is suitable for,

A=A+B+ AxB ! all local

168



Transposed Alignment ExampIeI

Align the first dimension of A with the second dimension
of B (and vice-versa):

REAL, DIMENSION(10,10) :: A, B
'HPF$ ALIGN A(i,:) WITH B(:,i)

This says: V i, j, elements A(i,j) and B(j,1i) are local.
Could also be written:

'HPF$ ALIGN A(:,j) WITH B(j,:)
or
'HPF$ ALIGN A(i,j) WITH B(j,i)

Here i and j are *symbols” not variables and are used
to match dimensions their value (if any) is unimportant.

169



Visualisation of Transposed Alignment ExampIeI

O

Y OO0OO0O000O0
YOOO0O0O0O0O0O0

OO O0OO0O0O0O0

ONONONONONONONO.
RIAIAIAIIIRQ

O

Array item Aligned items

This alignment is suitable for,

A = A + TRANSPOSE(B)*A ! all local

170



Strided Alignment ExampIeI

Align each element of D with every second element of E:

REAL, DIMENSION(5) :: D
REAL, DIMENSION(10) :: E
IHPF$ ALIGN D(:) WITH E(1::2)

This says: V i, elements D(i) and E(i*2-1) are alighed.
For example, D(3) and E(5). Alignment could also be
written:

'HPF$ ALIGN D(i) WITH E(i*2-1)

E(i*2-1)

E[QOQO QO QO PO

Array item Aligned items

This alignment is suitable for,

D=D+ E(::2) ! A1l local

171



Reverse Strided Alignment ExampIeI

Can reverse an array before alignment:

REAL, DIMENSION(5) :: D
REAL, DIMENSION(10) :: E
IHPF$ ALIGN D(:) WITH E(UBQOUND(E)::-2)

This says: V i, elements E(2+UBOUND(E)-i*2) and D(i)
are local, for example, D(1) and E(10). Alignment could
also be written:

IHPF$ ALIGN D(i) WITH E(2+UBQOUND(E)-i*2)

E(2+UBOUND(E)-i*2)

E|[O QRO QO Q9 O@ 0L

p (& OO
D(i)

O

Array item

Aligned items

This alignment is suitable for,

D =D+ E(10:1:-2) ! All local

172



Practical Example of AIignmentI

The following Fortran 90 program:

PROGRAM Warty
IMPLICIT NONE
REAL, DIMENSION(4) :: C
REAL, DIMENSION(8)
REAL, DIMENSION(2)
C=1; D=2
E =D(::4) + C(::2)
END PROGRAM Warty

[ O

should be given these HPF directives to ensure minimal
(zero) communications:

IHPF$ ALIGN C(:) WITH D(::2)
IHPF$ ALIGN E(:) WITH D(::4)
IHPF$ DISTRIBUTE (BLOCK) :: D

Note, cannot distribute C or E. Only distribute align tar-
gets.

173



Aligning Allocatable ArraysI

Allocatable arrays may appear in ALIGN statements but
O the alignment takes place at allocation,

O an existing object may not be aligned with an un-
allocated object,

This means the array on the RHS, the align-target, of
the WITH must be allocated before the array on the LHS
is aligned to it.

174



Example I

Given,

REAL, DIMENSION(:), ALLOCATABLE :: A,B
IHPF$ ALIGN A(:) WITH B(:)

then,

ALLOCATE (B(100) ,stat=ierr)
ALLOCATE (A(100) ,stat=ierr)

is OK, as is
ALLOCATE (B(100),A(100),stat=ierr)
because the align-target, B, exists before A, however,

ALLOCATE (A(100) ,stat=ierr)
ALLOCATE (B(100) ,stat=ierr)

is not, and neither is,
ALLOCATE (A(100),B(100),stat=ierr)

because here the allocations take places from left to
right.

175



Other Pitfalls I

Clearly one cannot ALIGN a regular array WITH an allocat-
able:

REAL, DIMENSION(:) X
REAL, DIMENSION(:), ALLOCATABLE :: A
IHPF$ ALIGN X(:) WITH A(:) | WRONG

Another pitfall,

REAL, DIMENSION(:), ALLOCATABLE :: A, B
'HPF$ ALIGN A(:) WITH B(:)

ALLOCATE(B(100) ,stat=ierr)

ALLOCATE(A(50) ,stat=ierr)

because, A and B are not conformable as suggested by
ALIGN statement, however,

REAL, DIMENSION(:), ALLOCATABLE :: A, B
'HPF$ ALIGN A(i) WITH B(i)

ALLOCATE(B(100) ,stat=ierr)

ALLOCATE(A(50),stat=ierr)

would be OK as the ALIGN statement does not imply
conformance (no ‘:’s).

Here A cannot be larger than B.

176



Collapsing Dimensions I

Can align one or more dimensions with a single element.
'HPF$ ALIGN (*,:) WITH Y(:) :: X

The * on the LHS of the WITH keyword, means that
columns of X are not distributed. Each element of Y is
aligned with a column of X.

Y OO0 @0 O0O0O0O0

ONONONORON®
[eReReReReKel
[(XXXXX]

ONONONORON®

ONONONORON®

ONONONORON®

ONONONORON®

ONONONORON®

O Array item
Aligned items

V i, X(:,1) is local to Y(i).

177



Replicating Dimensionsl

Can align elements with one or more dimensions.
'HPF$ ALIGN Y(:) WITH X(*,:)

The * on the RHS of the WITH keyword means that a
copy of Y is alignhed with every row of X.

y OO0 O0OO00O®eO0OO0

Replicated
x |©000000 0k
000000800
000000800
000000800
000000800
ONONONONON NONGO)
e
O Array item

Aligned items

V i, Y(i) is local to X(:,1).

178



Gaussian Elimination — 2D GridI

Consider kernel:

DO j = i+1, n

A(j,i) = A(j,i)/Swap(i)

A(j,i+1:n) = A(j,i+1:n) - A(j,i)*Swap(i+l:n)
Y(j) = Y(j) - A(j,1i)*Temp

END DO

Want to minimise communications in loop:

'HPF$ ALIGN Y(:) WITH A(:,*)
! Y aligned with each col of A
'HPF$ ALIGN Swap(:) WITH A(*,:)
! Swap aligned with each row of A
'HPF$ DISTRIBUTE A(CYCLIC,CYCLIC) ! onto default grid

CYCLIC gives a good load balance.

