Technische Universitat Munchen TI.ITI

Parallel Programming
and High-Performance Computing

Part 5: Programming Message-Coupled Systems

Dr. Ralf-Peter Mundani
CeSIM / IGSSE

International Graduate School
of Science and Engineering

Technische Universitat Munchen T'.ITI

Overview

® message passing paradigm

At some point...
we must have faith in the intelligence of the end user.
—Anonymous

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-2

Technische Universitat Munchen 11-'."

Message Passing Paradigm

® message passing
— very general principle, applicable to nearly all types of parallel
architectures (message-coupled and memory-coupled)

— standard programming paradigm for MesMS, i. e.
¢ message-coupled multiprocessors

e clusters of workstations (homogeneous architecture, dedicated use,
high-speed network (InfiniBand, e. g.))

e networks of workstations (heterogeneous architecture,
non-dedicated use, standard network (Ethernet, e. g.))

— several concrete programming environments

e machine-dependent: MPL (IBM), PSE (hnCUBE), ...

¢ machine-independent: EXPRESS, P4, PARMACS, PVM, ...
— machine-independent standards: PVM, MPI

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-3

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e underlying principle
— parallel program with P processes with different address space
— communication takes place via exchanging messages
e header: target ID, message information (type of data, ...)
e body: data to be provided
— exchanging messages via library functions that should be
e designed without dependencies of
— hardware
— programming language
e available for multiprocessors and standard monoprocessors
e available for standard languages such as C/C++ or Fortran
¢ linked to source code during compilation

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-4

Technische Universitat Munchen 11-["

Message Passing Paradigm

® user’sview
— library functions are the only interface to communication system

process

R

process pProcess

communication system

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-5

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e user’s view (cont’d)
— library functions are the only interface to communication system
— message exchange via send() and receive()

process

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-6

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e types of communication
— point-to-point a. k. a. P2P (1:1-communication)
e two processes involved: sender and receiver
e way of sending interacts with execution of sub-program

— synchronous: send is provided information about completion of
message transfer, i. e. communication not complete until
message has been received (fax, e. g.)

— asynchronous: send only knows when message has left;
communication completes as soon as message is on its way
(postbox, e. g.)

— blocking: operations only finish when communication has
completed (fax, e. g.)

— non-blocking: operations return straight away and allow
program to continue; at some later point in time program can
test for completion (fax with memory, e. g.)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-7

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e types of communication (cont’d)
— collective (1:M-communication, M < P, P number of processes)
¢ all (some) processes involved
¢ types of collective communication

— barrier: synchronises processes (no data exchange), i. e. each
process is blocked until all have called barrier routine

— broadcast: one process sends same message to all (several)
destinations with a single operation

— scatter /gather: one process gives / takes data items
to / from all (several) processes

— reduce: one process takes data items from all (several)
processes and reduces them to a single data item; typical
reduce operations: sum, product, minimum / maximum, ...

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-8

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e message buffering

— message buffering decouples send and receive operations = a send
can complete even if a matching receive hasn’t been posted

— buffering can be expensive

e requires the allocation of memory for buffers

¢ entails additional memory-to-memory copying
— types of buffering

e send buffer: in general allocated by the application program or by
the message passing system for temporary usage (= system buffer)

e receive buffer: allocated by the message passing system
— problem: buffer space maybe not available on all systems

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-9

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e message buffering (cont’d)
— blocking communication
®* message is copied directly into the matching receive buffer

sender receiver

—

+receive buffer

® message is copied into system buffer for later transmission

sender receiver
>

system buffer o =

— non-blocking communication: user has to check for pending
transmissions before re-using the send buffer (risk of overwriting)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-10

Technische Universitat Munchen

Message Passing Paradigm

e communication context
— shall ensure correct matching of send-receive pairs

— example
¢ three processes, all of them call subroutine B from a library
¢ inter-process communication within these subroutines

0]
= =

—
send (P1)
receive (any) e
call sub B call sub B call sub B

— send (P1)

receive (P2) -
send (P3)

—p receive (P1)
— send (P2)

receive (P3)

time

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-11

Technische Universitat Munchen

Message Passing Paradigm

e communication context (cont’d)
— shall ensure correct matching of send—receive pairs

— example
¢ three processes, all of them call subroutine B from a library
¢ inter-process communication within these subroutines

0]
= =

=
receive (any)
call sub B \ call sub B
send (P1)
7 - send (P1)
receive (P2) call sub B
send (P3)
receive (P1)
receive (P3) send (P2)

time

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

Technische Universitat Munchen T'.ITI

Message Passing Paradigm

e order of transmission

— problem: there is no global time in a distributed system

— hence, wrong send-receive assignments may occur (in case of more
than two processes and the usage of wildcards)

(O] (O]
e — e e e e
I I
send send
to P3 to P3

send \ or serg)%
to P3 t
° T 0P3 T recv buf1
| y from any
I
\ recv buf2 recv buf2
from any from any
l l

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-13

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e types of messages
— two main classes
e data messages
— data are exchanged for other processes’ computations

— example: update of solution vector within iterative solver for a
system of linear equations (SLE)

e control messages
— data are exchanged for other processes’ control
— example: competitive search for matches in large data sets

— in general, additional information about format necessary for both cases
(provided along with type of message)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-14

Technische Universitat Munchen 11-'."

