
Airam/Celso CAP/INPE (1999) Aula 27

Programação com MPIProgramação com MPI

Tópicos:
• Modelo de Programação
• Funções de Ambiente
• Funções Básicas com Mensagens
• Exemplo de Programa com MPI
• Sumário
Referências:
• Pacheco,P.S. Parallel Programming with MPI, Morgan

Kaufmann, San Francisco, 1997
• http://www.mcs.anl.gov/mpi

Airam/Celso CAP/INPE (1999) Aula 27

Modelo de ProgramaçãoModelo de Programação

• Número de CPU’s (size): P (definido na hora da execução)
• Identificação de cada CPU (rank): 0, 1, ..., P-1
• Mesmo código objeto executado por todas as CPU’s
• Todas as variáveis são locais

Código
Objeto

CPU 0 CPU 1 CPU 2 CPU P-1 . . .

Airam/Celso CAP/INPE (1999) Aula 27

Modelo de Programação (cont.)Modelo de Programação (cont.)

Observações:

• Cada CPU pode executar ou não alguns trechos:
blocos com if (rank == ...) { ... }

• Modelo de Execução:
– SPMD (Single-Program / Multiple-Data)

• MPI: biblioteca de funções e definições
– NÃO é uma nova linguagem !

• Funções de MPI: MPI_Func(...)
• Constantes em MPI: MPI_CONST...

Airam/Celso CAP/INPE (1999) Aula 27

Modelo de Programação (cont.)Modelo de Programação (cont.)

• Estrutura geral de um programa em linguagem C :

 #include ‘’mpi.h’’
 . . .
 main(int argc, char *argv[]) {
 . . .
 MPI_Init(&argc,&argv);
 . . .  trecho com possíveis chamadas a funções de MPI
 MPI_Finalize();
 . . .
 }

Airam/Celso CAP/INPE (1999) Aula 27

Funções de Ambiente em MPIFunções de Ambiente em MPI

• Verificação do número de CPU’s:
MPI_Comm_size(MPI_Comm communicator, int* size)

• Verificação da identificação de cada CPU:
MPI_Comm_rank(MPI_Comm communicator, int* rank)

• Conceito de Communicator:
– Grupo de CPU’s que podem trocar mensagens entre si

– Communicator especial: MPI_COMM_WORLD
(todas as CPU’s que estão executando o programa)

Airam/Celso CAP/INPE (1999) Aula 27

Funções Básicas com MensagensFunções Básicas com Mensagens

int MPI_Send(void* buffer,
 int count,
 MPI_Datatype datatype,
 int destination,
 int tag,
 MPI_Comm communicator)

int MPI_Recv(void* buffer,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

Airam/Celso CAP/INPE (1999) Aula 27

Funções Básicas com Funções Básicas com
Mensagens (cont.)Mensagens (cont.)

• Parâmetros:
– buffer: Endereço em memória da mensagem
– count: Número de ítens na mensagem
– datatype: tipo de cada ítem
– destination: identificação da CPU de destino
– source: identificação da CPU de destino de envio

• possível “coringa”: MPI_ANY_SOURCE
– tag: identificação do tipo

• possível “coringa” para recv: MPI_ANY_TAG
– communicator: grupo de CPU’s
– status: Estrutura com valores sobre a msg recebida:

• status -> MPI_SOURCE
• status -> MPI_TAG
• status -> MPI_ERROR

Airam/Celso CAP/INPE (1999) Aula 27

Funções Básicas com Funções Básicas com
Mensagens (cont.)Mensagens (cont.)

• Semântica de MPI_Send() e MPI_Recv():
– Ambas são assíncronas  podem ser executadas pelas

respectivas CPU’s em instantes distintos

– Ambas funcionam com bloqueio  retorno ao prog.
principal somente quando buffer pode ser utilizado

• MPI_Send(buffer,...) : ao retornar, já se pode reutilizar buffer

• MPI_Recv(buffer...) : ao retornar, buffer já tem msg recebida

• Há outras funções para troca de mensagens,
síncronas ou sem bloqueio

Airam/Celso CAP/INPE (1999) Aula 27

Exemplo de Programa com MPIExemplo de Programa com MPI

#include <stdio.h>
#include <string.h>
#include "mpi.h"
main(int argc, char* argv[]) {
 int my_rank; /* rank of process */
 int p; /* number of processes */
 int source; /* rank of sender */
 int dest; /* rank of receiver */
 int tag = 0; /* tag for messages */
 char message[100]; /* storage for message */
 MPI_Status status; /* return status for recv */
/* Start up MPI */
 MPI_Init(&argc, &argv);
/* Find out process rank */
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
/* Find out number of processes */
 MPI_Comm_size(MPI_COMM_WORLD, &p);

Airam/Celso CAP/INPE (1999) Aula 27

Exemplo de Programa (cont.)Exemplo de Programa (cont.)

 if (my_rank != 0) {
 /* Create message */
 sprintf(message, "Greetings from process %d!",
 my_rank);
 dest = 0;
 /* Use strlen+1 so that '\0' gets transmitted */
 MPI_Send(message, strlen(message)+1, MPI_CHAR,
 dest, tag, MPI_COMM_WORLD);
 } else { /* my_rank == 0 */
 for (source = 1; source < p; source++) {
 MPI_Recv(message, 100, MPI_CHAR, source, tag,
 MPI_COMM_WORLD, &status);
 printf("%s\n", message);
 }
 }
 /* Shut down MPI */
 MPI_Finalize();
} /* main */

Airam/Celso CAP/INPE (1999) Aula 27

Exemplo de Programa (cont.)Exemplo de Programa (cont.)

Compilação (usando MPICH):

 > mpicc -o cgreetings greetings.c
 > mpif90 -o fgreetings greetings.f90

• Execução com 4 CPU’s:

 > mpiexec -n 4 greetings

 Greetings from process 1!
 Greetings from process 2!
 Greetings from process 3!

Airam/Celso CAP/INPE (1999) Aula 27

Exemplo de Programa (cont.)Exemplo de Programa (cont.)

Comando mpirun (opção -machinefile):

 > mpirun -n 8 ./cgreetings

Comando mpiexec com MPD daemon:

 > mpdboot
 > mpiexec -np 8 ./cgreetings
 > mpdallexit

Airam/Celso CAP/INPE (1999) Aula 27

Programas com MPI: SumárioProgramas com MPI: Sumário

• Estrutura da maioria dos programas com MPI:
 #include ‘’mpi.h’’
 . . .
 main(int argc, char *argv[]) {
 . . .
 MPI_Init(&argc,&argv);
 . . .
 MPI_Comm_size (MPI_COMM_WORLD, &size)
 MPI_Comm_rank (MPI_COMM_WORLD, &rank)
 . . .
 { MPI_Send(...) , MPI_Recv(...) }
 . . .
 MPI_Finalize();
 . . .
 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