179



ion

iminat

Visualisation of 2D Gaussian EI

| | | | | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e
I N M < (]
| | | | | | | | | | | |
| | | | | | | | | | | |
R e R e T T T R
| | | | | | | | | | | |
r-T-a- TS rTTTAaT T T T T i Wt Bl el St Bl i
| | | | | | | | | | | |
. - — A —lm - — 4 — A= — - — — — — — A— == —F =4+ — A= —— -
| | | | | | | | | | | |
: L Ll _ J_ - _L_L_J________ J_ - L L -
: | | | | | | | | | | | |
: | | | | | | | | | | | |
: R e R e T T T R
: | | | | | | | | | | | |
: r-T-a- TS rTTTAaT T T T T i Wt Bl el Sl Ml el
: | | | | | | | | | | | |
: | | | | | IR RO | | | | | |
[} | | | | | | | | | | | |
=
I | | | | | | | | | | | |
Q | | | | | | | | | | | |
o | | | | | | | | | | | |
[} | | | | | o | | | | | |
o | | | | | | | | | | | |
. r-T-a- T TS rrTTTAaT T T T T i Wt Bl el Sl Ml el
| | | | | | | | | | | |
F et m A mlm—F —F m A= = = — — — — — A= === =4 - A = == -
| | | | | | | | | | | |
L L _ J_ Il _L_ L _J________ L L -
| | | | | | | | | | | |
Lt _ v _v_ v _______t__ v _v_r_ v
] | | ] ] | | | ] ] | |
| | | | | | | | | | | |
r-T-a- T TS rrTTTAaT T T T T i Wt Bl el St Ml el
| | | | | | | | | | | |
F et m A mlm—F —F m A= = = — — — — — A= === =4 - A = == -
| | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1
—
—
—
N
A ......................................

Replicate

A( 10000, 10000)

1 2 3 4 etc

180



New HPF IntrinsicsI

Can use NUMBER_OF_PROCESSORS intrinsic in initialisation ex-
pressions for portability,

IHPF$ PROCESSORS P1 (NUMBER_OF_PROCESSORS())

IHPF$ PROCESSORS P2(4,4,NUMBER_OF_PROCESSORS()/16)
IHPF$ PROCESSORS P3(0:NUMBER_OF_PROCESSORS(1)-1, &
|HPF$ 0 : NUMBER_OF _PROCESSORS (2)-1)

NUMBER_OF _PROCESSORS returns information about physical
pProcessors.

Can obtain physical shape using PROCESSORS_SHAPE intrin-
sic, for example,

PRINT*, PROCESSORS_SHAPE()

on a 2048 processor hypercube gives

22222222222

181



Template Syntax I

Templates are intended to make alignments easier and
Clearer.

O a TEMPLATE is declared,
O the TEMPLATE is distributed,

O arrays are aligned to it,

182



Simple Template ExampleI

For example,

REAL, DIMENSION(10) : A, B
'HPF$ TEMPLATE, DIMENSION(10) :: T
'HPF$ DISTRIBUTE (BLOCK) T
'HPF$ ALIGN (:) WITH T(:) A, B

A

Distribute T

i
il

|
|

-
-

I
I

Aligned items

I
I

I
I

B

o
>

Array item

183



Alternative Template SyntaxI

A TEMPLATE declaration has a combined form:

'HPF$ TEMPLATE, DIMENSION(100,100), &
'HPF$ DISTRIBUTE (BLOCK,CYCLIC) ONTO P :: T
'HPF$ ALIGN A(:,:) WITH T(:,:)

this is equivalent to

IHPF$ TEMPLATE, DIMENSION(100,100) :: T
IHPF$ ALIGN A(:,:) WITH T(:,:)
IHPF$ DISTRIBUTE T(BLOCK,CYCLIC) ONTO P

Thus, distribution is an attribute of a TEMPLATE.

184



Another Template ExampIeI

Recall an earlier example,

PROGRAM Warty

IMPLICIT NONE

REAL, DIMENSION(4) C

REAL, DIMENSION(8) :: D

REAL, DIMENSION(2) E
|HPF$ TEMPLATE, DIMENSION(8)
'HPF$ ALIGN D(:) WITH T(:)
'HPF$ ALIGN C(:) WITH T(::2)
'HPF$ ALIGN E(:) WITH T(::4)
IHPF$ DISTRIBUTE (BLOCK) :: T

C=1; D=2

E =D(::4) + C(::2)

END PROGRAM Warty

:: T

this time the directives use an intermediate template.

185



Visualisation I

Array item Aligned items

D is aligned with T as follows

0000 @000 T

186



Alignment and Distribution of Templatesl

ALIGN A(:) WITH Ti(:,*) —V i, element A(4i) is repli-
cated along row T1(i,:).

ALIGN C(i,j) WITH T2(j,i) — the transpose of C is
aligned to Ti,

ALIGN B(:,*) WITH T3(:) — V i, row B(i,:) is col-
lapsed onto TEMPLATE element T2(1i),

DISTRIBUTE (BLOCK,CYCLIC) :: T1, T2

DISTRIBUTE T1(CYCLIC,*) ONTO P — rows of T1 are
distributed in a round-robin fashion.

187



Aligning to a Template SectionI

Is is possible to embed an array in a template:

INTEGER :: i= 2
REAL, DIMENSION(4) :: X
REAL, DIMENSION(4,4) :: A
IHPF$ TEMPLATE, DIMENSION(4,4) :: T
IHPF$ ALIGN A(:,:) WITH T(:,:)
IHPF$ ALIGN X(:) WITH T(i,:) ! i used as variable

In this case i is not used as a symbol it needs a value.
Since i = 2 the section is aligned with row 2.

O @ O OX

O

Array item Aligned items

188



Aligning ScalarsI

HPF does not forbid mapping scalars [yet]:

REAL, DIMENSION(6,8)

REAL r, s

'HPF$ ALIGN r WITH X(3,2)
'HPF$ ALIGN s WITH X(*,8)

r

.U)

:: X

0O0000O0
000000
000000

O

Array item

Aligned items

189



Explicit Replication Using Templatesl

If an array is not explicitly distributed it is given the
default mapping - often, but not always, replication.

To force replication of an array, A:

O declare a template to be the same size as the pro-
cessor grid,

O align A with each template element,
O distribute the template

For example,

REAL, DIMENSION(100,100) :: A
IHPF$ PROCESSORS, DIMENSION(NUMBER_OF_PROCESSORS())
|HPF$ TEMPLATE, DIMENSION(NUMBER_OF_PROCESSORS())
IHPF$ ALIGN A(*,*) WITH T(*)
IHPF$ DISTRIBUTE (BLOCK) :: T

190



[_ecture 8:

Forall and

Independent Loops




Data Parallel Executionl

Parallel execution is expressed via Fortran 90 array syn-
tax and intrinsics. HPF adds:

O FORALL statement,
flexible data parallel assignment statement.

O PURE procedures.

‘side-effect free’ user procedures for parallel execu-
tion.

O INDEPENDENT directive,
perform loop iterations in parallel,

O NEW variables,
achieve independence using new variables.

191



Forall Statement I

FORALL statement is in Fortran 95, syntax:

FORALL (< forall-triplet-list >[,< scalar-mask >])&
< assignment-stmt >

O expressive and concise parallel assignment,
O can be masked (cf. WHERE statement),
O can invoke PURE functions.

