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Why use Parallel Computing 

The Universe is parallel  

 

Parallel computing  is just 
the next step of serial 
computing to describe 
systems which are 
intrinsically parallel. 

 



 Parallel Computing 

Name Institute No of cores 

Jaguar Oak Ridge 224,162 

Nebulae China 120,640 

Roadrunner DOE 122,400 

Kraken Comp. Sci. 98,928 

From Top500 (June 2010): 

Massive parallel machines 



Clock Speed 

Almost no frequency increase since 2000! 



Uses for Parallel Computing 

Scientific uses: 

• Quantum Chemistry 

• Solid State Physics 

• Earth Sciences 

• Mechanical Engineering 

• Many more  

 

 



Uses for Parallel Computing 

Commercial uses: 

• Data mining 

• Financial modeling 

• Pharmaceutical design 

• Oil exploration 

• Many more  

 

 



What can Parallel Computing do? 

• Solve larger problems (Grand Challenges) 

• Use non-local resources (Seti@Home) 

• Solve problems quicker (Weather forecast) 

• Save money (Stock transactions) 

• Etc.  

 

 



Flynn's Classical Taxonomy 

1) SISD: Single Instruction, Single Data 

A serial (non parallel computer) 

Only one instruction is used on a single data stream. 

 

 



Flynn's Classical Taxonomy 

2) SIMD: Single Instruction, Multiple Data 

One instruction is used on several data. 

 

 



Flynn's Classical Taxonomy 

3) MISD: Multiple Instructions, Single Data 

Several instructions are used on a single data stream. 

Only few computer ever existed. 

 

 



Flynn's Classical Taxonomy 

4) MIMD: Multiple Instructions, Multiple Data 

Every processor might use different instructions on 
different data sets. 

 

 



Memory Architectures 

Shared memory architecture: 

Uniform Memory Access (UMA) 

Sometimes ccUMA (cache coherent) 

 

 



Memory Architectures 

Shared memory architecture: 

Non-Uniform Memory Access (NUMA) 

Sometimes ccNUMA (cache coherent) 

 

 



Memory Architectures 

Advantages of Shared Memory: 

• Global address space (user friendly) 

• Fast data sharing 

 

Disadvantages: 

• Lack of scalability (geometrical increase of traffic) 

• Cost 

 

 



Memory Architectures 

Distributed memory architecture: 

• Processors have their own local memory 

• Programmers have to ensure that each processors 
has the necessary data in the local memory 

• Each processor operates independently 

• Cache Coherency does not apply 

 

 



Memory Architectures 

Advantages of Distributed Memory: 

• Memory and processors are scalable 

• Cost (commodity hardware) 

 

Disadvantages: 

• Programmer is responsible for data exchange and 
communication 

 

 

 



Memory Architectures 

Hybrid memory architecture: 

• Largest computers use hybrid architectures 

 

 



Available machines: Orange 

• SGI Cluster  

• Distributed memory 

• 1,600 Sandy Bridge CPUs (cores)  

• 64 – 256GB mem per node (100 nodes) 

• SUSE Linux 

 



Available machines: Raijin 

• Fujitsu Cluster  

• Distributed memory machine 

• 57,000 Sandy Bridge CPUs (cores,own 4%) 

• 160 TB RAM 

• Centos Linux 

• At NCI/Canberra 



Available machines: Octane 

• Training machine 

• SGI Cluster in a box  

• Distributed memory machine 

• 4 x 8 Nehalem CPUs (cores) 

• 24GB memory per node 

• Suse Linux 

 



Parallel Programming Models 

 

• Shared Memory (without threads, native compilers) 

• Threads (Posix Threads and OpenMP) 

• Distributed Memory / Message Passing 

• Data Parallel 

• Hybrid 

• Single Program Multiple Data 

• Multiple Program Multiple Data 

 

 



Threads Model 

 

• Type of shared memory model 

• Implementations: POSIX (C only) and OpenMP 

 

 



Message Passing Model 

 

• Type of distributed memory model 

• Implementations: Message Passing Interface MPI 

 

 



Data Parallel Model  

• Implementations: Fortran 90 and 95 - Fortran 77 
plus pointers, dynamic memory allocation, array 

processing as objects, recursive functions, etc. 

• High Performance Fortran (HPF) -  Fortran 90 plus 
directives to tell the compiler how to distribute data 

etc. 



Hybrid Model 

Message Passing (MPI) plus Threads (OpenMP) 

 



Designing Parallel Programs 
 

• Determine whether the problem can be parallelized 

 F(n)=F(n-1)+F(n-2) Fibonacci non-parallelizable 

• Identify hotspots 

• Identify bottlenecks 

• Identify data dependencies (as F(n)) 

• Investigate other algorithms 



Designing Parallel Programs 
 

Partitioning: Domain 



Designing Parallel Programs 
 

Partitioning: Functional 



Designing Parallel Programs 
 

Communication: 

• Most parallel programs need communication 
(embarrassingly parallel programs do not) 

 

Consider:  

• Latency: time it takes to send a 0 byte message 
from A to  B 

• Bandwidth: amount of data that can be send in a 
unit time 

 



Designing Parallel Programs 
 

Scope of Communication: 

 

 



Designing Parallel Programs 
 

Overhead and Complexity: 

 

 



Designing Parallel Programs 
 

Granularity: 

• Fine Grain Parallelism 

 Low computation/communication ratio 

 Good load balancing 

 

• Coarse Grain Parallelism 

 High computation/communication ratio 

 More difficult load balancing  

 



Designing Parallel Programs 
 

Limits and Costs: Amdahl's Law 

Speedup = 1/(1-p) 

 



Designing Parallel Programs 
 

Many more points to consider: 

• Complexity 

• Portability 

• Resource Requirements 

• Scalability 

• Etc. 