Message Passing Paradigm

e CCR
— avoid short messages = latency reduces the effective bandwidth

TTOTAL = TSETUP +N/B BEFF =N/T TOTAL

with message length N and bandwidth B
— computation should dominate communication
— typical conflict for numerical simulations
e overall runtime suggests large number of processes
e CCR and message size suggest small number of processes

— problem: finding (machine- and problem-dependent) optimum number of
processes

— try avoiding communication points at all, redundant computations
preferred (if inevitable)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-15

Technische Universitat Munchen TI.ITI

Overview

e collective communication

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-16

Technische Universitat Munchen 11-'."

Collective Communication

e broadcast
— sends same message to all participating processes
— example: first process in competition informs others to stop

L] Ll =

— —
- A >- A
— —
[] L] A
—__—N —__—N

L] Ll =

e =

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-17

Technische Universitat Munchen 11-'."

Collective Communication

e multicast
— sends same message to a subset of participating processes
— example: send update of (local) iterative solution to neighbours

L] Ll =

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-18

Technische Universitat Munchen 11-'."

Collective Communication

e scatter
— data from one process are distributed among all processes
— example: rows of a matrix for a parallel solution of SLE

L] Ll =

— —
Borrm<— B
[] L] 1o
e\ e\

L] Ll G

e =

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-19

Technische Universitat Munchen 11-'."

Collective Communication

e gather
— data from all processes are collected by a single process
— example: assembly of solution vector from parted solutions

Ll = L]

= =

w
\/

)|)|
=4 =4

Ll G L]

e =

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-20

Technische Universitat Munchen "-m

Collective Communication

e gather-to-all
— all processes collect distributed data from all others

— example: as before, but now all processes need global solution for
continuation

|:|A |:|ABCD

e e

; B ’; A|lBJC]|D
% C % A|lB|J]C]|D
% D % A|lBJ|]C]|D

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-21

Technische Universitat Munchen 11-'."

Collective Communication

e all-to-all
— data from all processes are distributed among all others
— example: any ideas?

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-22

Technische Universitat Munchen

Collective Communication

e all-to-all (cont’d)
— also referred to as total exchange

— example: transposition of matrix A (stored row-wise in memory)

e total exchange of blocks B;

e afterwards, each process computes transposition of its blocks

Dr. Ralf-Peter Mundani -

By By,
B, B,
Bsi Bs,
B, B

41 Puao

A =

Bi1 By By By
B, By, By By
Bi; By; By By
B, |B., 834~B'44~~~
\ =~
\
(24) (24)
\ by} -+ by
\ .. :
\
\
(24) (24)
M by, -+ by

Parallel Programming and High-Performance Computing - Summer Term 2008

5-23

Technische Universitat Munchen

Collective Communication

e reduce
— data from all processes are reduced to single data item(s)
— example: global minimum / maximum / sum / product / ...

Ll =

=

)|
=

Ll [

"

=
2
=
=

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-24

Technische Universitat Munchen "-m

Collective Communication

e all-reduce
— all processes are provided reduced data item(s)

— example: finding prime numbers with “Sieve of ERATOSTHENES” =»
processes need global minimum for deleting multiples of it

% A R
; B R
O R
% D R

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-25

Technische Universitat Munchen "-m

Collective Communication

® reduce-scatter
— data from all processes are reduced and distributed
— example: any ideas?

= R
(R=AeEe|eM)

L] [E[F[cln

—_— S

L] oIk Ic T
(T=CeGeKeO)

L] mInIoTs

=\ J

U=DeHelLeP)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-26

Technische Universitat Munchen "-m

Collective Communication

e parallel prefix
— processes receive partial result of reduce operation
— example: matrix multiplication in quantum chemistry

; - (RR=A)
-
-0
O :

(U=AeBe(CeD)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-27

Technische Universitat Munchen 11-'."

