Comunicacao Avancada
em MPI

Topicos:

* Exemplo: Difusao de Dados em Anel

* Armazenamento de Mensagens em Transito
* Comunicacao Sem Bloqueio em MPI

* Outros Modos de Comunicacao em MPI

Referencia: Pacheco,P.S. Parallel Programming with MPI
Morgan Kaufmann, San Francisco, 1997.

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

Problema de Difusao:

— Dado um array X, com um segmento armazenado em
cada processador, obter em todos o0s processadores, 0
array total Y contendo todos os segmentos de X

Uma Possivel Solucao:

— Dispor os processadores num “anel”

— Enviar dados para o processador seguinte no anel; cada
processador copia os dados recebidos

— Repetir o passo anterior P-2 vezes, sempre enviando
adiante os novos dados recebidos (P-1 passos no total)

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

Configuracao Original: Apés Primeiro Passo:
Proc. 3 Proc. 2 Proc. 3 Proc. 2
X, 1 X, X, X, | X, X|
| R == 1 =
X — | X, X, X, — | X, X,
Proc. O Proc. 1 Proc. O Proc. 1

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

Apo6s Segundo Passo: ApOos Terceiro Passo:
Proc. 3 Proc. 2 Proc. 3 Proc. 2
XXX, | T XXX, XXX, X, [X, X, X, X,
X, X, X, |7 X, X,X, X, X, XX, | X, X, X, X,

Proc. O Proc. 1 Proc. O Proc. 1

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

Algoritmo:
* Inicializacao:
— Copiar bloco local para a posicdo definitiva

— Achar proc. vizinhos no anel (sucessor e predecessor)
* Procedimento no Passo i:

— Enviar bloco (my_rank -i+ P) % P para o sucessor
— Receber bloco (my_rank -i+ P-1) % P do predec.
— Copiar bloco recebido: tamanho = blocksize =n /P

* Numero Total de Passos: P-1 (0 <i<P-1)

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

Implementacao:
void Difusao_anel (
float x|[] /*1in */,
int blocksize /*1in */,
float y[] /* out */,
MPI_Comm ring_comm /* in */) {
int i, p, my_rank, sucessor, predecessor, send_offset, recv_offset;

MPI_Status status;

MPI_Comm_size(ring_comm, &p);
MPI_Comm_rank(ring_comm,&my_rank);

/* Copia x para o local correto em y */

for (i = 0; i < blocksize; i++) y[i + my_rank*blocksize] = x[i];

Airam/Celso CAP/INPE (1999) Aula 35

Difusao de Dados em Anel

sucessor = (my_rank + 1) % p;
predecessor = (my_rank - 1 + p) % p;

for(i=0;i<p-1;i+t+){
send_offset = ((my_rank - i + p) % p)*blocksize;
recv_offset = ((my_rank -i- 1 + p) % p)*blocksize;
MPI_Send(y + send_offset, blocksize, MPI_FLOAT,
sucessor, 0, ring_comm);
MPI_Recv(y + recv_offset, blocksize, MPI_FLOAT,
predecessor, 0, ring_comm, &status);

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens

em Transito
No Exemplo Anterior (supondo P=2):
Proc.0 Proc.1

MPI_Send p/1 MPI_Send p/ 0
MPI Recvde1l MPI RecvdeO

* Hipotese: Sist. Oper. armazena msgs em transito

— O que ira ocorrer se nao ha buffers no sistema?
(padrao MPI ndo especifica que existam buffers)

* Se 0s dois processadores iniciam 0 prog. juntos:
— Proc.0 nao retorna de MPI_Send antes de 1 fazer Recv

— Proc.1 nao retorna de MPI Send antes de 0 fazer Recv
— Deadlock !

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens
emn Transito

* Embora o programa do Exemplo esteja correto,
pode haver deadlock se nao houver buffers

— Programas assim sao ditos inseguros
— Programas seguros nao causam deadlock, mesmo que
nao haja buffers de sistema para mensagens em transito

* Como tornar um programa seqguro?
— Solucado 1: Reorganizar as chamadas a Send / Recv
Proc.0 (par) Proc.1 (impar)

MPI_Send p/1 MPI_Recv de 0
MPI_Recvde1l MPI_Sendp/0

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens
em Transito

— Solucao 2:Utilizar MPI_Sendrecv() — nao ha deadlock
* Equivalente a MPI_Send() seguido de MPI_Recv()

int MPI_Sendrecv(

void* send_buf /* in */,
int send_ count /* in */,
MPI_Datatype send_type /* in */,
int destination /* in */,
int send_tag /* in */,
void* recv_buf /* out */,
int recv_count /¥ In */,
MPI_Datatype recv_type /* in */,
int source /¥ In */,
int recv_tag /* 1In */,
MPI_Comm recv_tag /¥ In */,
MPI_Status* status /* out */)