 



OpenMP 

OpenMP runs on a shared memory architecture. 

 

With special programs such as ScaleMP also on a 

distributed memory architecture. 

 

Application Programming Interface (API). 

 

Not a new language. 

 

It has bindings to C/C++ and Fortran. 

 



OpenMP 

Three primary API components: 

 

- Compiler directives 

- Runtime library routines 

- Environment Variables 

 

OpenMP Strong Points: 

 

-Incremental Parallelization 

-Portability 

-Ease of use 

-Standardized 

 



OpenMP 

 

 

- Thread based 

- Fork-Join Model 

- Compiler Directive based 

- Dynamic threads 

Program Flow: 



Work-Sharing Constructs 

 

 



OpenMP 

 

 

Compiler Directives: 

- Fortran: !$OMP (or C$OMP or $OMP) 

- C/C++: #pragma omp 

 

Parallel Regions: 

 
double A[1000]; 

omp_set_num_threads (4); 

#pragma omp_parallel 

{ 

   int ID = omp_get_thread_num(); 

   foo (ID, A); 

} 

printf (“Done\n”); 



Parallel Region Construct 

 

 

#pragma omp parallel [clause ...]  newline  

                     if (scalar_expression)  

                     private (list)  

                     shared (list)  

                     default (shared | none)  

                     firstprivate (list)  

                     reduction (operator: list)  

                     copyin (list)  

                     num_threads (integer-expression) 

   structured_block 

 

!$OMP PARALLEL [clause ...]  

               IF (scalar_logical_expression)  

               PRIVATE (list)  

               SHARED (list)  

               DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)  

               FIRSTPRIVATE (list)  

               REDUCTION (operator: list)  

               COPYIN (list)  

               NUM_THREADS (scalar-integer-expression) 

   block 

!$OMP END PARALLEL 



Parallel Region: Hello World: C 

 

 

#include <omp.h> 

main ()  { 

 

int nthreads, tid; 

 

/* Fork a team of threads with each thread having a private tid variable */ 

#pragma omp parallel private(tid) 

  { 

 

  /* Obtain and print thread id */ 

  tid = omp_get_thread_num(); 

  printf("Hello World from thread = %d\n", tid); 

 

  /* Only master thread does this */ 

  if (tid == 0)  

    { 

    nthreads = omp_get_num_threads(); 

    printf("Number of threads = %d\n", nthreads); 

    } 

  }  /* All threads join master thread and terminate */ 

} 



Parallel Region: Hello World: F 

 

 

       PROGRAM HELLO 

 

       INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS, 

     +   OMP_GET_THREAD_NUM 

 

C     Fork a team of threads with each thread having a private TID variable 

!$OMP PARALLEL PRIVATE(TID) 

 

C     Obtain and print thread id 

      TID = OMP_GET_THREAD_NUM() 

      PRINT *, 'Hello World from thread = ', TID 

 

C     Only master thread does this 

      IF (TID .EQ. 0) THEN 

        NTHREADS = OMP_GET_NUM_THREADS() 

        PRINT *, 'Number of threads = ', NTHREADS 

      END IF 

 

C     All threads join master thread and disband 

!$OMP END PARALLEL 

 

       END 



Environment Setup: Modules 

Almost no defaults are set. Choose which compiler or 

program version you want to use. 

 

Commands: 

 
module avail 

module list 

module show 

module load name 

module unload name 

 

Use this for your batch scripts as well! 

 

 



Compiling Code 

 

 

ssh hpc01@octane.intersect.org.au 

 

module load intel-tools-13/13.0.1.117 

 

Intel: icc test.c -o test -openmp 

         ifort test.f -o test -openmp 

 



Exercise 1: Hello World 

 

 

Write a hello-world program in C or Fortran. Observe the 

order of the ranks. Get a feeling to work with the modules. 

 

Hints: 

Load the Intel compilers: 

module load intel-tools-13/13.0.1.117 

 

Compile: 
icc hello.c -o hello -openmp 

ifort hello.f -o hello -openmp  

Set environment: 
export OMP_NUM_THREADS=4  

Run: 
./hello 
 



For/Do Directive: C 

 

 

 

#pragma omp for [clause ...]  newline  

                schedule (type [,chunk])  

                ordered 

                private (list)  

                firstprivate (list)  

                lastprivate (list)  

                shared (list)  

                reduction (operator: list)  

                collapse (n)  

                nowait  

   for_loop 
 

 



For/Do Directive: Fortran 
 

!$OMP DO [clause ...]  

         SCHEDULE (type [,chunk])  

         ORDERED  

         PRIVATE (list)  

         FIRSTPRIVATE (list)  

         LASTPRIVATE (list)  

         SHARED (list)  

         REDUCTION (operator | intrinsic : list)  

         COLLAPSE (n)  

 

   do_loop 

 

!$OMP END DO  [ NOWAIT ] 
 



Clauses 
SCHEDULE: Describes how iterations of the loop are divided among the threads in the team.  

 

STATIC 

    Loop iterations are divided into pieces of size chunk and then statically 

assigned to threads. If chunk is not specified, the iterations are evenly (if 

possible) divided contiguously among the threads.  

 

DYNAMIC 

    Loop iterations are divided into pieces of size chunk, and dynamically 

scheduled among the threads; when a thread finishes one chunk, it is dynamically 

assigned another. The default chunk size is 1.  

 

GUIDED 

    Iterations are dynamically assigned to threads in blocks as threads request 

them until no blocks remain to be assigned. Similar to DYNAMIC except that the 

block size decreases each time a parcel of work is given to a thread. 
 