Collective Communication

e parallel prefix (cont’d)
— problem: finding all (partial) results within O(log N) steps
— implementation: two stages (up and down) using binary trees, e. g.
— example: computing partial sums of N numbers

/\ 4/36\
/\ /\ /\ /\
/\ /\ /\ /\ /\ /\ /\ /\

ascend: descend (level-wise):
valp = valg + vals, even index (=s-): vals = valp
odd index (=): vals = vals + valp_4

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-28

Technische Universitat Munchen TI.ITI

Overview

e programming with MPI

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-29

Technische Universitat Munchen

Programming with MPI

e Dbrief overview

de facto standard for writing parallel programs
both free available and vendor-supplied implementations
supports most interconnects
available for C / C++, Fortran 77, and Fortran 90
target platforms: SMPs, clusters, massively parallel processors
useful links

¢ http://www.mpi-forum.org

¢ http://www.hlrs.de/mpi/

¢ http://www-unix.mcs.anl.gov/mpi/

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-30

Technische Universitat Munchen 11-'."

Programming with MPI

e SIMD/SPMD vs. MIMD / MPMD

— Single Program Multiple Data: processes perform the same task over
different data (= data parallelism)

— but restriction to the general message-passing model

main () {

IT (process i1s to become master) {

distribute data among slaves
organise communication / synchronisation

} else {

compute something
exchange data with other processes

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-31

Technische Universitat Munchen 11-'."

Programming with MPI

e SIMD/SPMD vs. MIMD / MPMD (cont’d)

— Multiple Program Multiple Data: processes perform different tasks over
different (same) data (= function parallelism)

main O {
iIT (processiID == 0) {
compute something
} else 1T (processiID == 1) {

compute something different
} else 1f (processiD == 2) { ... }

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-32

Technische Universitat Munchen TI.ITI

Programming with MPI

e programming model
— sequential programming paradigm
e one processor (P)
e one memory (M)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-33

Technische Universitat Munchen TI.ITI

Programming with MPI

e programming model (cont’d)
— message-passing programming paradigm
e several processors / memories
® each processor runs one or more processes
¢ all data are private
e communication between processes via messages

network

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-34

Technische Universitat Munchen

Programming with MPI

e types of communication
— communication hierarchy

MPI| communication

point-to-point collective

blocking non-blocking blocking

synchr. asynchr. synchr. asynchr.

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-35

Technische Universitat Munchen 11-'."

Programming with MPI

e writing and running MPI programs
— header file to be included: mpi.h
— all names of routines and constants are prefixed with MPI_
— first routine called in any MPI program must be for initialisation

MPI_Init (int *argc, char ***argv)

— clean-up at the end of program when all communications have been
completed

MPI_Finalize (void)

— MPI1_Finalize() does not cancel outstanding communications
— MPI_Init() and MPI_Finalize() are mandatory

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-36

Technische Universitat Munchen 11-'."

Programming with MPI

e writing and running MPI programs (cont’d)
— processes can only communicate if they share a communicator
e predefined / standard communicator MPI_COMM_WORLD
e contains list of processes
— consecutively numbered from O (referred to as rank)
— “rank” identifies each process within communicator
— “size” identifies amount of all processes within communicator
e why creating a new communicator
— restrict collective communication to subset of processes
— creating a virtual topology (torus, e. g.)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-37

Technische Universitat Munchen

Programming with MPI

e writing and running MPI programs (cont’d)
— determination of rank

MPI_Comm_rank (communicator comm, int &rank)

— determination of size

MP1_Comm_size (communicator comm, iInt &size)

— remarks
e rank e [0, size—1]
¢ size has to be specified at program start
— MPI-1: size cannot be changed during runtime
— MPI-2: spawning of processes during runtime possible

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-38

Technische Universitat Munchen 11-'."

Programming with MPI
e writing and running MPI programs (cont’d)
— compilation of MPI programs: mpicc, mpicxx, mpif77, or mpif90
$ mpicc [-0 my prog] my prog.c

— available nodes for running an MPI program have to be stated explicitly
via so called machinefile (list of hosthames or FQDNSs)

— running an MPI program under MPI-1

$ mpirun -machinefile <file> -np <#procs> my prog

— running an MPI program under MPI-2 (mpd is only started once)

$ mpdboot -n <#mpds> -f <File>
$ mpiexec -n <#procs> my_ prog

— clean-up after usage (MPI-2 only): mpdcleanup —f <file>

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-39

Technische Universitat Munchen 11-'."

Programming with MPI

e writing and running MPI programs (cont’d)
— example

int main (int argc, char **argv) {
int rank, size;

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MP1_Comm_size (MPI1_COMM_WORLD, é&size);

iIT (rank == 0) printf (“%d processes alive\n”, size);
else printf (“Slave %d: Hello world!\n”, rank);

MPI_Finalize ();
return O;

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-40

Technische Universitat Munchen 11-'."

