
Airam/Celso CAP/INPE (1999) Aula 32

Entrada/Saída em MPIEntrada/Saída em MPI

Tópicos:
• Operações de E/S
• Sincronização de Processadores

Referência: Pacheco,P.S. Parallel Programming with MPI
Morgan Kaufmann, San Francisco, 1997.

Airam/Celso CAP/INPE (1999) Aula 32

Operações de E/SOperações de E/S

• Problema: Como associar stdin, stdout, stderr?
• Possibilidades:

– Um único processador tem acesso (stdin=teclado,
stdout/stderr=tela)

– Todos os processadores têm acesso (como controlar?)
– Nenhum dos processadores têm acesso! (I/O:arquivo)

• Na prática:
– Forma de implementação depende de cada sistema
– Primeira versão de MPI não assumia nenhum caso

particular
– Em geral, pelo menos um dos processadores tem acesso

Airam/Celso CAP/INPE (1999) Aula 32

Operações de E/S (cont.)Operações de E/S (cont.)

• Solução Típica:
– Designar um dos processadores responsável por I/O

– Entrada de Dados:
• Processador de I/O lê dados de entrada

• Processador de I/O faz um broadcast dos dados lidos

• Demais processadores recebem dados de entrada

– Saída de Dados:
• Cada processador envia dados a serem armazenados

• Processador de I/O recebe dados de cada um dos demais

• Processador de I/O escreve dados de saída

Airam/Celso CAP/INPE (1999) Aula 32

Operações de E/S (cont.)Operações de E/S (cont.)

• Alternativas ao Uso de stdin/stdout:
– Utilizar parâmetros de entrada na linha de comando

 Exemplo:

Prog.Fonte:
 printf("[%d] argumentos: %s %s %s \n",my_rank,argv[0],argv[1],argv[2]);

Execução:
 {aldebaran}/home/usuarios/celso/% mpiexec -n 4 teste arg1 arg2
 [0] argumentos: /home/usuarios/celso/teste arg1 arg2
 [2] argumentos: /home/usuarios/celso/teste arg1 arg2
 [1] argumentos: /home/usuarios/celso/teste arg1 arg2
 [3] argumentos: /home/usuarios/celso/teste arg1 arg2

Airam/Celso CAP/INPE (1999) Aula 32

Operações de E/S (cont.)Operações de E/S (cont.)

• (Mais) Alternativas ao Uso de stdin/stdout:
– Utilizar arquivos de E/S
– Problemas:

• Se há vários discos, um em cada processador : dados devem
estar espalhados (pode ser necessário distribuir dados no início
e reagrupar dados ao final do processamento)

• Se há um único disco, acessado por todos os processadores:
dois ou mais processadores não podem abrir arquivos com
mesmo nome

– Soluções Típicas:
• Fazer E/S em arquivo por um único processador
• Cada processador abre um arquivo diferente

Airam/Celso CAP/INPE (1999) Aula 32

Operações de E/S (cont.)Operações de E/S (cont.)

Exemplo:
 Prog.Fonte:
 FILE* my_fp;
 char filename[100]; int my_rank;
 . . .
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 sprintf(filename, “arq.%d”, my_rank) ;
 my_fp = fopen(filename, “w”);
 . . .
 Durante a Execução:

Arquivos arq.0, arq.1, arq.2, ... , arq.P-1

OBS: Arquivos podem ser combinados posteriormente

Airam/Celso CAP/INPE (1999) Aula 32

Sincronização de ProcessadoresSincronização de Processadores

• Objetivo:
– Garantir que os processadores estão num ponto pré-

determinado da execução, num certo instante
• Mecanismos de Sincronização em MPI:

– Implícitos: funções send/recv síncronas ou c/ bloqueio

– Explícitos: criação de barreiras (nenhum processador
sai antes que todos tenham chegado)

Implementação:
int MPI_Barrier (MPI_Comm comm)

Airam/Celso CAP/INPE (1999) Aula 32

Sincronização de Sincronização de
Processadores (cont.)Processadores (cont.)

Exemplo do Uso de Barreiras:
/* Todos os processadores iniciam a execução juntos */
MPI_Init(...);
MPI_Barrier(MPI_COMM_WORLD);
... (Fase 1 do programa)
MPI_Barrier(MPI_COMM_WORLD);
... (Fase 2 do programa)
MPI_Barrier(MPI_COMM_WORLD);
... (Salva resultados)
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
/* Todos os processadores terminam a execução juntos */

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