For example,

FORALL (i=1:n,j=1:m,A(i,j).NE.O) &
A(i,j) = 1/A(1,7)

The stated assignment is performed in parallel for all
specified values of i and j for which the mask expression
is .TRUE..

192



Forall Examples I

FORALL is more versatile than array assignment:

O can access unusual sections,

FORALL (i=1:n) A(i,i) = B(i) ! diagonal

DO j =1, n

FORALL (i=1:j) A(i,j) = B(i) ! triangular
END DO

can use indices in RHS expression,

FORALL (i=1:n,j=1:n,i/=j) A(i,j) = REAL(i+j)
can call PURE procedures,

FORALL (i=1:n:3,j=1:n:5) A(i,j) = SIN(A(j,1i))

can use indirection (vector subscripting),

FORALL (i=1:mn,j=1:n) A(VS(i),j) = i+VS(j)

The above are very difficult to express in Fortran 90.

193



Execution Process I

Execution is as follows,

1. evaluate subscript expressions (< forall-triplet-list
>),

2. evaluate mask for all indices,

3. for all .TRUE. mask elements, evaluate whole of RHS
of assignment,

4. assign RHSs to corresponding LHSs

Note, as always, parallel integrity must be maintained.

194



Do-loops and Forall Statementsl

Take care, FORALL semantics are different to DO-loop se-
mantics,

DO i = 2, n-1
a(i) = a(i-1) + a(i) + a(i+1)
END DO
is different to,

FORALL (i=2:n-1) &
a(i) = a(i-1) + a(i) + a(i+1)

which is the same as,

a(2:n-1) = a(1:n-2) + a(2:n-1) + a(3:n)

195



Forall Construct I

FORALL construct is also in Fortran 95, syntax:

FORALL(< forall-triplet-list >[,< scalar-mask >])
< assignment-stmt >

END FORALL
For example,

FORALL (i=1:n:2, j=n:1:-2, A(i,j).NE.O)
A(i,j) = 1/A(i,j) ! si
A(i,i) = B(i) I s2

END FORALL

s1 executed first followed by s2
Can also nest FORALLS,
FORALL (i=1:3, j=1:3, i>j)
WHERE (ABS(A(i,i,j,j)) .LT. 0.1) A(i,i,j,j) = 0.0

FORALL (k=1:3, 1=1:j, k+1>i) A(i,j,k,1) = j*xk+l
END FORALL

196



Pure Proceduresl

For example (in Fortran 95 and Full HPF),

PURE REAL FUNCTION F(x,y)
PURE SUBROUTINE G(x,y,z)

Side effect free:
O no external I/O or ALLOCATE,
O don't change global program state (global data),
O have PURE attribute,
O intrinsic / ELEMENTAL functions are pure,
O allowed in FORALL and pure procedures,

PURE procedures can be executed in parallel.

197



Pure Proceduresl

Must follow certain rules:

O FUNCTION dummy arguments must possess the

INTENT(IN) attribute, SUBROUTINE dummys not re-
stricted,

O local objects cannot be SAVEd,

O dummy arguments cannot be alignhed to global ob-
jects,

O no PAUSE or STOP statement,

O other procedure invocations must be PURE.

198



Pure Function Example I

Consider,

PURE REAL FUNCTION F(x,y)

IMPLICIT NONE

REAL, INTENT(IN) :: x, y

F = x*x + y*y + 2*xx*y + ASIN(MIN(x/y,y/x))
END FUNCTION F

Here,
O arguments are unchanged,
O intrinsics are pure so can be used.

Example of use:

FORALL (i=1:n,j=1:n) &
A(i,j) = b(i) + F(1.0%i,1.0%j)

199



Pure Subroutine ExampIeI

PURE SUBROUTINE G(x,y,z)
IMPLICIT NONE
REAL, INTENT(OUT), DIMENSION(:) :: =z

REAL, INTENT(IN), DIMENSION(:) :: x, y
INTEGER i
INTERFACE
REAL FUNCTION F(x,y)
REAL, INTENT(IN) :: x, y

END FUNCTION F
END INTERFACE

FORALL (i=1:SIZE(z)) z(i) = F(x(i),y(i))
END SUBROUTINE G

Note:
O invokes pure procedure,

O interface not mandatory but is a very good idea.

Example of use,

CALL G(x,y,res)

200



MIMD Examplel

Multiple Instructions Multiple Data,

REAL FUNCTION F(x,i) ! PURE
IMPLICIT NONE
REAL, INTENT(IN) :: x ! element
INTEGER, INTENT(IN) :: i ! index
IF (x > 0.0) THEN
F = x*x
ELSEIF (i==1 .0R. i==n) THEN
F=0.0
ELSE
F=x
END IF
END FUNCTION F

O different processors perform different tasks,

O used as alternative to WHERE or FORALL.

201



T he INDEPENDENT Directivel

The INDEPENDENT directive:
O can be applied to DO loops and FORALL assignments.

O asserts that no iteration affects any other iteration
either directly or indirectly.

For DO-loops INDEPENDENT means the iterations or assign-
ments can be performed in any order:

'HPF$ INDEPENDENT
DO i = 1,n

x(i) = i**2
END DO

For FORALL statements INDEPENDENT means the whole RHS
does not have to be evaluated before assignment to the
LHS can begin,

IHPF$ INDEPENDENT
FORALL (i = 1:n) x(i) = i*x*2

202



Independent Loops — Conditionsl

INDEPENDENT loops cannot:
O assign to same element twice,
O contain EXIT, STOP or PAUSE,
O contain jumps out of loop,
O perform external I/0O,

O prefix statements other than DO or FORALL.

203



Independent Example 1 I

This is independent,

'HPF$ INDEPENDENT

DO i =1, n
b(i) = b(i) + b(i)
END DO

this is not, (dependence on order of execution),

DOi=1, n
b(i) = b(i+1) + b(i)
END DO

nor is this,
DOi=1, n
b(i) = b(i-1) + b(i)
END DO

however, this is

'HPF$ INDEPENDENT

DOi=1, n
a(i) = b(i-1) + b(i)
END DO

204



Visualisation of Independent LoopI

IHPF$ INDEPENDENT
DOi=1,n
b(i) = b(i) + b(i)
END DO
Iteration 1 Iteration 2 Iteration 3 Iteration n
b =b(1) + b(1) | [ b(2) =b(2) +b@)|[ 6@ =b@ +b(3) |

All the iterations are performed at the same time.

205



Independent Example 2 I

Consider,

'HPF$ INDEPENDENT

DOi=1,n
a(i) = b(i-1) + b(i) + b(i+1)
END DO

Can perform all iterations in parallel. Also,

IHPF$ INDEPENDENT
FORALL (i=1:n) &
a(i) = b(i-1) + b(i) + b(i+1)

don’t have to calculate whole RHS before assignment.
Can also use with vector subscripts,

'HPF$ INDEPENDENT
DOi=1,n

a(index(i)) = b(i-1) + b(i) + b(i+1)
END DO

Says each element of index(1:n) iS unique.