Programming with MPI

® messages
— information that has to be provided for the message transfer

¢ rank of process sending the message
e memory location (send buffer) of data to be transmitted
¢ type of data to be transmitted
e amount of data to be transmitted
¢ rank of process receiving the message
e memory location (receive buffer) for data to be stored
e amount of data the receiving process is prepared to accept

— in general, message is a (consecutive) array of elements of a particular
MPI data type

— data type must be specified both for sender and receiver =
no type conversion on heterogeneous parallel architectures
(big-endian vs. little-endian, e. g.)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-41

Technische Universitat Munchen

Programming with MPI

e messages (cont’d)
— MPI data types (1)

e basic types (see tabular)

e derived types built up from basic types (vector, e. g.)

MPI data type C / C++ data type
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR

unsigned char

MPI_UNSIGNED_SHORT

unsigned short int

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-42

Technische Universitat Munchen

Programming with MPI

e messages (cont’d)
— MPI data types (2)

MPI data type C / C++ data type
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE represents eight binary digits
MPI_PACKED for matching any other type

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-43

Technische Universitat Munchen 11-'."

Programming with MPI

e point-to-point communication (P2P)
— different communication modes
e synchronous send: completes when receive has been started

e buffered send: always completes (even if receive has not been
started); conforms to an asynchronous send

e standard send: either buffered or unbuffered
e ready send.: always completes (even if receive has not been started)
® receive: completes when a message has arrived

— all modes exist in both blocking and non-blocking form

¢ blocking: return from routine implies completion of message passing
stage

e non-blocking: modes have to be tested (manually) for completion of
message passing stage

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-44

Technische Universitat Munchen 11-'."

Programming with MPI

¢ Dblocking P2P communication

— neither sender nor receiver are able to continue the program execution
during the message passing stage

— sending a message (generic)

MP1_Send (buf, count, data type, dest, tag, comm)

— receiving a message

MP1 _Recv (buf, count, data type, src, tag, comm, status)

— tag: marker to distinguish between different sorts of messages (. e.
communication context)

— Sstatus: sender and tag can be queried for received messages (in case of
wildcard usage)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-45

Technische Universitat Munchen 11-'."

Programming with MPI

e blocking P2P communication (cont’d)
— synchronous send: MPI_Ssend(arguments)

e start of data reception finishes send routine, hence, sending process
is idle until receiving process catches up

e non-local operation: successful completion depends on the
occurrence of a matching receive

— buffered send: MP1_Bsend(arguments)
¢ message is copied to send buffer for later transmission

e user must attach buffer space first (MP1_Buffer_Attach()); size
should be at least the sum of all outstanding sends

e only one buffer can be attached per process at a time

¢ buffered send guarantees to complete immediately
=>» local operation: independent from occurrence of matching receive

¢ non-blocking version has no advantage over blocking version

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-46

Technische Universitat Munchen 11-'."

Programming with MPI

e blocking P2P communication (cont’d)
— standard send: MP1_Send(arguments)
e MPI decides (depending on message size, e. g.) to send
— buffered: completes immediately
— unbuffered: completes when matching receive has been posted
e completion might depend on occurrence of matching receive
— ready send: MPI_Rsend(arguments)
e completes immediately

¢ matching receive must have already been posted, otherwise
outcome is undefined

e performance may be improved by avoiding handshaking and
buffering between sender and receiver

¢ non-blocking version has no advantage over blocking version

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-47

Technische Universitat Munchen 11-'."

Programming with MPI

e blocking P2P communication (cont’d)
— receive: MP1_Recv(arguments)
e completes when message has arrived
e usage of wildcards possible
— MPI_ANY_SOURCE: receive from arbitrary source
— MPI_ANY_TAG: receive with arbitrary tag
— MPI_STATUS_IGNORE: don’t care about state

— general rule: messages from one sender (to one receiver) do not
overtake each other, message from different senders (to one receiver)
might arrive in different order than being sent

P e N

e =

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-48

Technische Universitat Munchen

Programming with MPI

e blocking P2P communication (cont’d)
— example: a simple ping-pong

int rank, buf;

MP1_Comm_rank (MPI_COMM_WORLD, &rank);

iIT (rank == 0) {
MPI_Send (&rank, 1, MPI _INT, 1, O, MPI_COMM_WORLD);
MPI_Recv (&buf, 1, MPI_INT, 1, O, MPI_COMM _WORLD,
MP1_STATUS IGNORE);

} else {
MPI _Recv (&buf, 1, MPI_INT, O, O, MPI_COMM_WORLD,
MPI_STATUS IGNORE);