 



Clauses 
 

RUNTIME 

    The scheduling decision is deferred until runtime by the environment variable 

OMP_SCHEDULE. It is illegal to specify a chunk size for this clause. 

 

AUTO 

    The scheduling decision is delegated to the compiler and/or runtime system.  

 

NO WAIT / nowait: If specified, then threads do not synchronize at the end of the 

parallel loop. 

 

ORDERED: Specifies that the iterations of the loop must be executed as they 

would be in a serial program. 

 

COLLAPSE: Specifies how many loops in a nested loop should be collapsed into 

one large iteration space and divided according to the schedule clause. The 

sequential execution of the iterations in all associated loops determines the order 

of the iterations in the collapsed iteration space. 



Clauses 
 

Private 

     

Private (list) 

 

PRIVATE variables behave as follows: 

 

A new object of the same type is declared once for each thread in the team 

 

All references to the original object are replaced with references to the new object 

 

Variables declared PRIVATE should be assumed to be uninitialized for each 

thread  



Clauses 
 

Shared 

     

Shared (list) 

 

Shared variables behave as follows: 

 

A shared variable exists in only one memory location and all threads can read or 

write to that address 

 

It is the programmer's responsibility to ensure that multiple threads properly 

access SHARED variables (such as via CRITICAL sections)  



Clauses 
 

Reduction 

     

Reduction (operator:list) 

Reduction (operator|intrinsic:list) 

 

The REDUCTION clause performs a reduction on the variables that appear in its 

list. 

 

A private copy for each list variable is created for each thread. At the end of the 

reduction, the reduction variable is applied to all private copies of the shared 

variable, and the final result is written to the global shared variable.  



Example: Vector Add 
 

    Arrays A, B, C, and variable N will be shared by all threads. 

 

    Variable I will be private to each thread; each thread will have its own unique copy. 

 

    The iterations of the loop will be distributed dynamically in CHUNK sized pieces. 

 

    Threads will not synchronize upon completing their individual pieces of work (NOWAIT).  



Example: Vector Add: C 
 

#include <omp.h> 

#define CHUNKSIZE 100 

#define N     1000 

 

main ()   

{ 

int i, chunk; 

float a[N], b[N], c[N]; 

 

/* Some initializations */ 

for (i=0; i < N; i++) 

  a[i] = b[i] = i * 1.0; 

chunk = CHUNKSIZE; 

 

#pragma omp parallel shared(a,b,c,chunk) private(i) 

  { 

  #pragma omp for schedule(dynamic,chunk) nowait 

  for (i=0; i < N; i++) 

    c[i] = a[i] + b[i]; 

  }  /* end of parallel section */ 

} 



Example: Vector Add: F 
     PROGRAM VEC_ADD_DO 

 

      INTEGER N, CHUNKSIZE, CHUNK, I 

      PARAMETER (N=1000)  

      PARAMETER (CHUNKSIZE=100)  

      REAL A(N), B(N), C(N) 

 

!     Some initializations 

      DO I = 1, N 

        A(I) = I * 1.0 

        B(I) = A(I) 

      ENDDO 

      CHUNK = CHUNKSIZE 

         

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I) 

 

!$OMP DO SCHEDULE(DYNAMIC,CHUNK) 

      DO I = 1, N 

         C(I) = A(I) + B(I) 

      ENDDO 

!$OMP END DO NOWAIT 

!$OMP END PARALLEL 

      END 



Exercise 2: Dot Product 
Write a program for a dot product of 2 vectors a and b defined by 

 

X = Σ a[i] * b[i] 

 

Hint: 

 

Use a parallel for construct with the reduction clause. 



Exercise 2: Dot Product 
Write a program for a dot product of 2 vectors a and b defined by 

 

X = Σ a[i] * b[i] 

 

Hint: 

 

Use a parallel for construct with the reduction clause. 

 

Solution: 

 

#pragma omp parallel for reduction(+:sum) 

  for (i=0; i < n; i++) 

    sum = sum + (a[i] * b[i]); 

 

!$OMP PARALLEL DO REDUCTION(+:SUM) 

      DO I = 1, N 

        SUM = SUM + (A(I) * B(I)) 

      ENDDO 

 

 



Exercise 2: Dot Product 
Solution (more options specified): 

 
#pragma omp parallel for      \   

  default(shared) private(i)  \   

  schedule(static,chunk)      \   

  reduction(+:result)   

 

  for (i=0; i < n; i++) 

    result = result + (a[i] * b[i]); 

 

 

 

 



Sections Directive: C 
#pragma omp sections [clause ...]  newline  

                     private (list)  

                     firstprivate (list)  

                     lastprivate (list)  

                     reduction (operator: list)  

                     nowait 

  { 

 

  #pragma omp section   newline  

 

     structured_block 

 

  #pragma omp section   newline  

 

     structured_block 

 

  }      



Sections Directive: Fortran 
!$OMP SECTIONS [clause ...]  