206



INDEPENDENT NEW LOODSI

In order to parallelise DO-loops NEW instances of s1 and
s2 may be needed for each iteration of the loop:

'HPF$ INDEPENDENT, NEW(s1,s2)
DOi=1,n
sl = Sin(a(i))
s2 = Cos(a(i))
a(i) = s1*sl-s2*s2
END DO
Iteration 1 Iteration 2 Iteration 3 Iteration n
sl = Sin(a(1)) sl = Sin(a(2)) sl=Sin(@a3)) | e sl = Sin(a(n))
s2 = Cos(a(1)) s2 = Cos(a(2)) s2 = Cos(a(3)) s2 = Cos(a(n))
a(l) = s1*s1-s2*s2 || a(2) = s1*s1-s2*s2 | | a(8) = sl*sl-s2*s2| T a(n) = sl*sl-2*s2

Iteration 1 has its own versions of s1 and s2, as does
iteration 2 and so on up to iteration n.

Cannot apply NEW clause to FORALL.

207



New Variables — Conditionsl

NEW variables cannot:
O be used outside of the loop before being redefined,
O be used with FORALL,
O be dummy arguments or pointers,
O be storage associated,

O have SAVE attribute.

208



New Variables Example 1I

INDEPENDENT |loops can be formed by creating copies of
x and y for each inner iteration.

Copies of j can be made for further independence.

'HPF$ INDEPENDENT, NEW (j)
DOi=1,n
'HPF$ INDEPENDENT, NEW (x,y)
DO j =1, m
x = A(j)
y = B(j)
C(i,j) = x+y
END DO
END DO

After the loop x, y, i and j will have an undetermined

value so cannot be used before being assigned a new
value. (In regular Fortran they could be.)

209



Visualisation of New Variables Example 1I

'HPF$ INDEPENDENT, NEW(j)
DOi=1n
IHPF$ INDEPENDENT, NEW(y,X)
DOj=1m
x=a(j); y=b(j); c(i.j)=x+y
END DO
END DO
Iteration 1 Iteration 2 Iteration n
IHPF$ INDEPENDENT, NEW(y,x) | | !HPF$ INDEPENDENT, NEW(y,x) IHPF$ INDEPENDENT, NEW(y,X)
DOj=1m DOj=1m | DOj=1m
x=a(j); y=b(); c(i.j)=x+y x=a(j); y=b(); ci.)=xty | x=a(j); y=b(j); c(i.j)=x+y
END DO END DO END DO
Iter 1 Iter 2 Iter m Iter 1 Iter 2 Iter m Iter 1 Iter 2 Iter m
x=a(1) x=a2) | x=a(m) x=a(1) x=a2) | x=a(m) | x=a(1) x=a2) | x=a(m)
y=b(1) y=b(2) | y=b(m) y=b(1) y=b(2) | y=b(m) y=b(1) y=b(2) | y=b(m)
c(i,1)=x+y | c(i,2)=x+y c(i,m)=x+y| | c(i,1)=x+y | c(i,2)=x+y C(i,m)=x+y| e c(i,1)=x+y | c(i,2)=x+y c(i,m)=x+y

210



New Variables Example 2'

Variable list specifies temporaries to use in INDEPENDENT

loops, for example,

IHPF$ INDEPENDENT, NEW (i2)
DO i1 = 1, nil
IHPF$ INDEPENDENT, NEW (i3)
DO i2 = 1, n2
IHPF$ INDEPENDENT, NEW (i4)
DO i3 = 1, n3
DO i4 = 1, n4
a(i1,i2,i3) = a(i1,i2,i3) &
+ b(il,i2,i4)*c(i2,i3,i4)
END DO
END DO
END DO
END DO

Inner loop not INDEPENDENT as a(il1,i2,i3)

repeatedly.

is assighed to

211



Input and Output I

HPF currently has no provision for parallel I/O. In gen-
eral, one processor performs all I/O so PRINT and READ

statements are very expensive.

Upon encountering PRINT*, A(:,:)

O each processor must send its part of A to the I/O
processor

O theI/O processor must service messages from every
processor in turn

O rebuild the array
O and print out

this could be a lengthy process!

212



Lecture 9:
Procedures



HPF Procedure Interfaces I

Cannot pass distribution information as actual argu-
ment, how to communicate information?

There are 3 different methods in Full HPF:
O Prescriptive — *“align the data as follows” .

O Descriptive — *the data is already alignhed as fol-
lows” . Should give an INTERFACE.

O Transcriptive (INHERIT (not covered)) — “inherit
the distribution from the dummy arguments”. This
is very inefficient and should be avoided.

213



Mapping and Proceduresl

In a procedure one can specify:
00 PROCESSORS,
00 TEMPLATE,
O alignment,
O distribution.

Use assumed-shape arrays. Interfaces should also con-
tain mapping information.

Must avoid non-essential remapping.

214



Prescriptive Distributionl

Can prescribe alignment and distribution,

O may cause remapping,

O mapping is restored on procedure exit.

For example,

SUBROUTINE Subby(A,B,RES)

IMPLICIT NONE

REAL, DIMENSION(:,:), INTENT(IN)

REAL, DIMENSION(:,:), INTENT(OUT)
IHPF$ PROCESSORS, DIMENSION(2,2)
IHPF$ TEMPLATE, DIMENSION(4,6)
IHPF$ ALIGN (:,:) WITH T(:,:)
IHPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P

END SUBROUTINE Subby

:: A, B
:: RES

:: A, B, RES

Inside Subby the data will be mapped as specified.

215



Descriptive Distributionl

Assert that alignment and distribution is as specified,

Mminimises communications. For example,

SUBROUTINE Subby(A,B,RES)
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(IN)
REAL, DIMENSION(:,:), INTENT(OUT)
IHPF$ PROCESSORS, DIMENSION(2,2)
IHPF$ TEMPLATE, DIMENSION(4,6)

'HPF$ DISTRIBUTE *(BLOCK,BLOCK) ONTO *P ::
:: A, B, RES

'HPF$ ALIGN (:,:) WITH *T(:,:)

END SUBROUTINE Subby

:: A, B
:: RES

Asserts that A, B and RES are aligned and distributed as

shown.

An INTERFACE should be given.

216



Examples of Dummy Distributionsl

Consider,

O

DISTRIBUTE (CYCLIC) ONTO P :: A— distribute A cycli-
cally onto P.

DISTRIBUTE *(CYCLIC) ONTO P :: A — A already has
cyclic distribution but may not be distributed over
P.

DISTRIBUTE (CYCLIC) ONTO *P :: A— A is distributed
over P but may not have CYCLIC distribution.

DISTRIBUTE *x(CYCLIC) ONTO *P :: A — A already has
cyclic distribution over P.