MPI_Send (&rank, 1, MPI_INT, O, O, MPI_COMM_WORLD);

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-49

Technische Universitat Munchen

Programming with MPI

e blocking P2P communication (cont’d)
— example: buffered send

InNt Intsize, charsize, buffersize;
voild *buffer;

MP1_Pack (MAX, MPI_INT, MPI_COMM_WORLD, &intsize);
MP1_Pack (MAX, MPI_CHAR, MPI_COMM_WORLD, &charsize);

buffersize = intsize + charsize + 2*MPI_BSEND OVERHEAD;
buffer = (void *)malloc (buffersize*sizeof (void *));
MP1_Buffer_attach (buffer, buffersize);

iIf (rank == 0) {
MPI_Bsend (msgl, MAX, MPI _INT, 1, O, MPI_COMM_WORLD);
MPI_Bsend (msg2, MAX, MPI_CHAR, 2, O, MPI_COMM_WORLD);

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-50

Technische Universitat Munchen

Programming with MPI

e blocking P2P communication (cont’d)
— example: communication in a ring — does this work?

int rank, buf;

MPI_Init (&argc, &argv);
MP1_Comm_rank (MP1_COMM_WORLD, &rank);

MP1_Recv (&buf, 1, MPI_INT, rank-1, O, MPI_COMM_WORLD,
MP1_STATUS_IGNORE);

MP1_Send (&rank, 1, MPI_INT, rank+1, O, MPI_COMM_WORLD);

MP1_Finalize();

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-51

Technische Universitat Munchen 11-'."

Programming with MPI

¢ non-blocking P2P communication

— problem: blocking communication does not return until communication
has been completed =» risk of idly waiting and / or deadlocks

— hence, usage of non-blocking communication

— communication is separated into three phases
1) initiate non-blocking communication
2) do some work (involving other communications, e. g.)
3) wait for non-blocking communication to complete

— non-blocking routines have identical arguments to blocking
counterparts, except for an extra argument request

— request handle is important for testing if communication has been
completed

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-52

Technische Universitat Munchen 11-'."

Programming with MPI

e non-blocking P2P communication (cont’d)
— sending a message (generic)

MPI Isend (buf, count, data type, dest, tag, comm, request)

— receiving a message

MP1 Irecv (buf, count, data type, src, tag, comm, request)

— communication modes
e synchronous send: MP1_Issend(arguments)
e buffered send: MP1_Ibsend(arguments)
e standard send: MP1_Isend(arguments)
e ready send: MP1_Irsend(arguments)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-53

Technische Universitat Munchen

Programming with MPI

e non-blocking P2P communication (cont’d)
— testing communication for completion is essential before
e making use of the transferred data
e re-using the communication buffer
— tests for completion are available in two different types
e wait: blocks until communication has been completed

MPI_Wait (request, status)

e test: returns TRUE or FALSE depending whether or not
communication has been completed; it does not block

MPI _Test (request, flag, status)

— what’s an MP1_Isend() with an immediate MP1_Wait()

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-54

Technische Universitat Munchen 11-'."

Programming with MPI

e non-blocking P2P communication (cont’d)
— waiting / testing for completion of multiple communications

MPI _Waitall() blocks until all have been completed

MPI_Testall() TRUE if all, otherwise FALSE

MP1_Wairtany() blocks until one or more have been completed, returns
(arbitrary) index

MP1_Testany() returns flag and (arbitrary) index

MP1_Wairtsome() blocks until one ore more have been completed, returns index

of all completed ones

MP1_Testsome() returns flag and index of all completed ones

— blocking and non-blocking forms can be combined

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-55

Technische Universitat Munchen 11-'."

Programming with MPI

e non-blocking P2P communication (cont’d)
— example: communication in a ring

int rank, buf;
MPI_ Request request;

MPI _Init (&argc, &argv);
MP1_Comm_rank (MPI_COMM_WORLD, &rank);

MP1 lrecv (&buf, 1, MPI_INT, rank-1, 0, MPI1_COMM_WORLD,
&request);

MPI_Send (&rank, 1, MPI_INT, rank+1l, O, MPI_COMM WORLD):
MPI_Wait (&request, MPI_STATUS_ IGNORE):

MPI_Finalize ();

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-56

Technische Universitat Munchen 11-'."