               PRIVATE (list)  

               FIRSTPRIVATE (list)  

               LASTPRIVATE (list)  

               REDUCTION (operator | intrinsic : list)  

 

!$OMP  SECTION  

 

   block 

 

!$OMP  SECTION  

 

    block  

 

!$OMP END SECTIONS  [ NOWAIT ] 



Sections Directive Example: C 
#include <omp.h> 

#define N     1000 

 

main () 

{ 

int i; 

float a[N], b[N], c[N], d[N]; 

 

/* Some initializations */ 

for (i=0; i < N; i++) { 

  a[i] = i * 1.5; 

  b[i] = i + 22.35; 

  } 

 

#pragma omp parallel shared(a,b,c,d) private(i) 

  { 

  #pragma omp sections nowait 

    { 

    #pragma omp section 

    for (i=0; i < N; i++) 

      c[i] = a[i] + b[i]; 

 

    #pragma omp section 

    for (i=0; i < N; i++) 

      d[i] = a[i] * b[i]; 

    }  /* end of sections */ 

  }  /* end of parallel section */ 

} 



Sections Directive Example: F 
      PROGRAM VEC_ADD_SECTIONS 

 

      INTEGER N, I 

      PARAMETER (N=1000) 

      REAL A(N), B(N), C(N), D(N) 

 

!     Some initializations 

      DO I = 1, N 

        A(I) = I * 1.5 

        B(I) = I + 22.35 

      ENDDO 

 

!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I) 

 

!$OMP SECTIONS 

 

!$OMP SECTION 

      DO I = 1, N 

         C(I) = A(I) + B(I) 

      ENDDO 

 

!$OMP SECTION 

      DO I = 1, N 

         D(I) = A(I) * B(I) 

      ENDDO 

 

!$OMP END SECTIONS NOWAIT 

 

!$OMP END PARALLEL 

 

      END 



Synchronization 
THREAD 1: 

 

increment(x) 

{ 

    x = x + 1; 

} 

 

THREAD 1: 

 

10  LOAD A, (x address) 

20  ADD A, 1 

30  STORE A, (x address) 

 

THREAD 2: 

 

increment(x) 

{ 

    x = x + 1; 

} 

 

THREAD 2: 

 

10  LOAD A, (x address) 

20  ADD A, 1 

30  STORE A, (x address) 

       



Synchronization 
One possible execution sequence: 

 

    Thread 1 loads the value of x into register A. 

    Thread 2 loads the value of x into register A. 

    Thread 1 adds 1 to register A 

    Thread 2 adds 1 to register A 

    Thread 1 stores register A at location x 

    Thread 2 stores register A at location x  

 

The resultant value of x will be 1, not 2 as it should be.  
       



Synchronization: Master 
C: 

#pragma omp master  newline 

   structured_block 

 

Fortran: 

!$OMP MASTER 

   block 

!$OMP END MASTER 

 

The MASTER directive specifies a region that is to be executed only by the 

master thread of the team. All other threads on the team skip this section of code. 
       



Synchronization: Critical 
C: 

#pragma omp critical [ name ]  newline 

   structured_block 

 

 

Fortran: 

!$OMP CRITICAL [ name ] 

   block 

!$OMP END CRITICAL [ name ] 

 

The CRITICAL directive specifies a region of code that must be executed by only 

one thread at a time. 
       



Example: Critical 
#include <omp.h> 

 

main() 

{ 

int x=0; 

 

#pragma omp parallel shared(x)  

  { 

 

  #pragma omp critical  

  x = x + 1; 

 

  }  /* end of parallel section */ 

 

} 

 

All threads in the team will attempt to execute in parallel, however, because of the 

CRITICAL construct surrounding the increment of x, only one thread will be able 

to read/increment/write x at any time. 



Synchronization: Barrier 
C: 

#pragma omp barrier  newline 

 

Fortran: 

!$OMP BARRIER 

 

The BARRIER directive synchronizes all threads in the team. 

 

When a BARRIER directive is reached, a thread will wait at that point until all 

other threads have reached that barrier. All threads then resume executing in 

parallel the code that follows the barrier.  



Synchronization: Ordered 
C: 

#pragma omp for ordered [clauses...] 

   (loop region) 

#pragma omp ordered  newline 

   structured_block 

   (endo of loop region) 

 

Fortran: 

!$OMP DO ORDERED [clauses...] 

   (loop region) 

!$OMP ORDERED 

   (block) 

!$OMP END ORDERED 

   (end of loop region) 

!$OMP END DO 

 

 



Synchronization: Ordered 
The ORDERED directive specifies that iterations of the enclosed loop will be 

executed in the same order as if they were executed on a serial processor. 

 

Threads will need to wait before executing their chunk of iterations if previous 

iterations haven't completed yet. 

 

Used within a DO / for loop with an ORDERED clause 

 

The ORDERED directive provides a way to "fine tune" where ordering is to be 

applied within a loop. Otherwise, it is not required.  

 

 

 



Exercise 3: Matrix Multiplication 
Write a matrix-matrix multiplication program. 

 

C = A * B  

 

defined by 

 

C(ij) = Sum_k A(ik) * B(kj) 

 

Hint: 

Do matrix multiply sharing iterations on outer loop 

 
 

 

 



MPI: Message Passing Interface 

 

 

-1994. MPI-1 (specification, not strictly a library) 

-1996: MPI-2 (addresses some extensions) 

-2012: MPI-3 (extensions, remove C++ bindings) 

 

Interface for C/C++ and Fortran 

Header files: 

C: #include <mpi.h> 

F: include 'mpif.h' 

 

Compiling: 

Intel: icc -lmpi .... (ifort -lmpi …) 

Gnu: mpicc … (mpif77, mpif90, mpicxx) 

Running:  

mpirun -np 4 ./myprog 
 



Reasons for using MPI 

 

 

Standardization: MPI is the only message passing library which can be 

considered a standard. It is supported on virtually all HPC platforms. 

Practically, it has replaced all previous message passing libraries. 

 

Portability: There is no need to modify your source code when you port 

your application to a different platform that supports (and is compliant 

with) the MPI standard. 

 

Performance: Vendor implementations. 

 

Functionality: Over 115 routines are defined in MPI-1 alone. 

 

Availability: A variety of implementations are available, both vendor and 

public domain.  
 



Programming Model 

 

 

- Distributed programming model. Also data parallel. 

 

- Hardware platforms: distributed, shared, hybrid  

 

- Parallelism is explicit. The programmer is responsible for implementing 

all parallel constructs. 