217



Cconsequences I

Descriptive and prescriptive distributions have limited
capabilities,

O describing mapping can be difficult,
O cannot inherit distributions,
O inflexible approach.
Transcriptive distributions are easier to use, but
O compiling inherited mappings is very complex,
O will be less efficient,

O but simple for user.

218



Templates and ModulesI

Modules are now supported by most compilers. Should
Mmake TEMPLATES, PROCESSORS and DISTRIBUTE statements

global:

MODULE Global_Mapping_Info
'HPF$ PROCESSORS, DIMENSION(2,2)
'HPF$ TEMPLATE, DIMENSION(4,6) -
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: T
END MODULE Global_Mapping_Info

—= o

Makes things easier,

SUBROUTINE Subby(A,B,RES)
USE Global_Mapping_Info
IMPLICIT NONE
REAL, DIMENSION(:,:), INTENT(IN) :: A, B
REAL, DIMENSION(:,:), INTENT(OUT) :: RES
'HPF$ ALIGN WITH *T :: A, B, RES

END SUBROUTINE Subby

Note: not for PURE procedures.

219



Problems with Modules I

HPF objects cannot appear in ONLY or renames lists in a
USE statement, for example,

SUBROUTINE Subby(A,B,RES)
USE Global_Mapping_Info, ONLY:ProcArr => P

is invalid Fortran 90.

220



Interfaces I

Good practise to declare explicit interfaces for proce-
dures containing mapped dummies.

INTERFACE
SUBROUTINE Soobie(A,B,Res)
USE Global_Mapping_Info
REAL, DIMENSION(:,:), INTENT(IN) :: A, B
REAL, DIMENSION(:,:), INTENT(OUT) :: Res
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: A, B, Res
END SUBROUTINE Soobie
END INTERFACE

Should always use assumed-shape arrays so interfaces
will be mandatory anyway.

221



Aligning to Dummy Argumentsl

Can align locals to dummies,

SUBROUTINE Soobie(A,B,Res)

USE Global_Mapping_Info

IMPLICIT NONE

REAL, DIMENSION(:,:), INTENT(IN) :: A, B

REAL, DIMENSION(:,:), INTENT(OUT) :: Res

REAL, DIMENSION(SIZE(A,1),SIZE(A,2))

REAL, DIMENSION(SIZE(A,1)/2,SIZE(A,2)/2)
IHPF$ PROCESSORS, DIMENSION(2,2)
'HPF$ ALIGN (:,:) WITH A (:,:)
'HPF$ ALIGN (:,J) WITH A(J*2-1,::2) s
IHPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: A, B, Res

O dYoQ

END SUBROUTINE Soobie

Could also use descriptive distributions, more efficient,
less flexible.

222



Mapping Function ResultsI

Clearly, must be able to map array-valued FUNCTION re-
sults,

MODULE Block_Dist_1D_Template_Onto_P
'HPF$ PROCESSORS, DIMENSION(2) :: P
'HPF$ TEMPLATE, DIMENSION(4) :: T
'HPF$ DISTRIBUTE (BLOCK) ONTO P :: T

END MODULE Block_Dist_1D_Template_Onto_p

FUNCTION ArF(A,B)
USE Block_Dist_1D_Template_Onto_P
IMPLICIT NONE
REAL, INTENT(IN) :: A(:), B(:)
REAL, DIMENSION(SIZE(A)) :: ArF
'HPF$ ALIGN A(:) WITH *T(:)
'HPF$ ALIGN B(:) WITH *T(:)
'HPF$ ALIGN ArF(:) WITH T(:)

END FUNCTION ArF

An explicit interface should always be given containing
all mapping information relating to dummy arguments
and the function result.

223



Argument Remapping I

Should not remap across a procedure boundary unless
absolutely essential. The implied communications can
be very time consuming. Consider,

INTEGER, DIMENSION(512,512)
IHPF$ DISTRIBUTE (BLOCK,BLOCK)
DO icnt = 1, 10
CALL ReMapSub(ia,ib)
END DO
END

SUBROUTINE ReMapSub(iargl, iarg2)
INTEGER, DIMENSION(512,512)::
'HPF directive goes here
iarg2 = 2%jargl
END SUBROUTINE ReMapSub

ia, ib
ia, ib

iargl, iarg?2

With NA Software Compiler, if iargl and iarg2 are dist-
ributed as,

O (BLOCK,BLOCK) — execution time is 0.25,

O (CYCLIC,CYCLIC) — execution time is 25.00s,

224



Explicit Intent I

A general procedure call can generate two remappings
per argument:

O on procedure entry,
O on procedure exit.

If remapping is essential then give the INTENT of the
arguments:

INTEGER, DIMENSION(512,512), INTENT(IN) :: iargl
INTEGER, DIMENSION(512,512), INTENT(OUT) :: iarg2

Now each dummy would only be remapped once. NA
Software execution time is now 14.7s compared to 25.00s

without the INTENT.

Motto: | Always specify INTENT.

225



Passing Array Sections I

Without using INHERIT, this is very complex. Consider

REAL, DIMENSION(4,6) :: A, B
REAL, DIMENSION(2,3) :: Res
'HPF$ PROCESSORS, DIMENSION(2,2) :: P
'HPF$ ALIGN B(:,:) WITH A(:,:)
'HPF$ ALIGN Res(:,:) WITH A(::2,::2)
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: A, B, Res

CALL Zubbie(A(1:2,1::2),B(3:4,2::2),Res)

For descriptive distributions what should interface look
like?

O cannot describe mapping using DISTRIBUTE,
O cannot simply describe relative alignment,

O must construct intermediate TEMPLATE in order to
specify distribution.

226



Array Arguments Example 1I

Using descriptive distribution we can reconstruct original
layout,

Distribution of actuals Distribution of dummies

BRI o 0l O
a0 nn) 1001 O |

aooonos | YNERVNERVAS

DO OB BN AL AL A

O Element of A /A Element of B inu?TemMawhem

SUBROUTINE Zubbie(x,y,z)
'HPF$ TEMPLATE, DIMENSION(4,6) 0 T
'HPF$ PROCESSORS, DIMENSION(2,2) :: P
REAL, INTENT(INOUT), DIMENSION(:,:) :: x, y
REAL, INTENT(INOUT), DIMENSION(:,:) :: =z
'HPF$ ALIGN (:,:) WITH *T(:,::2) 1 X, Z
'HPF$ ALIGN (:,:) WITH *T(3:,2::2) 1y
'HPF$ DISTRIBUTE *(BLOCK,BLOCK) ONTO *P 0 T

asserts distribution of cited case but not for,

CALL Zubbie(A(3:4,::2),B(1:2,2::2),Res)

227



Array Arguments Example 2'

It is much simpler but less efficient to use prescriptive
distributions.

