
Airam/Celso CAP/INPE 1999 Aula 30

Empacotamento de DadosEmpacotamento de Dados
 em MPI em MPI

Tópicos:
• Buffer de Mensagem
• Empacotamento/Desempacotamento de Dados
• Comparação entre Métodos

Referência: Pacheco,P.S. Parallel Programming with MPI
Morgan Kaufmann, San Francisco, 1997.

Airam/Celso CAP/INPE 1999 Aula 30

Buffer de MensagemBuffer de Mensagem

• Até aqui:
– Buffers de mensagens: áreas contíguas de memória

– Parâmetros:
• Endereço inicial, tipo de cada elemento, número de elementos

Airam/Celso CAP/INPE 1999 Aula 30

Dados não-contíguos na memória Dados não-contíguos na memória

1) Enviar várias mensagens, uma para cada área contígua
Problema: Custo pode ser alto (custo = +n, com  >> )
Ex: Custo de 5 msgs(20 bytes) >> custo de 1 msg(100bytes)

 2) Dados regularmente espaçados: usar stride

 3) Dados não-regularmente espaçados:
• Fazer empacotamento/desempacotamento de dados

• Criar um novo “tipo” de dado em MPI (tipo derivado)

Airam/Celso CAP/INPE 1999 Aula 30

Dados regularmente espaçados (MPI_Type_vector) Dados regularmente espaçados (MPI_Type_vector)

Exemplo: Matriz bidimensional, em linguagem C

float A[10][10];

Transmitir terceira linha de A entre dois processadores:

 if (my_rank==0) MPI_Send(&A[2][0],10,MPI_FLOAT,...)
 else if (my_rank==1) MPI_Recv(&A[2][0],10,MPI_FLOAT,...)
  Neste caso, dados estão contíguos

Como transmitir uma coluna de A entre dois processadores?
(Isto é, enviar A[0][2], A[1][2], A[2][2], ..., A[9][2]  não-contíguos)

Airam/Celso CAP/INPE 1999 Aula 30

Dados regularmente espaçados (MPI_Type_vector) Dados regularmente espaçados (MPI_Type_vector)

Solução: Criação de tipo “vetor”, com stride
 MPI_Type_vector(int count;
 int block_length;
 int stride;
 MPI_Datatype element_type;
 MPI_Datatype* new_mpi_type;)

 No caso do exemplo:
 MPI_Datatype novotipo;
 MPI_Type_vector(10, 1, 10, MPI_FLOAT, &novotipo);
 MPI_Type_commit(&novotipo);
 if (my_rank==0) MPI_Send(&A[0][2], 1, novotipo, 1, 0, ...
 else if (my_rank==1) MPI_Recv(&A[0][2], 1, novotipo, 0, 0, ...

Airam/Celso CAP/INPE 1999 Aula 30

Empacotamento e Empacotamento e
Desempacotamento de DadosDesempacotamento de Dados

• Objetivo:
– Acumular, numa área contígua, dados esparsos

– Após receber a mensagem, espalhar de novo os dados
 int MPI_Pack (void* pack_data;
 int in_count;
 MPI_Datatype datatype;
 void* buffer;
 int buffer_size_bytes;
 int* position;
 MPI_Comm comm;)
 int MPI_Unpack() : Função oposta a MPI_Pack()

Airam/Celso CAP/INPE 1999 Aula 30

Empacotamento e Empacotamento e
Desempacotamento de DadosDesempacotamento de Dados

Exemplo: transmitir float* a_ptr, b_ptr ; int* n_ptr;
 char buffer[100]; /* Store data in buffer */
 int position; if (my_rank == 0){
 printf("Enter a, b, and n\n");
 scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
 position = 0;
 /* Position is in/out */
 MPI_Pack(a_ptr, 1, MPI_FLOAT, buffer, 100,
 &position, MPI_COMM_WORLD);
 /* Position has been incremented: it now refer- */
 /* ences the first free location in buffer. */
 MPI_Pack(b_ptr, 1, MPI_FLOAT, buffer, 100,
 &position, MPI_COMM_WORLD);
 /* Position has been incremented again. */

Airam/Celso CAP/INPE 1999 Aula 30

Empacotamento e Empacotamento e
Desempacotamento de DadosDesempacotamento de Dados

 MPI_Pack(n_ptr, 1, MPI_INT, buffer, 100,
&position,MPI_COMM_WORLD);

 /* Position has been incremented again. */
 /* Now broadcast contents of buffer */
 MPI_Bcast(buffer, 100, MPI_PACKED, 0,MPI_COMM_WORLD);
 } else {
 MPI_Bcast(buffer, 100, MPI_PACKED, 0,MPI_COMM_WORLD);
 /* Now unpack the contents of buffer */
 position = 0;
 MPI_Unpack(buffer, 100, &position, a_ptr, 1,
 MPI_FLOAT, MPI_COMM_WORLD);
 /* Once again position has been incremented: */
 /* it now references the beginning of b. */
 . . .