Airam/Celso CAP/INPE (1999) Aula 35

Comunicacdo Sem Bloqueio
ermn MPI

Ja vistas: FuncoOes com bloqueio
— MPIL_Send (buffer, ...):
SO retorna quando buffer ja pode ser reutilizado
— MPI_Recv (buffer, ...):
SO retorna quando buffer ja contém dados recebidos

Otimizacao:
— Funcoes sem bloqueio (retorno imediato)
— Ideia: Apenas comandar o inicio de send / recv
— Objetivo: Sobrepor comunicacdo e computacado (pode
ser util se ha um proc. de comunicacao dedicado)

Airam/Celso CAP/INPE (1999) Aula 35

Comunicacdo Sem Bloqueio
ermn MPI

Implementacdao de comunicacao sem bloqueio:
— MPI_Send (...) » MPI_Isend (...): Inicia send
— MPI_Recv (...) » MPI_Irecv (...): Inicia recv
— Espera pelo término da transmissao:
* MPI_Wait(): Bloqueia a execucao esperando msg
— Verificacao do término da transmissao:
* MPI_Test(): Nao bloqueia a execucao; retorna flag
indicando se a transmissao ja terminou
— Uso tipiCO: MPI_Isend+MPI_Wait , MPI_Irecv+MPI_Wait

Obs: E possivel misturar funcoes com/sem bloqueio, a
vontade, num mesmo programa

Airam/Celso CAP/INPE (1999) Aula 35

Comunicacdo Sem Bloqueio
ermn MPI

Para o Exemplo Anterior:
MPI_Request send_request, recv_request;

.sér.ld_offset = my_rank*blocksize;
recv_offset = ((my_rank - 1 + p) % p)*blocksize;

for(i=0;i<p-1;i++) { \
MPI_Isend(y + send_offset, blocksize, MPI_FLOAT,
successor, 0, ring_comm, &send_request); , Inicio da
MPI_Irecv(y + recv_offset, blocksize, MPI_FLOAT, Comunic.

predecessor, 0, ring_comm, &recv_request); /
send_offset = ((my_rank -i- 1 + p) % p)*blocksize; } Comput.
recv_offset = ((my_rank - i - 2 + p) % p)*blocksize;
MPI_Wait(&send_request, &status); Final da
MPI_Wait(&recv_request, &status); } Comunic.

Airam/Celso CAP/INPE (1999) Aula 35

Comunicacdo Sem Bloqueio
emn MPI (cont.)

Comparacao de Desempenho: (tempos em ms)

Intel-Paragon IBM-SP2
P Com Blog. Sem Blog. Com Blog. Sem Blog.
2 0.14 0.10 0.11 0.08
8 1.00 0.94 0.85 0.54
32 4.90 4.20 3.90 2.50

Obs: Ganho de desempenho seria maior se houvesse
mais computacao a ser feita

Airam/Celso CAP/INPE (1999) Aula 35

Outros Modos de Comunicacéo
erm MPI

Modos de Comunicacdo em MPI:

— Standard: MPI_Send(), MPI_Isend(), ...

— Synchronous: Send s6 termina depois que Recv inicia
* MPI_Ssend() , MPI_Issend(), ...

— Ready: Send assume que Recv ja ocorreu (sem buffer)
* MPI_Rsend() , MPI_Irsend(), ...

— Buffered: Buffer auxiliar declarado pelo usuario
* MPI_Bsend(), MPI_Ibsend(), ...
* Tamanho do buffer auxiliar deve ser suficiente

Airam/Celso CAP/INPE (1999) Aula 35

Outros Modos de Comunicacéo
em MPI

Exemplo Anterior, com Modo Buffered:
char bufferfMAX_ BUF]; int buffer size = MAX BUF;

MPI_Buffer_attach(buffer, buffer_size);
for(i=0;i<p-1;i+t+){
send_offset = ((my_rank - i + p) % p)*blocksize;
recv_offset = ((my_rank - i - 1 + p) % p)*blocksize;
MPI_Bsend(y + send_offset, blocksize, MPI_FLOAT,
successor, 0, ring_comm);
MPI_Recv(y + recv_offset, blocksize, MPI_FLOAT,
predecessor, 0, ring_comm, &status);

}
MPI_Buffer_detach(&buffer, &buffer_size);

Airam/Celso CAP/INPE (1999) Aula 35

Modos de envio/recepcédo em MPI
na comunicacao ponto-a-ponto

Pode-se combinar funcoes de envio diferentes com/sem
bloqueio com a recepcao com ou sem bloqueio:

MODOS

COM BLOQUEIO

SEM BLOQUEIO

Envio padrao

MPI_SEND ()

MPI_ISEND ()

Envio sincrono

MPI_SSEND ()

MPI_ISSEND ()

Envio buferizado

MPI_BSEND ()

MPI_IBSEND ()

Recepcao

MPI_RECV ()

MPI_IRECV ()

Airam/Celso

CAP/INPE (1999)

Aula 35

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