Programming with MPI

e collective communication
— characteristics
¢ all processes (within communicator) communicate
¢ synchronisation may or may not occur
¢ all collective operations are blocking operations
e no tags allowed
¢ all receive buffers must be exactly of the same size

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-57

Technische Universitat Munchen

Programming with MPI

e collective communication (cont’d)
— barrier synchronisation

¢ blocks calling process until all other processes have called barrier

routine
e hence, MP1_Barrier() always synchronises

MPI_Barrier (comm)

— broadcast
¢ has a specified root process
® every process receives one copy of the message from root
¢ all processes must specify the same root

MPI_Bcast (buf, count, data type, root, comm)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-58

Technische Universitat Munchen 11-'."

Programming with MPI

e collective communication (cont’d)
— gather and scatter
¢ has a specified root process
¢ all processes must specify the same root
e send and receive details must be specified as arguments

MP1_Gather (sbuf, scount, data type send, rbuf, rcount,
data type recv, root, comm)

MP1_Scatter (sbuf, scount, data type send, rbuf, rcount,
data type recv, root, comm)

— variants
e MPI_Allgather(): all processes collect data from all others
e MPI_Alltoall(): total exchange

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-59

Technische Universitat Munchen 11-'."

Programming with MPI

e collective communication (cont’d)
— global reduction
¢ has a specified root process
¢ all processes must specify the same root
¢ all processes must specify the same operation
¢ reduction operations can be predefined or user-defined
e root process ends up with an array of results

MP1_ Reduce (sbuf, rbuf, count, data type, op, root, comm)

— variants (no specified root)
e MPI_Allreduce(): all processes receive result
e MPI_Reduce_Scatter(): resulting vector is distributed among all
e MPI_Scan(): processes receive partial result (= parallel prefix)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-60

Technische Universitat Munchen

Programming with MPI

e collective communication (cont’d)
— possible reduction operations (1)

operator result
MPI_MAX find global maximum
MPI_MIN find global minimum
MPI_SUM calculate global sum
MPI_PROD calculate global product
MPI_LAND make logical AND
MPI_BAND make bitwise AND
MPI_LOR make logical OR

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-61

Technische Universitat Munchen

Programming with MPI

e collective communication (cont’d)
— possible reduction operations (2)

operator result

MPI_BOR make bitwise OR

MPI_LXOR make logical XOR

MPI_BXOR make bitwise XOR

MPI_MAXLOC find global minimum and its
position

MPI_MINLOC find global maximum and its
position

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-62

Technische Universitat Munchen 11-'."

Programming with MPI

e example

— finding prime numbers with the “Sieve of ERATOSTHENES!” (1)
e given: set of (integer) numbers A ranging from 2 to N
e algorithm
1) find minimum value a,,,, of A =» next prime number
2) delete all multiples of a,,, within A
3) continue with step 1) until a,, > [N |
4) hence, A contains only prime numbers
e parallel approach
— distribute A among all processes (= data parallelism)
— find local minimum and compute global minimum
— delete all multiples of global minimum in parallel

' Greek mathematician, born 276 BC in Cyrene (in modern-day Lybia), died 194 BC in Alexandria

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-63

Technische Universitat Munchen 11-'."

Programming with MPI

e example
— finding prime numbers with the “Sieve of ERATOSTHENES” (2)

min «< O
A[] « 2 ... MAX

MPI_Init (&argc, &argv)
MP1_Comm_size (MPI1_COMM_WORLD, é&size);

divide A Into size-1 parts A;
while (min <= sqrt(MAX)) do

find local minimum min; from A;
MP1_Allreduce (min;, min, MPI_MIN)
delete all multiples of min from A;

od

MPI_Finalize();

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-64

Technische Universitat Munchen TI.ITI

Overview

e MPI advanced

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-65

Technische Universitat Munchen 11-'."

MPI Advanced

e persistent communication

— overhead through repeated communication calls (several send() or
receive() within a loop, e. g.)

— idea of re-casting the communication
— persistent communication requests may reduce the overhead
— freely compatible with normal point-to-point communication

MPI_Send init (buf, count, data type, dest, tag, comm, request)

MPI _Recv_init (buf, count, data type, src, tag, comm, request)

— one routine for each send mode: Ssend, Bsend, Send, Rsend
— each routine returns immediately, creating a request handle

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-66

Technische Universitat Munchen

MPI Advanced

e persistent communication (cont’d)
— request handle to execute communication as often as required

MPI1_Start (request)

— MPI1_Start() initiates respective non-blocking communication
— completion to be tested with known routines (test / wait)
— request handle must be de-allocated explicitly when finished

MPI_Request free (request)

— variant: MP1_Startal 1 () to activate multiple request

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-67

Technische Universitat Munchen T'.ITI

MPI Advanced
e persistent communication (cont’d) Al
— example: column-wise data distribution >
e communication among direct neighbours -

e several communication stages

call MPI_Send init() for sending request handles
call MPI_Recv_init() for receiving request handles

while (...) do
update boundary cells
call MP1_Start() for sending updates left / right
call MPI_Start() for receiving updates left / right
update non-boundary cells
wait for completion of send / receive operation

od

call MPI_Request _free() to de-allocate request handles

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-68

Technische Universitat Munchen

MPI Advanced

e shift
— passes data among processes in a “chain-like” fashion
— each process sends and receives a maximum of one message

LY

=

= N 3 .