 

- The number of tasks dedicated to run a parallel program is static. New 

tasks can not be dynamically spawned during run time. (MPI-2 

addresses this issue).  



Program Structure 

 

 



Communicators and Groups 

 

 

MPI uses objects called communicators and groups to 

define which collection of processes may communicate 

with each other. 

 

Most MPI routines require you to specify a communicator 

as an argument.  

 

 

 

 
 



Initializing 

 

 

MPI Init: 

MPI_Init (&argc,&argv) 

MPI_INIT (ierr)  

 

MPI_Comm_size: 

MPI_Comm_size (comm,&size) 

MPI_COMM_SIZE (comm,size,ierr)  

Determines the number of processes in the group associated with a 

communicator. 

 

MPI_Comm_rank: 

MPI_Comm_rank (comm,&rank) 

MPI_COMM_RANK (comm,rank,ierr)  

Determines the rank (task ID) of the calling process within the 

communicator. Value 0...p-1 

 

 
 



Initializing 

 

 

MPI_Abort: 

MPI_Abort (comm,errorcode) 

MPI_ABORT (comm,errorcode,ierr) 

Terminates all MPI processes associated with the communicator. 

 

MPI_Finalize: 

MPI_Finalize () 

MPI_FINALIZE (ierr)  

Terminates the MPI execution environment. This function should be the 

last MPI routine called in every MPI program - no other MPI routines 

may be called after it. 

 

 

 
 



Example: C 

 

 

 

 

 

 
 

 #include <mpi.h> 

   #include <stdio.h> 

 

   int main(argc,argv) 

   int argc; 

   char *argv[]; { 

   int  numtasks, rank, rc;  

 

   rc = MPI_Init(&argc,&argv); 

   if (rc != MPI_SUCCESS) { 

     printf ("Error starting MPI program. Terminating.\n"); 

     MPI_Abort(MPI_COMM_WORLD, rc); 

     } 

 

   MPI_Comm_size(MPI_COMM_WORLD,&numtasks); 

   MPI_Comm_rank(MPI_COMM_WORLD,&rank); 

   printf ("Number of tasks= %d My rank= %d\n", numtasks,rank); 

 

   /*******  do some work *******/ 

 

   MPI_Finalize(); 

   } 



Example: F 

 

 

 

 

 

 
 

 program simple 

  include 'mpif.h' 

 

   integer numtasks, rank, ierr, rc 

 

   call MPI_INIT(ierr) 

   if (ierr .ne. MPI_SUCCESS) then 

      print *,'Error starting MPI program. Terminating.' 

      call MPI_ABORT(MPI_COMM_WORLD, rc, ierr) 

   end if 

 

   call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 

   call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr) 

   print *, 'Number of tasks=',numtasks,' My rank=',rank 

 

C ****** do some work ****** 

 

   call MPI_FINALIZE(ierr) 

 

   end 



Point to Point Communication 

 

 

 

 

 

 
 

MPI point-to-point operations typically involve message passing between two, 

and only two, different MPI tasks. One task is performing a send operation 

and the other task is performing a matching receive operation. 

 

Different types of send and receive routines: 

 

    Synchronous send 

    Blocking send / blocking receive 

    Non-blocking send / non-blocking receive 

    Buffered send 

    Combined send/receive 

    "Ready" send  

 

Any type of send routine can be paired with any type of receive routine. 



Exercise 1: Hello World 

 

 

 

 

 

 
 

Based on the last example write a MPI version of hello world and run it on 4 

cores. Each process should print “Hello World” and it's task number. 

 

Hint: 

You need the following MPI routines for this exercise: 

 

MPI_Init (&argc,&argv) 

MPI_Comm_rank (MPI_COMM_WORLD, &rank)         

MPI_Comm_size (MPI_COMM_WORLD, &size)         

MPI_Finalize() 

 
 

 



Buffering 

 

 

 

 

 

 
 

In a perfect world, every send operation would be perfectly synchronized with its matching 

receive. This is rarely the case. The MPI implementation must be able to deal with storing 

data when the two tasks are out of sync. 

 

Consider the following two cases: 

 

- A send operation occurs 5 seconds before the receive is ready - where is the message 

while the receive is pending? 

- Multiple sends arrive at the same receiving task which can only accept one send at a time 

- what happens to the messages that are "backing up"?  

 

The MPI implementation (not the MPI standard) decides what happens to data in these 

types of cases. Typically, a system buffer area is reserved to hold data in transit. For 

example:  



Blocking vs. Non-blocking 

 

 

 

 

 

 
 

Blocking: 

 

    A blocking send routine will only "return" after it is safe to modify the application buffer 

(your send data) for reuse. Safe means that modifications will not affect the data intended 

for the receive task. Safe does not imply that the data was actually received - it may very 

well be sitting in a system buffer. 

    A blocking send can be synchronous which means there is handshaking occurring with 

the receive task to confirm a safe send. 

    A blocking send can be asynchronous if a system buffer is used to hold the data for 

eventual delivery to the receive. 

    A blocking receive only "returns" after the data has arrived and is ready for use by the 

program.  

 

Non-blocking: 

 

    Non-blocking send and receive routines behave similarly - they will return almost 

immediately. They do not wait for any communication events to complete, such as 

message copying from user memory to system buffer space or the actual arrival of 

message. 

    Non-blocking operations simply "request" the MPI library to perform the operation when 

it is able. The user can not predict when that will happen. 

    It is unsafe to modify the application buffer (your variable space) until you know for a fact 

the requested non-blocking operation was actually performed by the library. There are 

"wait" routines used to do this. 

    Non-blocking communications are primarily used to overlap computation with 

communication and exploit possible performance gains.  

