Entrada/Saida emn MPI

Topicos:
* Operacoes de E/S
* Sincronizacado de Processadores

Referencia: Pacheco,P.S. Parallel Programming with MPI
Morgan Kaufmann, San Francisco, 1997.

Airam/Celso CAP/INPE (1999) Aula 32

Operacoes de E/S

* Problema: Como associar stdin, stdout, stderr?
* Possibilidades:

— Um unico processador tem acesso (stdin=teclado,
stdout/stderr=tela)

— Todos os processadores tém acesso (como controlar?)
— Nenhum dos processadores tem acesso! (I/0:arquivo)
* Na pratica:
— Forma de implementacao depende de cada sistema
— Primeira versao de MPI nao assumia nenhum caso
particular
— Em geral, pelo menos um dos processadores tem acesso

Airam/Celso CAP/INPE (1999) Aula 32

Operacoes de E/S (cont.)

* Solucao Tipica:
— Designar um dos processadores responsavel por I/0
— Entrada de Dados:

* Processador de I/0O lé dados de entrada
* Processador de I/0 faz um broadcast dos dados lidos
* Demais processadores recebem dados de entrada

— Saida de Dados:

* Cada processador envia dados a serem armazenados
* Processador de I/0O recebe dados de cada um dos demais
* Processador de I/0O escreve dados de saida

Airam/Celso CAP/INPE (1999) Aula 32

Operacoes de E/S (cont.)

* Alternativas ao Uso de stdin/stdout:

— Utilizar parametros de entrada na linha de comando
Exemplo:

Prog.Fonte:
printf("[%d] argumentos: %s %s %s \n",my_rank,argv[0],argv[1],argv([2]);

Execucao:

{aldebaran }/home/usuarios/celso/% mpiexec -n 4 teste arg1 arg?
[0] argumentos: /home/usuarios/celso/teste argl arg2

[2] argumentos: /home/usuarios/celso/teste argl arg?2

[1] argumentos: /home/usuarios/celso/teste argl arg2

[3] argumentos: /home/usuarios/celso/teste arg1 arg?2

Airam/Celso CAP/INPE (1999) Aula 32

Operacoes de E/S (cont.)

* (Mais) Alternativas ao Uso de stdin/stdout:

— Utilizar arquivos de E/S

— Problemas:

* Se ha varios discos, um em cada processador : dados devem
estar espalhados (pode ser necessario distribuir dados no inicio
e reagrupar dados ao final do processamento)

* Se ha um unico disco, acessado por todos os processadores:
dois ou mais processadores nao podem abrir arquivos com

mesmo nome
— Solucoes Tipicas:
* Fazer E/S em arquivo por um unico processador
* (Cada processador abre um arquivo diferente

Airam/Celso CAP/INPE (1999) Aula 32

Operacoes de E/S (cont.)

Exemplo:

Prog.Fonte:
FILE* my_{p;
char filename[100]; int my_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
sprintf(filename, “arq.%d”, my_rank) ;
my_{p = fopen(filename, “w”);

Durante a Execucao:
Arquivos arq.0, arq.1, arq.2, ..., arq.P-1

OBS: Arquivos podem ser combinados posteriormente

Airam/Celso CAP/INPE (1999) Aula 32

Sincronizacao de Processadores

* Objetivo:
— Garantir que os processadores estdao num ponto pré-
determinado da execucdo, num certo instante

* Mecanismos de Sincronizacao em MPI:

— Implicitos: funcdes send/recv sincronas ou ¢/ bloqueio

— Explicitos: criacao de barreiras (nenhum processador
sai antes que todos tenham chegado)

Implementacao:
int MPI_Barrier (MPI_Comm comm)

Airam/Celso CAP/INPE (1999) Aula 32

Sincronizacao de

Processadores (cont.)

Exemplo do Uso de Barreiras:

/* Todos os processadores iniciam a execucao juntos */
MPIL_Init(...);

MPI_Barrier(MPI_COMM_WORLD);

... (Fase 1 do programa)
MPI_Barrier(MPI_COMM_WORLD);

... (Fase 2 do programa)
MPI_Barrier(MPI_COMM_WORLD);

... (Salva resultados)
MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

/* Todos os processadores terminam a execucao juntos */

Airam/Celso CAP/INPE (1999) Aula 32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

