
Airam/Celso CAP/INPE (1999) Aula 35

Comunicação AvançadaComunicação Avançada
 em MPI em MPI

Tópicos:
• Exemplo: Difusão de Dados em Anel
• Armazenamento de Mensagens em Trânsito
• Comunicação Sem Bloqueio em MPI
• Outros Modos de Comunicação em MPI

Referência: Pacheco,P.S. Parallel Programming with MPI
Morgan Kaufmann, San Francisco, 1997.

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em AnelDifusão de Dados em Anel

Problema de Difusão:
– Dado um array X, com um segmento armazenado em

cada processador, obter em todos os processadores, o
array total Y contendo todos os segmentos de X

Uma Possível Solução:
– Dispor os processadores num “anel”
– Enviar dados para o processador seguinte no anel; cada

processador copia os dados recebidos
– Repetir o passo anterior P-2 vezes, sempre enviando

adiante os novos dados recebidos (P-1 passos no total)

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em Anel Difusão de Dados em Anel

Proc. 0 Proc. 1

Proc. 2Proc. 3

X3

X0

X2

X1

Proc. 0 Proc. 1

Proc. 2Proc. 3

X3 X2

X0 X3

X2 X1

X1 X0

Configuração Original: Após Primeiro Passo:

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em Anel Difusão de Dados em Anel

Proc. 0 Proc. 1

Proc. 2Proc. 3

X3 X2 X1

X0 X3 X2

X2 X1 X0

X1 X0 X3

Proc. 0 Proc. 1

Proc. 2Proc. 3

X3 X2 X1 X0

X0 X3 X2 X1

X2 X1 X0 X3

X1 X0 X3 X2

Após Terceiro Passo:Após Segundo Passo:

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em Anel Difusão de Dados em Anel

Algoritmo:
• Inicialização:

– Copiar bloco local para a posição definitiva

– Achar proc. vizinhos no anel (sucessor e predecessor)
• Procedimento no Passo i:

– Enviar bloco (my_rank - i + P) % P para o sucessor

– Receber bloco (my_rank - i + P - 1) % P do predec.

– Copiar bloco recebido: tamanho = blocksize = n / P
• Número Total de Passos: P - 1 (0  i < P-1)

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em Anel Difusão de Dados em Anel

Implementação:
void Difusao_anel (
 float x[] /* in */,
 int blocksize /* in */,
 float y[] /* out */,
 MPI_Comm ring_comm /* in */) {
 int i, p, my_rank, sucessor, predecessor, send_offset, recv_offset;
 MPI_Status status;

 MPI_Comm_size(ring_comm, &p);
 MPI_Comm_rank(ring_comm,&my_rank);
 /* Copia x para o local correto em y */
 for (i = 0; i < blocksize; i++) y[i + my_rank*blocksize] = x[i];

Airam/Celso CAP/INPE (1999) Aula 35

Difusão de Dados em Anel Difusão de Dados em Anel

 sucessor = (my_rank + 1) % p;
 predecessor = (my_rank - 1 + p) % p;

 for (i = 0; i < p - 1; i++) {
 send_offset = ((my_rank - i + p) % p)*blocksize;
 recv_offset = ((my_rank - i - 1 + p) % p)*blocksize;
 MPI_Send(y + send_offset, blocksize, MPI_FLOAT,
 sucessor, 0, ring_comm);
 MPI_Recv(y + recv_offset, blocksize, MPI_FLOAT,
 predecessor, 0, ring_comm, &status);
 }
}

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens Armazenamento de Mensagens
em Trânsitoem Trânsito

No Exemplo Anterior (supondo P=2):

 Proc.0 Proc.1
 MPI_Send p/ 1 MPI_Send p/ 0
 MPI_Recv de 1 MPI_Recv de 0
• Hipótese: Sist. Oper. armazena msgs em trânsito
 O que irá ocorrer se não há buffers no sistema?

(padrão MPI não especifica que existam buffers)
• Se os dois processadores iniciam o prog. juntos:

– Proc.0 não retorna de MPI_Send antes de 1 fazer Recv
– Proc.1 não retorna de MPI_Send antes de 0 fazer Recv
– Deadlock !

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens Armazenamento de Mensagens
em Trânsito em Trânsito

• Embora o programa do Exemplo esteja correto,
pode haver deadlock se não houver buffers
– Programas assim são ditos inseguros
– Programas seguros não causam deadlock, mesmo que

não haja buffers de sistema para mensagens em trânsito

• Como tornar um programa seguro?
– Solução 1: Reorganizar as chamadas a Send / Recv

 Proc.0 (par) Proc.1 (ímpar)
 MPI_Send p/ 1 MPI_Recv de 0
 MPI_Recv de 1 MPI_Send p/ 0

Airam/Celso CAP/INPE (1999) Aula 35

Armazenamento de Mensagens Armazenamento de Mensagens
em Trânsito em Trânsito

– Solução 2:Utilizar MPI_Sendrecv()  não há deadlock
• Equivalente a MPI_Send() seguido de MPI_Recv()

int MPI_Sendrecv(
 void* send_buf /* in */,
 int send_count /* in */,
 MPI_Datatype send_type /* in */,
 int destination /* in */,
 int send_tag /* in */,
 void* recv_buf /* out */,
 int recv_count /* in */,
 MPI_Datatype recv_type /* in */,
 int source /* in */,
 int recv_tag /* in */,
 MPI_Comm recv_tag /* in */,
 MPI_Status* status /* out */)