 

 



Order and Fairness 

 

 

 

 

 

 
 

Order: MPI guarantees that messages will not overtake each other.  

 

 

Fairness: MPI does not guarantee fairness - it's up to the programmer to prevent 

"operation starvation". 

 

Example: task 0 sends a message to task 2. However, task 1 sends a competing message 

that matches task 2's receive. Only one of the sends will complete.  

 

 



MPI Send / Receive 

 

 

 

 

 

 
 

MPI point-to-point communication routines generally have an argument list that takes one 

of the following formats: 

 

MPI_Send (&buf,count,datatype,dest,tag,comm) 

MPI_SEND (buf,count,datatype,dest,tag,comm,ierr)  

 

Buffer 

Program (application) address space that references the data that is to be sent or received. 

In most cases, this is simply the variable name that is be sent/received. For C programs, 

this argument is passed by reference and usually must be prepended with an ampersand: 

&var1 

 

Data Count 

Indicates the number of data elements of a particular type to be sent. 

 

Data Type 

For reasons of portability, MPI predefines its elementary data types. 

MPI_CHAR –      signed char 

MPI_INT –          signed int 

MPI_FLOAT –    float 

MPI_DOUBLE – double 

 

You can also create your own derived data types. 

 

 



MPI Send / Receive 

 

 

 

 

 

 
 

Destination 

An argument to send routines that indicates the process where a message should be 

delivered. Specified as the rank of the receiving process. 

 

Source 

An argument to receive routines that indicates the originating process of the message. 

Specified as the rank of the sending process. This may be set to the wild card 

MPI_ANY_SOURCE to receive a message from any task. 

 

Tag 

Arbitrary non-negative integer assigned by the programmer to uniquely identify a message. 

Send and receive operations should match message tags. For a receive operation, the wild 

card MPI_ANY_TAG can be used to receive any message regardless of its tag. The MPI 

standard guarantees that integers 0-32767 can be used as tags, but most implementations 

allow a much larger range than this. 

 

Communicator 

Indicates the communication context, or set of processes for which the source or 

destination fields are valid. Unless the programmer is explicitly creating new 

communicators, the predefined communicator MPI_COMM_WORLD is usually used. 

 

 

 

 



MPI Send / Receive 

 

 

 

 

 

 
 

Status 

For a receive operation, indicates the source of the message and the tag of the message. 

In C, this argument is a pointer to a predefined structure MPI_Status (ex. 

stat.MPI_SOURCE stat.MPI_TAG). In Fortran, it is an integer array of size 

MPI_STATUS_SIZE (ex. stat(MPI_SOURCE) stat(MPI_TAG)). Additionally, the actual 

number of bytes received are obtainable from Status via the MPI_Get_count routine. 

 

Request 

Used by non-blocking send and receive operations. Since non-blocking operations may 

return before the requested system buffer space is obtained, the system issues a unique 

"request number". The programmer uses this system assigned "handle" later (in a WAIT 

type routine) to determine completion of the non-blocking operation. In C, this argument is 

a pointer to a predefined structure MPI_Request. In Fortran, it is an integer.  

 

 



MPI Send / Receive 

 

 

 

 

 

 
 

Blocking sends             MPI_Send(buffer,count,type,dest,tag,comm) 

Non-blocking sends  MPI_Isend(buffer,count,type,dest,tag,comm,request) 

Blocking receive             MPI_Recv(buffer,count,type,source,tag,comm,status) 

Non-blocking receive  MPI_Irecv(buffer,count,type,source,tag,comm,request) 

 

MPI_Send:Basic blocking send operation. Routine returns only after the application buffer 

in the sending task is free for reuse. 

MPI_Send (&buf,count,datatype,dest,tag,comm) 

MPI_SEND (buf,count,datatype,dest,tag,comm,ierr)  

 

MPI_Recv (&buf,count,datatype,source,tag,comm,&status) 

MPI_RECV (buf,count,datatype,source,tag,comm,status,ierr)  

 

Synchronous blocking send:Send a message and block until the application buffer in the 

sending task is free for reuse and the destination process has started to receive the 

message.  

MPI_Ssend (&buf,count,datatype,dest,tag,comm) 

MPI_SSEND (buf,count,datatype,dest,tag,comm,ierr)  

 

Buffered blocking send:permits the programmer to allocate the required amount of buffer 

space into which data can be copied until it is delivered. Insulates against the problems 

associated with insufficient system buffer space. 

MPI_Bsend (&buf,count,datatype,dest,tag,comm) 

MPI_BSEND (buf,count,datatype,dest,tag,comm,ierr)   



Blocking Msg Passing Example: C 

 

 

 

 

 

 
 

#include <mpi.h> 

#include <stdio.h> 

 

int main(argc,argv)  

int argc; 

char *argv[];  { 

int numtasks, rank, dest, source, rc, count, tag=1;   

char inmsg, outmsg='x'; 

MPI_Status Stat; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

if (rank == 0) { 

  dest = 1; 

  source = 1; 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

  }  

 

else if (rank == 1) { 

  dest = 0; 

  source = 0; 

  rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat); 

  rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 

  } 

 

rc = MPI_Get_count(&Stat, MPI_CHAR, &count); 

printf("Task %d: Received %d char(s) from task %d with tag %d \n", 

       rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG); 

MPI_Finalize(); 

} 



Blocking Msg Passing Example: F 

 

 

 

 

 

 
 

   program ping 

   include 'mpif.h' 

 

   integer numtasks, rank, dest, source, count, tag, ierr 

   integer stat(MPI_STATUS_SIZE) 

   character inmsg, outmsg 

   outmsg = 'x' 

   tag = 1 

 

   call MPI_INIT(ierr) 

   call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 

   call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr) 