Airam/Celso CAP/INPE 1999 Aula 30

Criação de Tipo DerivadoCriação de Tipo Derivado

• Objetivo: Definir um tipo de acordo com os dados
Exemplo: float a,b; int n;
 Mesmo com declarações próximas, não há garantia de que

as variáveis serão contíguas na memória
Possível alocação pelo compilador C:

Problema: Como transmitir {a,b,c} numa única mensagem?

Ender.: 24 28 32 36 40 44 48

 a b n

Airam/Celso CAP/INPE 1999 Aula 30

Criação de Tipo Derivado (cont.)Criação de Tipo Derivado (cont.)

• Solução:
MPI_Type_struct(
 int count /* in */ ,
 int block_lengths[] /* in */,
 MPI_Aint displacements[] /* in */,
 MPI_Datatype typelist[] /* in */,
 MPI_Datatype* novotipo /* out */);

block
length

displac.

Airam/Celso CAP/INPE 1999 Aula 30

Criação de Tipo Derivado (cont.)Criação de Tipo Derivado (cont.)

Implementação do Exemplo, com MPI:
void Build_derived_type(
 float* a_ptr /* in */,
 float* b_ptr /* in */,
 int* n_ptr /* in */,
 MPI_Datatype* mesg_mpi_t_ptr /* out */) { /* ptr to new type */
 /* The number of elements in each "block" of the */
 /* new type. For us, 1 each. */
 int block_lengths[3];
 /* Displacement of each element from start of new type. The "d_i's." */
 MPI_Aint displacements[3];
 /* MPI types of the elements. The "t_i's." */
 MPI_Datatype typelist[3];
 /* Use for calculating displacements */
 MPI_Aint start_address, address;

Airam/Celso CAP/INPE 1999 Aula 30

Criação de Tipo Derivado (cont.)Criação de Tipo Derivado (cont.)

 block_lengths[0] = block_lengths[1] = block_lengths[2] = 1;
 /* Build a derived datatype consisting of two floats and an int */
 typelist[0] = MPI_FLOAT; typelist[1] = MPI_FLOAT; typelist[2] = MPI_INT;
 /* First element, a, is at displacement 0 */
 displacements[0] = 0;
 /* Calculate other displacements relative to a */
 MPI_Address(a_ptr, &start_address);
 /* Find address of b and displacement from a */
 MPI_Address(b_ptr, &address); displacements[1] = address - start_address;
 /* Find address of n and displacement from a */
 MPI_Address(n_ptr, &address); displacements[2] = address - start_address;
 /* Build the derived datatype */
 MPI_Type_struct(3, block_lengths, displacements, typelist, mesg_mpi_t_ptr);
 /* Commit it -- tell system we'll be using it for communication. */
 MPI_Type_commit(mesg_mpi_t_ptr); }

Airam/Celso CAP/INPE 1999 Aula 30

Criação de Tipo Derivado (cont.)Criação de Tipo Derivado (cont.)

void Get_data3(
 float* a_ptr /* out */,
 float* b_ptr /* out */,
 int* n_ptr /* out */,
 int my_rank /* in */) {
 MPI_Datatype mesg_mpi_t; /* MPI type corresponding */
 /* to 2 floats and an int */
 if (my_rank == 0){
 printf("Enter a, b, and n\n");
 scanf("%f %f %d", a_ptr, b_ptr, n_ptr);
 }

 Build_derived_type(a_ptr, b_ptr, n_ptr, &mesg_mpi_t);
 MPI_Bcast(a_ptr, 1, mesg_mpi_t, 0, MPI_COMM_WORLD);
}

Airam/Celso CAP/INPE 1999 Aula 30

Comparação entre MétodosComparação entre Métodos

• Com empacotamento:
– Menor “overhead” para preparar mensagem; porém...
– A cada nova transmissão, é necessário empacotar e

desempacotar dados
• Com tipo derivado:

– Maior “overhead” para criação do novo tipo; porém...
– Uma vez criado o tipo, pode ser usado diversas vezes

 Na prática:
– Escolha depende de cada caso
– Não há um método universalmente superior

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