Airam/Celso CAP/INPE (1999) Aula 35

Comunicação Sem BloqueioComunicação Sem Bloqueio
 em MPI em MPI

Já vistas: Funções com bloqueio
– MPI_Send (buffer , ...):

Só retorna quando buffer já pode ser reutilizado
– MPI_Recv (buffer , ...):

Só retorna quando buffer já contém dados recebidos

Otimização:
– Funções sem bloqueio (retorno imediato)
– Idéia: Apenas comandar o início de send / recv
– Objetivo: Sobrepor comunicação e computação (pode

ser útil se há um proc. de comunicação dedicado)

Airam/Celso CAP/INPE (1999) Aula 35

Comunicação Sem BloqueioComunicação Sem Bloqueio
 em MPI em MPI

Implementação de comunicação sem bloqueio:
– MPI_Send (...)  MPI_Isend (...): Inicia send
– MPI_Recv (...)  MPI_Irecv (...): Inicia recv
– Espera pelo término da transmissão:

• MPI_Wait(): Bloqueia a execução esperando msg
– Verificação do término da transmissão:

• MPI_Test(): Não bloqueia a execução; retorna flag
indicando se a transmissão já terminou

– Uso típico: MPI_Isend+MPI_Wait , MPI_Irecv+MPI_Wait

Obs: É possível misturar funções com/sem bloqueio, à
vontade, num mesmo programa

Airam/Celso CAP/INPE (1999) Aula 35

Comunicação Sem BloqueioComunicação Sem Bloqueio
 em MPI em MPI

Para o Exemplo Anterior:
 MPI_Request send_request, recv_request;
 . . .
 send_offset = my_rank*blocksize;
 recv_offset = ((my_rank - 1 + p) % p)*blocksize;
 for (i = 0; i < p - 1; i++) {
 MPI_Isend(y + send_offset, blocksize, MPI_FLOAT,
 successor, 0, ring_comm, &send_request);
 MPI_Irecv(y + recv_offset, blocksize, MPI_FLOAT,
 predecessor, 0, ring_comm, &recv_request);
 send_offset = ((my_rank - i - 1 + p) % p)*blocksize;
 recv_offset = ((my_rank - i - 2 + p) % p)*blocksize;
 MPI_Wait(&send_request, &status);
 MPI_Wait(&recv_request, &status); }

Comput.

Início da
Comunic.

Final da
Comunic.

Airam/Celso CAP/INPE (1999) Aula 35

Comunicação Sem BloqueioComunicação Sem Bloqueio
 em MPI (cont.) em MPI (cont.)

Comparação de Desempenho: (tempos em ms)

 Intel-Paragon IBM-SP2
 P Com Bloq. Sem Bloq. Com Bloq. Sem Bloq.

 2 0.14 0.10 0.11 0.08
 8 1.00 0.94 0.85 0.54
32 4.90 4.20 3.90 2.50

Obs: Ganho de desempenho seria maior se houvesse
mais computação a ser feita

Airam/Celso CAP/INPE (1999) Aula 35

Outros Modos de ComunicaçãoOutros Modos de Comunicação
 em MPI em MPI

Modos de Comunicação em MPI:
– Standard: MPI_Send(), MPI_Isend(), ...

– Synchronous: Send só termina depois que Recv inicia

• MPI_Ssend() , MPI_Issend() , ...

– Ready: Send assume que Recv já ocorreu (sem buffer)

• MPI_Rsend() , MPI_Irsend() , ...

– Buffered: Buffer auxiliar declarado pelo usuário

• MPI_Bsend() , MPI_Ibsend() , ...

• Tamanho do buffer auxiliar deve ser suficiente

Airam/Celso CAP/INPE (1999) Aula 35

Outros Modos de ComunicaçãoOutros Modos de Comunicação
 em MPI em MPI

Exemplo Anterior, com Modo Buffered:
 char buffer[MAX_BUF]; int buffer_size = MAX_BUF;
 . . .
 MPI_Buffer_attach(buffer, buffer_size);

 for (i = 0; i < p - 1; i++) {
 send_offset = ((my_rank - i + p) % p)*blocksize;
 recv_offset = ((my_rank - i - 1 + p) % p)*blocksize;
 MPI_Bsend(y + send_offset, blocksize, MPI_FLOAT,
 successor, 0, ring_comm);
 MPI_Recv(y + recv_offset, blocksize, MPI_FLOAT,
 predecessor, 0, ring_comm, &status);
 }
 MPI_Buffer_detach(&buffer, &buffer_size);

Airam/Celso CAP/INPE (1999) Aula 35

Modos de envio/recepção em MPI Modos de envio/recepção em MPI
na comunicação ponto-a-pontona comunicação ponto-a-ponto

MODOS COM BLOQUEIO SEM BLOQUEIO

Envio padrão MPI_SEND () MPI_ISEND ()

Envio síncrono MPI_SSEND () MPI_ISSEND ()

Envio buferizado MPI_BSEND () MPI_IBSEND ()

Recepção MPI_RECV () MPI_IRECV ()

Pode-se combinar funções de envio diferentes com/sem
bloqueio com a recepção com ou sem bloqueio:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