 

   if (rank .eq. 0) then 

      dest = 1 

      source = 1 

      call MPI_SEND(outmsg, 1, MPI_CHARACTER, dest, tag,  

 &            MPI_COMM_WORLD, ierr) 

      call MPI_RECV(inmsg, 1, MPI_CHARACTER, source, tag,  

 &            MPI_COMM_WORLD, stat, ierr) 

 

   else if (rank .eq. 1) then 

      dest = 0 

      source = 0 

      call MPI_RECV(inmsg, 1, MPI_CHARACTER, source, tag,  

 &       MPI_COMM_WORLD, stat, err) 

      call MPI_SEND(outmsg, 1, MPI_CHARACTER, dest, tag,  

 &       MPI_COMM_WORLD, err) 

   endif 

 

   call MPI_GET_COUNT(stat, MPI_CHARACTER, count, ierr) 

   print *, 'Task ',rank,': Received', count, 'char(s) from task', 

  &         stat(MPI_SOURCE), 'with tag',stat(MPI_TAG) 

   call MPI_FINALIZE(ierr) 

   end 



Exercise 2: Ping 

 

 

 

 

 

 
 

Write a MPI program which sends a message to another process which 

receives it and sends it back. For this you need 2 processes. Test whether the 

program was invoked with more than 2 processes and display a warning that 

the program will only use 2 processes. 

 

Run the program with: 

 

mpirun -np 2 ./ping 

 



Non-Blocking Msg Passing 

 

 

 

 

 

 
 

MPI_Isend 

Identifies an area in memory to serve as a send buffer. Processing continues immediately without waiting for 

the message to be copied out from the application buffer. A communication request handle is returned for 

handling the pending message status. The program should not modify the application buffer until subsequent 

calls to MPI_Wait or MPI_Test indicate that the non-blocking send has completed.  

 

MPI_Irecv 

Identifies an area in memory to serve as a receive buffer. Processing continues immediately without actually 

waiting for the message to be received and copied into the the application buffer. A communication request 

handle is returned for handling the pending message status. The program must use calls to MPI_Wait or 

MPI_Test to determine when the non-blocking receive operation completes and the requested message is 

available in the application buffer. 

 

MPI_Issend 

Non-blocking synchronous send. Similar to MPI_Isend(), except MPI_Wait() or MPI_Test() indicates when the 

destination process has received the message.  

 

MPI_Ibsend 

Non-blocking buffered send. Similar to MPI_Bsend() except MPI_Wait() or MPI_Test() indicates when the 

destination process has received the message. Must be used with the MPI_Buffer_attach routine.  

 

MPI_Irsend 

Non-blocking ready send. Similar to MPI_Rsend() except MPI_Wait() or MPI_Test() indicates when the 

destination process has received the message. Should only be used if the programmer is certain that the 

matching receive has already been posted.  



Non-Blocking Msg Passing: C 

 

 

 

 

 

 
 

#include <mpi.h>                                     /* Nearest neighbor exchange in ring topology */ 

#include <stdio.h> 

 

int main(argc,argv) 

int argc; 

char *argv[];  { 

int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2; 

MPI_Request reqs[4]; 

MPI_Status stats[2]; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD, &numtasks); 

MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 

prev = rank-1; 

next = rank+1; 

if (rank == 0)  prev = numtasks - 1; 

if (rank == (numtasks - 1))  next = 0; 

 

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]); 

MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]); 

 

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]); 

MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]); 

   

      {  do some work  } 

 

MPI_Waitall(4, reqs, stats); 

 

MPI_Finalize(); 

} 



Non-Blocking Msg Passing: F 

 

 

 

 

 

 
 

   program ringtopo 

   include 'mpif.h' 

   integer numtasks, rank, next, prev, buf(2), tag1, tag2, ierr 

   integer stats(MPI_STATUS_SIZE,2), reqs(4) 

   tag1 = 1 

   tag2 = 2 

 

   call MPI_INIT(ierr) 

   call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 

   call MPI_COMM_SIZE(MPI_COMM_WORLD, numtasks, ierr) 

 

   prev = rank - 1 

   next = rank + 1 

   if (rank .eq. 0) then 

      prev = numtasks - 1 

   endif 

   if (rank .eq. numtasks - 1) then 

      next = 0 

   endif 

 

   call MPI_IRECV(buf(1), 1, MPI_INTEGER, prev, tag1,  

 &     MPI_COMM_WORLD, reqs(1), ierr) 

   call MPI_IRECV(buf(2), 1, MPI_INTEGER, next, tag2,  

 &     MPI_COMM_WORLD, reqs(2), ierr) 

 

   call MPI_ISEND(rank, 1, MPI_INTEGER, prev, tag2, 

 &     MPI_COMM_WORLD, reqs(3), ierr) 

   call MPI_ISEND(rank, 1, MPI_INTEGER, next, tag1, 

 &     MPI_COMM_WORLD, reqs(4), ierr) 

 

C        do some work 

 

   call MPI_WAITALL(4, reqs, stats, ierr); 

   call MPI_FINALIZE(ierr) 

   end 



Collective Communication Routines 

 

 

 

 

 

 
 

MPI_Barrier 

Creates a barrier synchronization in a group. Each task, when reaching the MPI_Barrier call, blocks until all 

tasks in the group reach the same MPI_Barrier call. 

MPI_Barrier (comm) 

MPI_BARRIER (comm,ierr)  

 

MPI_Bcast 

Broadcasts (sends) a message from the process with rank "root" to all other processes in the group.  