— one routine for sending / receiving, i. e. atomic communication

MP1_Sendrecv (sbuf, scount, send data type, dest, stag,
rbuf, rcount, recv data type, src, rtag,
comm, status)

— hence, blocking communication, but no risk of deadlocks
— usage of MPI_NULL_PROC for more “symmetric” code

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

O~ O [Ny T Wy W W

=

5-69

Technische Universitat Munchen

MPI Advanced
e shift (cont’d)
— example
= =
@ @ ©) @
process | source destination
1 MPI_NULL_PROC MPI_NULL_PROC
2 MPI_NULL_PROC 3
3 2 4
4 3 MPI_NULL_PROC

— variant: MP1_Sendrecv_replace() to use same buffer for sending and

receiving

Dr. Ralf-Peter Mundani

- Parallel Programming and High-Performance Computing - Summer Term 2008

Technische Universitat Munchen 11-'."

MPI Advanced

e timers
— useful routine for timing programs

double MPI_Wtime (void)

— returns elapsed wall-clock time in seconds

— timer has no defined starting point =» two calls are necessary for
computing difference (in general within master process)

double timel, time2;

MPI_Init (&argc, &argv);
timel = MPI_Wtime ;

time2 = MPI_Wtime () - timel;
MPI_Finalize ();

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-71

Technische Universitat Munchen 11-'."

MPI Advanced

e derived data types
— basic types only consist of (arrays of) variables of same type
— not sufficient for sending mixed and / or non-contiguous data
— hence, creation of derived data types such as

e MPI_Type_ contiguous(): elements of same type stored in
contiguous memory

MP1_Type_vector(): blocks of elements of same type with
displacement (number of elements) between blocks

MP1_Type_hvector(): same as above; displacement in bytes

MP1_Type_indexed(): different sized blocks of elements of same
type with different displacements (humber of elements)

MP1_Type_ hindexed(): same as above; displacements in bytes

MP1_Type_ struct(): different sized blocks of elements of different
type with different displacements (bytes)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-72

Technische Universitat Munchen 11-'."

MPI Advanced

e derived data types (cont’d)
— derived data types are created at runtime
— creation is done in two stages

e construction of new data type definition from existing ones (either
derived or basic)

e commitment of new data type definition to be used in any number of
communications

MPI_Type commit (data type)
— complementary routine to MPI1_Type_commit() for de-allocation

MPI1 _Type free (data type)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-73

Technische Universitat Munchen 11-'."

MPI Advanced

e derived data types (cont’d)
— MPI_Type vector()

MPI1_Type vector (count, blocklength, stride, oldtype, newtype)

oldtype:
5 elements Jciisplacement between blocks (i. e. stride)

4 \
newtype:

\]

Y
3 elements per block (i. e. blocklength)
(. J
Y

2 blocks (i. e. count)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-74

Technische Universitat Munchen

MPI Advanced

e derived data types (cont’d)
— example: matrix A stored row-wise in memory

o

e sending a row is no problem, but sending a column
¢ hence, definition of new data type via MPI1_Type_vector()

MP1_ Datatype newtype;

MPI1_Type vector (4, 1, 10, MPI_DOUBLE, &newtype);
MPI_Type commit (&newtype);

MPI_Send (&(A[O][8])., 1, newtype, dest, O, comm);

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-75

Technische Universitat Munchen 11-["

MPI Advanced

¢ virtual topologies
— allows for a convenient process naming
— naming scheme to fit the communication pattern
— simplifies writing of code
— example: communication only with nearest neighbours
¢ virtual topology to reflect this fact (2D grid, e. g.)
¢ hence, simplified communication based on grid coordinates

(? | (? | (? |
(0500 25 0,1) 4502)
| I I
= =] =
C 1->(1,00 ___ 3->(1,1) ____ 51,2 _)

/ / /

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-76

Technische Universitat Munchen

MPI Advanced

e virtual topologies (cont’d)
— creating a topology produces a new communicator
— MPI allows generation of
e Cartesian topologies
— each process is “connected” to its neighbours
— boundaries can be cyclic
— processes are identified by Cartesian coordinates
e graph topologies
— arbitrary connections between processes
— see MPI document for more details

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

577

Technische Universitat Munchen 11-'."