SUBROUTINE Zubbie(x,y,z)

'HPF$ TEMPLATE, DIMENSION(4,6) i T

'HPF$ PROCESSORS, DIMENSION(2,2) :: P
REAL, INTENT(INOUT), DIMENSION(:,:) :: x, y
REAL, INTENT(INQUT), DIMENSION(:,:) :: =z

'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P X, ¥, Z

Mmay generate,

O two remappings,
& on entry,

& on exit.

O (probably) communications due to non-specific align-
ment.

228



Collapsing Dimensions I

If a dimension has a scalar index it is collapsed. Con-
sider,

'HPF$ DISTRIBUTE (BLOCK,BLOCK) :: A, B
CALL Xubbie(A(i,:),b(i,:))
SUBROUTINE Xubbie(x,y)

REAL, DIMENSION(:) :: x, y
'HPF$ DISTRIBUTE (BLOCK) :: x, y

Will cause remapping. With 16 processors:
O actual arguments are distributed over 4 processors,

O on entry x and y will be redistributed over 16 pro-
Cessors,

O on exit x and y will be mapped in same way as
actual argument,

229



Scalar Argumentsl

This slide demonstrates what happens if a single array
item is used as an actual argument. Consider,

REAL, DIMENSION(100,100) A, B
REAL 1 Z
IHPF$ DISTRIBUTE (BLOCK,BLOCK) A, B
INTERFACE
SUBROUTINE Schmubbie(r,t,X)
REAL, INTENT(OQUT) ti T
REAL, INTENT(IN) t: 0t
REAL, INTENT(IN) 2 X(:,0)

'HPF$ DISTRIBUTE *(BLOCK,BLOCK) :: X
END SUBROUTINE Schmubbie
END INTERFACE

CALL Schmubbie(A(1,1),z,B)

r Will be replicated, t already is.

230



Processors Problem I

HPF contains the following text:

“An HPF compiler is required to accept any PROCESSORS
declaration in which the product of the extents of each declared
dimension is equal to the number of physical processors that
would be returned by NUMBER_OF_PROCESSORS().”

O gives handle on available resources,
O aids portability,
O all processor arrangements have same size,

O problems with procedure interfaces when passing
array sections.

The standard contains a fudge:

“Other cases may be handled as well.”

which gives a potential portability problem.

231



A Possible Solution I

Problem occurs when descriptive mappings are used to
reduce communications. Consider,

REAL, DIMENSION(100,100) :: A, B
'HPF$ PROCESSORS, DIMENSION(10,10) :: P
'HPF$ DISTRIBUTE (BLOCK,BLOCK) :: A, B
INTERFACE
SUBROUTINE KerXubbie(x,y)
REAL, DIMENSION(:) :: x, y
'HPF$ PROCESSORS,DIMENSION(10) :: P ! non-HPF
'HPF$ ALIGN y WITH *x
'HPF$ DISTRIBUTE *(BLOCK) ONTO *P :: x
END SUBROUTINE KerXubbie
END INTERFACE

CALL KerXubbie(A(i,:),b(i,:))

Asserts that x and y are co-mapped and distributed

blockwise over 10 processor subset! Not portable but
semantics work!

232



The Next Problem I

In HPF, given,

'HPF$ PROCESSORS, DIMENSION(4) :: P1
'HPF$ PROCESSORS, DIMENSION(4) :: P2

P1 and P2 are same processor array, but consider,

REAL, DIMENSION(100,100) :: A
'HPF$ PROCESSORS, DIMENSION(4,4) :: P
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P :: A

CALL Grubbie(A(1,:),A(100,:))

SUBROUTINE Grubbie(x,y)

REAL, DIMENSION(:) :: x, y
'HPF$ PROCESSORS, DIMENSION(4) :: P1, P2
'HPF$ DISTRIBUTE *(BLOCK) ONTO *P1 :: x
'HPF$ DISTRIBUTE *(BLOCK) ONTO *P2 :: y

but P1 and P2 are not same processor array. Oh lordy!

Motto: | Do not pass array sections

233



Lecture 10:
Extrinsics, HPF
Library and HPF in
the Future




Extrinsic Procedures I

HPF can call procedures written in other languages or
other parallel programming styles. These are called
EXTRINSIC procedures.

An INTERFACE including mapping information must be
given:

INTERFACE
EXTRINSIC (C) SUBROUTINE Job(a)
REAL,, DIMENSION(:) :: a
IHPF$ DISTRIBUTE a(BLOCK)
END SUBROUTINE Job
END INTERFACE

this would correspond to a C void function with a single
array argument.

It is up to the compiler to decide which languages are
supported.

234



Extrinsic Procedure ExampIeI

Specifying the mapping information is very important.

If it is absent then dummy arguments may be remapped
and given the default mapping.

INTERFACE

EXTRINSIC(F77_LOCAL) &
SUBROUTINE Calc_u_like(My_P_No,Siz,Tot_Proc,a,b,c)

INTEGER, DIMENSION(:), INTENT(IN) :: B, C
INTEGER, DIMENSION(:), INTENT(OUT) :: A
INTEGER, DIMENSION(:), INTENT(IN) :: My_P_No

INTEGER, INTENT (IN)
IHPF$ PROCESSORS, &
IHPF$ DIMENSION(NUMBER_OF_PROCESSORS()) :: P

'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A, B, C
IHPF$ DISTRIBUTE (BLOCK) ONTO P :: My_P_No
END SUBROUTINE output ! EXTRINSIC(F77_LOCAL)

:: Siz, Tot_Proc

END INTERFACE

This is merely an example the keyword F77_LOCAL is not
defined in HPF. It may be defined by the local compiler.

235



Extrinsic Example Continuedl

The EXTRINSIC is outside of HPF. In general, every
EXTRINSIC must:

O have an explicit INTERFACE including mapping infor-
mation,

O work out which, if any, array elements are local

The INTERFACE is expressed using HPF concepts of INTENT,
distribution and assumed-shape arrays; the EXTRINSIC is
not.

236



Extrinsic Example Continuedl

An F77_LOCAL EXTRINSIC:

SUBROUTINE Calc_u_like(My_P_No,Siz,Tot_Proc,a,b,c)
INTEGER A(*), B(*), C(x), My_P_No(1), Siz, Tot_Proc
C Find blocksize
Blk_Siz = NINT ((DBLE(Siz)/DBLE(Tot_Proc))+0.5D0)
C How many elements have I got
My_Blk_Siz = MIN(Blk_Siz,Siz-(My_P_No(1)-1)*Blk_Siz)
My_Blk_Siz = MAX(My_Blk_Siz,0)
C Do the Calculation
DO 100 i = 1,My_Blk_Siz
a(i) = b(i) + c(i)
END DO
END

and in the calling program unit:

REAL, DIMENSION(Siz) :: A, B=0, C =0

INTEGER, DIMENSION(NUMBER_OF_PROCESSORS()) :: P_Nos
'HPF$ PROCESSORS, &

'HPF$ DIMENSION(NUMBER_OF_PROCESSORS()) :: P

'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A, B, C, P_Nos

Interface from before goes here

NOP = NUMBER_OF_PROCESSORS()

P_Nos = (/ (i, i=1,NOP) /)

CALL Calc_u_like(P_Nos,SIZE(A),NOP,A,B,C)
END

237



Extrinsic Example Continuedl

Matters become easier with a FOO0_LOCAL EXTRINSIC:

SUBROUTINE Calc_u_like(A,B,C)
INTEGER, DIMENSION(:), INTENT(IN) :: B, C
INTEGER, DIMENSION(:), INTENT(OUT) :: A
A = B+C
END

Can use assumed-shape arrays to avoid explicitly calcu-
lating block-sizes. Fortran 90 allows zero-sized sections
which is also useful.