MPI_Bcast (&buffer,count,datatype,root,comm) 

MPI_BCAST (buffer,count,datatype,root,comm,ierr)  

 

MPI_Scatter 

Distributes distinct messages from a single source task to each task in the group.  

MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf, 

...... recvcnt,recvtype,root,comm) 

MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf, 

...... recvcnt,recvtype,root,comm,ierr)  

 

MPI_Gather 

Gathers distinct messages from each task in the group to a single destination task. This routine is the reverse 

operation of MPI_Scatter.  

MPI_Gather (&sendbuf,sendcnt,sendtype,&recvbuf, 

...... recvcount,recvtype,root,comm) 

MPI_GATHER (sendbuf,sendcnt,sendtype,recvbuf, 

...... recvcount,recvtype,root,comm,ierr)  

 

MPI_Reduce 

Applies a reduction operation on all tasks in the group and places the result in one task.  

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm) 

MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)  



Collective Communication Routines 

 

 

 

 

 

 
 

MPI_Reduce 

Applies a reduction operation on all tasks in the group and places the result in one task.  

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm) 

MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)  

 

Predefined operations are: 

 

MPI_MAX 

MPI_MIN 

MPI_SUM 

MPI_PROD 

etc 

 

Users can also define their own reduction functions by using the MPI_Op_create routine. 



Communicator Groups 

 

 

 

 

 

 
 

A group is an ordered set of processes. Each process in a group is associated with a unique integer rank. 

 

• Allow you to organize tasks, based upon function, into task groups. 

• Provide basis for implementing user defined virtual topologies  

• Provide for safe communications  

 

Groups/communicators are dynamic - they can be created and destroyed during program execution. 

MPI has over 40 routines related to groups, communicators, and virtual topologies. 



Exercise 3: Pi 

 

 

 

 

 

 
 

Write a MPI program which calculates pi using a Monte Carlo method. 

 

Hints: 

Serial pseudo code: 

 

npoints = 10000 

circle_count = 0 

 

do j = 1,npoints 

  generate 2 random numbers between 0 and 1 

  xcoordinate = random1 

  ycoordinate = random2 

  if (xcoordinate, ycoordinate) inside circle 

  then circle_count = circle_count + 1 

end do 

 

PI = 4.0*circle_count/npoints  



Exercise 3: Pi (continued) 

 

 

 

 

 

 
 

Parallel pseudo code: 

 

npoints = 10000 

circle_count = 0 

p = number of tasks 

num = npoints/p 

 

find out if I am MASTER or WORKER  

 

do j = 1,num  

  generate 2 random numbers between 0 and 1 

  xcoordinate = random1 

  ycoordinate = random2 

  if (xcoordinate, ycoordinate) inside circle 

  then circle_count = circle_count + 1 

end do 

 

if I am MASTER 

  receive from WORKERS their circle_counts 

  compute PI (use MASTER and WORKER calculations) 

else if I am WORKER 

  send to MASTER circle_count 

Endif 

 

Hint: Use rc = MPI_Reduce(&homepi, &pisum, 1, MPI_DOUBLE, MPI_SUM, 

                      MASTER, MPI_COMM_WORLD); 

 



Virtual Topologies 

 

 

 

 

 

 
 

In terms of MPI, a virtual topology describes a mapping/ordering of MPI processes into a 

geometric "shape" such as Graphs or Cartesian Grids. 

 

They are virtual: no relation to the underlying hardware. 

 

They are build on communicators and groups. 

 

Example: A simplified mapping of processes into a Cartesian virtual topology: 

 

 



MPI-2 

 

 

 

 

 

 
 

Dynamic Processes - extensions that remove the static process model of MPI. Provides 

routines to create new processes. 

 

One-Sided Communications - provides routines for one directional communications. 

Include shared memory operations (put/get) and remote accumulate operations. 

 

Extended Collective Operations - allows for non-blocking collective operations and 

application of collective operations to inter-communicators 

 

External Interfaces - defines routines that allow developers to layer on top of MPI, such as 

for debuggers and profilers. 

 

Additional Language Bindings - describes C++ bindings and discusses Fortran-90 

issues. 

 

Parallel I/O - describes MPI support for parallel I/O.  



Homework 
 

 

 

 
 

Write a MPI program to solve the Heat equation. 

A serial program would look like: 

 

 

do iy = 2, ny - 1 

do ix = 2, nx - 1 

  u2(ix, iy) = 

    u1(ix, iy)  + 

      cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) + 

      cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy)) 

end do 

end do 

 

Write a MPI program to solve the Heat equation. 



Homework (cont) 
 

 

 

 
 

Parallel Code as an SPMD model: 

 

find out if I am MASTER or WORKER 

 

if I am MASTER 

  initialize array 

  send each WORKER starting info and subarray 

  receive results from each WORKER 

 

else if I am WORKER 

  receive from MASTER starting info and subarray 

 

  do t = 1, nsteps 

    update time 

    send neighbors my border info 

    receive from neighbors their border info 

  

    update my portion of solution array 

      

  end do 

  

  send MASTER results 

       

endif 

 



Conclusions / Implementations 

 

 

Advantages / Disadvantages: 

 

- Can scale very nicely up to thousands of cores 

- Difficult to program and to debug 

- The whole program have to be designed for MPI 

 

 

Different MPI implementations: 

 

- MPICH, MPICH2 

- MVAPICH 

- OpenMPI 

- SGI MPT 

 

Don't mix MPI/compiler combinations! 
 

 



Getting Help 

Website: Intersect and NCI 

 

Email: hpc_support@intersect.org.au  

           help@nf.nci.org.au 

 

 

Courses: 

-Introduction into Linux 

-Introduction to HPC@Intersect 

-Parallel Programming: OpenMP and MPI 

-Programming in Fortran 90 (planned) 
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