MPI Advanced

e virtual topologies (cont’d)
— Cartesian topology

MP1_Cart_create (old _comm, ndims, dims[], periods[], reorder,
cart_comm)

e ndims: number of dimensions
e dims: number of processes in each dimension
e periods: dimension has cyclic boundaries (TRUE or FALSE)
e reorder: choose dependent if data is yet distributed or not
— FALSE: process ranks remain the same
— TRUE: MPI may renumber (to match physical topology)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-78

Technische Universitat Munchen 11-'."

MPI Advanced

e virtual topologies (cont’d)
— mapping functions to convert between rank and grid coordinates

e converting given grid coordinates to process rank (returns
MPI_NULL_PROC for rank if coordinates are off-grid in case of
non-periodic boundaries)

MPI_Cart_rank (cart_comm, coords[], rank)

e converting given process rank to grid coordinates

MP1_Cart_coords (cart _comm, rank, ndims, coords[])

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-79

Technische Universitat Munchen

MPI Advanced

e virtual topologies (cont’d)
— computing correct ranks for a shift

MPI_Cart_shift (cart_comm, direction, disp, src, dest)

e direction € [0, ndims—1]: dimension to perform the shift
disp: displacement in that direction (positive or negative)
e returns two results
— src: rank of process from which to receive a message
— dest: rank of process to which to send a message
— otherwise: MPI_NULL_PROC if coordinates are off-grid

MP1_Cart_shift() does not perform the shift itself = to be done
separately via MP1_Send() or MP1_Sendrecv()

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-80

Technische Universitat Munchen

MPI Advanced

e virtual topologies (cont’d)

— example

@0

5

QL

QL

TS
151018

U U

direction =0
disp =2

_d}
=

dim O

A

fore
rors
e

direction = 1
disp = -1

O process calling MP1_Cart_shift() ‘ source ‘ destination

Dr. Ralf-Peter Mundani -

Parallel Programming and High-Performance Computing - Summer Term 2008 5-81

Technische Universitat Munchen TI.ITI

MPI Advanced

e case study

task: two-dimensional smoothing of grayscale pictures
pictures stored as (quadratic) matrix P of type integer
elements p(i, j) € [0, 255] of P stored row-wise in memory
linear smoothing of each pixel (i. e. matrix element) via

p(l’ J) - (p(|+1’ J) + p(|_1’ J) + p(l! J+1) + p(l, 1_1) o 4p(|1 J))/5

several smoothing stages to be applied on P

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-82

Technische Universitat Munchen 11-'."

MPI Advanced

e case study (cont’d)

— data parallelism = domain decomposition, i. e. subdivision of P into
equal parts (stripes, blocks, ...)

— hence, processes organised via virtual Cartesian topology (grid)

— boundary values of direct neighbours needed by each process for its
local computations (simplified data exchange via shifts =)

| |
(0,0 (0, 1) p>0.2)
ity N '
R S N - ' '
I I MPI_Cart_create() V V V
P, : P, : Py R (1,0re (1, 1yepp>(1,2)
I |
Ps ! Ps ! Po 2,0y -2, 1y H(2,2)

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008

5-83

Technische Universitat Munchen 11-'."

MPI Advanced

e case study (cont’d)
— communication

e exchange of updated boundaries with neighbours in each iteration
= MP1_Cart_shift() and MP1_Sendrecv() due to virtual topology
(2D grid)

e usage of MPI_NULL_PROC for source / destination at the borders of
the domain

e problem for vertical boundaries (data stored row-wise in memory) =
definition of derived data type (vector)

-+ | I I T 1

o [T T T 1 MP1_Type_vector()
- T T T T 1 MPI_Type_commit()
- | | 1 1T]

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-84

Technische Universitat Munchen 11-'."

MPI Advanced

e case study (cont’d)

MPI_Comm_rank ();
MPI_Comm_size ();

MPI_Cart _Create ();
distribute data among processes (MPIl_Scatter, e. g.)

MPI1_Type vector ();
MPI_Type _commit ();

while (condition) do
compute new values for all p(i,j) in local data
exchange boundaries with all neighbours
MPI_Cart_shift ();
MP1_Sendrecv ();
update boundary values
od

gather data and assemble result

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 5-85

	Parallel Programming�and High-Performance Computing
	5 Programming Message-Coupled Systems�Overview
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems �Message Passing Paradigm
	5 Programming Message-Coupled Systems�Overview
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems �Collective Communication
	5 Programming Message-Coupled Systems�Overview
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems �Programming with MPI
	5 Programming Message-Coupled Systems�Overview
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced
	5 Programming Message-Coupled Systems �MPI Advanced