238



Rules for EXxtrinsic Proceduresl

Extrinsic procedures have a number of constraints placed
on them so they behave in the same way as ‘regular’
HPF procedures. An EXTRINSIC must:

O fully terminate before control returns,
O not permanently change the mapping of an object,
O obey any INTENT,

O ensure that non-local replicated variables have a
consistent value,

O not permanently modify the number of available
processors.

239



Uses of Extrinsics I

EXTRINSICS may contain:

O

O

a super-efficient message passing kernel,
calls to library functions,

an interface to a package,

calls to ‘trusty’ old code,

calls to a different language,

code which requires no synchronisation.

240



Extrinsic instead of INDEPENDENTI

The INDEPENDENT directive is currently not implemented
by most compilers. Assuming the loop implies ho com-

munication an EXTRINSIC can be used to achieve the
same functionality:

'HPF$ DISTRIBUTE A(*,CYCLIC)

IHPF$ INDEPENDENT, NEW(i)
DO j =1, n
D0Oi=1, m
! . stuff missing
A(i,j) =
! . stuff missing
END DO
END DO

the loop can be replaced by a call to the EXTRINSIC
Ext_Loop:

CALL Ext_Loop(A,...)

The EXTRINSIC contains the loop with n and m modified.

241



Calls to the NAG LibraryI

It is very easy to call the NAg Fortran 77 library from
within an F77_LOCAL extrinsic. To use w from the NAg
library:

DOUBLE PRECISION FUNCTION Pi()

DOUBLE PRECISION XO1AAF, x
Pi = X01AAF(x)

END

and the calling program

PROGRAM Using_NAG_4_Pi

'HPF$ PROCESSORS, DIMENSION(4) :: P
DOUBLE PRECISION, DIMENSION(100) :: A
'HPF$ DISTRIBUTE (BLOCK) ONTO P :: A
INTERFACE

EXTRINSIC(F77_LOCAL) DOUBLE PRECISION FUNCTION Pi()
END FUNCTION Pi
END INTERFACE
A =Pi(Q)
END PROGRAM Using_NAG_4_Pi

All scalars (ie Pi) must be coherent.

242



New Intrinsics in HPFI

HPF alters two classes of Fortran 90 intrinsics:

O system inquiry intrinsics: adds NUMBER_OF_PROCESSORS
and PROCESSORS_SHAPE,

O computational intrinsics: adds ILEN and extends
MINLOC and MAXLOC.

ILEN returns the number of bits needed to store an
INTEGER values and is used to round an integer to the
nearest power of 2.

HPF adds a DIM= specifier to the location intrinsics.

243



HPF Library Module I

The HPF Library MODULE contains a number of functions:
O Mapping inquiry functions
O Array reduction functions
O Bit manipulation functions
O Array combining scatter functions
O Prefix and suffix functions
O Array sorting functions

Must include USE HPF_LIBRARY to attach module.

244



Mapping Inquiry Subroutinesl

There are three SUBROUTINES in this class:
O HPF_ALIGNMENT,
O HPF_DISTRIBUTION,
O HPF_TEMPLATE,

All above procedures must be supplied with an object
name and up to 7 optional arguments of INTENT (OUT)
which return mapping information.

245



Example of Mapping Inquiry Proceduresl

For example,

REAL, DIMENSION(100,100) :: A

CHARACTER (LEN=9) , DIMENSION(2) :: DISTS

INTEGER, DIMENSION(2) :: BLK_SIZE, PSHAPE
INTEGER :: PRANK

'HPF$ PROCESSORS, DIMENSION(4) :: P

'HPF$ DISTRIBUTE (BLOCK,*) ONTO P :: A

CALL HPF_DISTRIBUTION(A,AXIS_TYPE = DISTS, &
AXTS_INFO = BLK_SIZE,&
PROCESSORS_RANK = PRANK, &
PROCESSORS_SHAPE = PSHAPE)

Here DISTS is equal to (/’BLOCK’,’COLLAPSED’/).

BLK_SIZE(1) is equal to 50. BLK_SIZE(2) is compiler de-
pendent.

PRANK is 1 and PSHAPE(1) is 4. PSHAPE(2) has not been
assigned a value.

The other procedures follow a similar pattern.

246



New HPF Reduction FunctionsI

There are four FUNCTIONS in this class:
O IALL, corresponds to IAND reduction,
O TIANY, corresponds to IOR reduction,
O IPARITY, corresponds to IEOR reduction,
O PARITY, corresponds to .NEQV. reduction,

The first three procedures operate on the bit pattern.

247



Example of New Reduction FunctionsI

All functions operate on arrays, for example, IALL(A) is
the same as

...(IAND(IAND(IAND(A(C1),A(2)),A(3)),A(4)),...)

PARITY is not bitwise and is used with LOGICAL valued
expressions. PARITY(A) is

A(1) .NEQV.A(2) .NEQV.A(3) .NEQV.A(4).
For example,

PARITY((/F,T,F,T,F/))

is .FALSE. whereas,
PARITY((/F,T,F,T,T/))

is .TRUE..

248



Bit Manipulation Functionsl

There are three new functions in this class plus the new
intrinsic ILEN:

O LEADZ— number of leading zeros
O POPCNT— number of 1 bits
O POPPAR— parity of integer

All functions are elemental but must take INTEGER argu-
ments.

249



Array Combining Scatter Functionsl

Fortran 90 allows indirect addressing, however if,

INTEGER, DIMENSION(4) :: A =1, B = 2
INTEGER, DIMENSION(3) :: W = (/1,2,2/)

then writing
A(W) = A(W) + 2xB(1:3)

is incorrect due to the multiple assignments to A(2). We
are able to use combining scatter functions:

A = SUM_SCATTER(2*B(1:3),A,W)
now A equals (/5,9,1,1/). This performs

A(1) = A(1) + 2xB(1)
A(2) = A(2) + 2%B(2) + 2xB(3)

250



Array Combining Scatter Functions III

These functions allow combined assignments to vector
subscripted arrays with repeated values. Consider,

A = PRODUCT_SCATTER(2*B(1:3),A,W)
A is now equal to (/4,16,1,1/).

The following prefixes are allowed for scatter functions:
ALL, ANY, COUNT, TALL, TANY, TPARITY, MAXVAL, MINVAL, PARITY,
PRODUCT and SUM. Consider,

MINVAL_SCATTER((/10,-2,4,2/),(/1,1,1/),(/2,2,1,1/))

this gives the result (/1,-2,1/).

251



Prefix and Suffix FunctionsI

Both classes of functions are related

O prefix functions scan along an array. Each element
of the result depends upon the preceding elements
(in array element order). For example,

PRODUCT_PREFIX((/1,2,3,4/)) = (/1,2,6,24/)

PRODUCT_PREFIX((/1,4,7/), = ((/1, 24, 5040/),
(/2,5,8/), = (/2,120, 40320/),
(/3,6,9/)) = (/6,720,362880/))

O suffix functions do the same but scan backwards.
PRODUCT_SUFFIX((/1,2,3,4/)) = (/24,24,12,4/)
PRODUCT_SUFFIX((/1,4,7/), = ((/362880,60480,504/),

(/2,5,8/), = (/362880,15120, 72/),
(/3,6,9/)) = (/181440, 3024, 9/))

252



Prefix and Suffix Functions III

There are a number of different combiners which make
up the prefix and suffix functions. These include the
Fortran 90 reductions:

O SUM and PRODUCT: for example,
SUM_PREFIX, PRODUCT_SUFFIX,

O MAXVAL and MINVAL: for example,
MAXVAL_SUFFIX, MINVAL_PREFIX,

O ALL, ANY and COUNT: for example,
ALL_SUFFIX, ANY_PREFIX,

plus HPF defined intrinsics: IALL, IANY, IPARITY and
PARITY.

253



Prefix and Suffix Functions IIII

The functions all take (more or less) the same argu-
ments, for example:

MINVAL_PREFIX (ARRAY[,DIM] [,MASK] [,SEGMENT] [,EXCLUSIVE])

O a MASK argument works as in Fortran 90,
O COPY_... doesn’t have MASK and EXCLUSIVE,

O ALL_..., ANY_ ..., COUNT_... and PARITY...

. do not have
MASK as ARRAY is LOGICAL.

MASK and SEGMENT are LOGICAL, MASK conforms to ARRAY,
SEGMENT has same shape as ARRAY.

Example of the MASK argument,

PRODUCT_PREFIX((/1,2,3,4/), MASK=(/T,F,T,F/)) = (/1,1,3,3/)

254



SEGMENT anCIEXCLUSIVEI

SEGMENT: apply the function to sections, for example,

S = (1,7,T, F,F, T,T, F, T,T/)

! _____ —_ —_ - _——

SUM_PREFIX((/1,2,3, 4,5, 6,1, 2, 3,4/) ,SEGMENT=S) =
(/1,3,6, 4,9, 6,7, 2, 3,7/)

EXCLUSIVE: scalar LOGICAL. If .FALSE. (default) then each
element takes part in operation for its position, oth-
erwise it does not and the first scanned element has
identity value.

PRODUCT_PREFIX((/1,2,3,4/), EXCLUSIVE=.TRUE.) =

(/1,1,2,6/)
SUM_PREFIX((/1,2,3,4/), EXCLUSIVE=.TRUE.) =
(/0,1,3,6/)

255



Array Sorting Functionsl

There are two functions in this class:
O GRADE UP — smallest first,
OO0 GRADE_DOWN — largest first,

These can be used to sort multi-dimensional arrays as a
whole (in array element order) or along (an optionally)
specified dimension.

Each function returns a permutation of the array indices.
Duplicate values remain in the original (array element)
order.

256



Example of Array Sorting FunctionsI

Given,
A= (2,3,7,4,9,1,5,5,0,5,5/)

then GRADE_DOWN(A) is the 2D (1 x 11) array:
(/5,3,7,8,10,11,4,2,1,6,9/)

and

GRADE UP(A,DIM=1) is the 1D array:
(/9,6,1,2,4,7,8,10,11,3,5/)

Note how the multiple values of 5 are sorted.

The result when not using DIM= has shape
(/ SIZE(SHAPE(A)) ,PRODUCT(SHAPE(A))/)

Otherwise the shape is the same as A.

257



Further Example of Array Sorting FunctionsI

If A is the 2D array:

e~ SN
N O ©
NN

Then GRADE DOWN(A) is (the coordinates)
122331213
221323311

and GRADE_DOWN(A,DIM=1) is

W N
W N =
N~ W

258



Storage and Sequence Associationl

The distribution of sequence and storage associated en-
tities is very complex and best avoided. It is not part of
HPF 2.0 (the new standard),

O sequence association does not work on distributed
memory systems,

O storage association and retyping of memory does
not mix well with distributed objects.

Things to avoid,
O distributing arrays in COMMON,
O distributing EQUIVALENCEd arrays,

O assumed-size arrays.

259



Dual Fortran 90 and HPF CodesI

The are differences between Fortran 90 and HPF. To
maintain dual codes:

O don’'t pass array sections,

O don't use pointers,

O get HPF_LIBRARY module,

O don't use storage and sequence association,
O use cpp to mask out FORALL, EXTRINSIC, etc.

As soon as Fortran 95 compilers arrive many problems
will disappear.

260



Full HPF I

Full HPF supports,
O all of Fortran 90,
O dynamic mappings, REALIGN, REDISTRIBUTE,
O inherited distributions,
O distributed derived types (not well defined),

Much care must be taken with pointers!

261



Performance of HPF Systemsl

HPF codes with ‘regular computations’, eg EP, fare well;
those with ‘irregular’ array accesses, eg FFT1, do not.

EP (NAS benchmark) on SPARCCenter 1000 (2 x sun4d
Processors):

Source | Compiler Exec Time (s)
f90 | EPC 85.0
Sun (||) (1 proc) 111.0

Sun (||) (2 proc) 111.0

hpf | PGI (||) (1 proc) 127.5
PGI (||) (2 proc) 67.6

Fortran 90 on SPARCCenter 2000 takes 115s; HPF on
8 processors takes 12s.

FFT1 (ParkBench) on 1 IPX with epcf90 takes 0.3s; on
8 IPXs with pghpf takes 33s!

262



HPF 2'

Actual language additions:

O change to Fortran 95,

O REDUCTION clause,

O SORT_UP and SORT_DOWN library routines.
Approved extensions,

O GEN_BLOCK and INDIRECT distributions, SHADOW regions,
distributions RANGE directive.

O mapped POINTER objects and derived types
O processor subsets, ON directive, TASK REGIONS,
O asynchronous I/O (WAIT),

O more extrinsics (C, Fortran 77, HPF_CRAFT and For-
tran 77 local library.

263



HPF Kernel I

‘Guaranteed to execute fast and be portable’.
O no INHERIT.
O no pointers,
O no dynamic mapping,

O only certain types of alignment, not strided.

264



