
Airam/Celso CAP/INPE (1999) Aula 5

Análise de DependênciaAnálise de Dependência

Tópicos:

• Restrições à Vetorização
• Detecção de Dependência
• Teste de Dependência

Airam/Celso CAP/INPE (1999) Aula 5

Restrições à VetorizaçãoRestrições à Vetorização

• Caso Trivial de Vetorização: (supondo N  VLmax)
DO i=1,N

 A(i) = B(i) + C(i)

ENDDO

Código Vetorizado:

 VL  N
 Vx  mem(B) (load vector)

 Vy  mem(C) (load vector)

 Vz  Vx + Vy (add vector)

 mem(A)  Vz (store vector)

Airam/Celso CAP/INPE (1999) Aula 5

Restrições à Vetorização (cont.)Restrições à Vetorização (cont.)

• Problema: Dependências de dados
DO i=2,N

 A(i) = 2.0 * A(i­1) (Recorrência !)

ENDDO

Tentativa de Vetorização:
VL  N­1
Vx  mem(A) (load vector)

Vy  2 * Vx (mult scalar * vector)

mem(A2)  Vy (store vector)
 Se houver vetorização, o resultado do cálculo é errado!
 Causa: valores intermediários não são usados

Airam/Celso CAP/INPE (1999) Aula 5

Dependência de DadosDependência de Dados

• Definição: Há dependência (de dados) entre dois
comandos se uma mesma posição de memória é
acessada por ambos os comandos.

• Exemplo:
(1) a = b + c
(2) x = a + y
Neste par de comandos, deve ser observado que:
– (1) deve ser executado antes que (2)

– o valor de “a” computado em (1) deve ser usado em (2)

Airam/Celso CAP/INPE (1999) Aula 5

Dependência de Dados (cont.)Dependência de Dados (cont.)

• Situações de Possível Dependência:
– Seqüências de comandos escalares:

a = b + c
x = a + y

– Comandos na mesma iteração de um loop:
do i=1,N
a(i) = b(i) + c(i)
x(i) = a(i) + y(i)

enddo
– Comandos em iterações distintas de um loop:

do i=2,N
a(i) = a(i-1) + 3

enddo
 (Diz-se que a dependência é carregada pelo loop)

Airam/Celso CAP/INPE (1999) Aula 5

Dependência de Dados (cont.)Dependência de Dados (cont.)

• Tipos de Dependências de Dados:
– RAW (read after write): dependência de fluxo
– WAR (write after read): anti-dependência
– WAW (write after write): dependência de saída
– RAR (read after read): não têm interesse prático

• Exemplos:
 Dep.Fluxo: Anti-Dep: Dep.Saída:

 (RAW)
A = B + C
X = A + Y

 (WAR)
A = B + C
C = X + Y

 (WAW)
A = B + C
A= X + Y

Airam/Celso CAP/INPE (1999) Aula 5

Dependência de Dados (cont.)Dependência de Dados (cont.)

• Mais Exemplos (com loops):
– Dependência de Fluxo (raw) :

do i=2,N
 a(i) = a(i­1) + 3
enddo

– Anti-Dependência (war):
do i=1,N­1
 a(i) = a(i+1) + 3
enddo

– Dependência de Saída (waw):
do i=1,N­1
 s = s + random(i)
enddo

Airam/Celso CAP/INPE (1999) Aula 5

Dependência de Dados (cont.)Dependência de Dados (cont.)

• Observações:
– Apenas dependências de fluxo são verdadeiras
– Antidependências e dependências de saída ocorrem

devido à reutilização de variáveis, e podem sempre ser
eliminadas!

• Exemplos:
Dep.Fluxo:
A = B + C
X = A + Y

Anti-Dep:
A = B + C
C = X + Y
P = X + Y

Dep.Saída:
A = B + C
A= X + Y
P = X + Y

Airam/Celso CAP/INPE (1999) Aula 5

Detecção de DependênciaDetecção de Dependência

• Exemplo-1:
do i=2,N
 a(i) = a(i­1) + 3
enddo

Há claramente dependência, pois a(2) é escrito na
iteração i=2 e lido na iteração i=3.

• Exemplo-2:
do i=1,N
 a(24*i­4) = a(5*i+15) + 3
enddo

Pergunta: Há dependência ???

Airam/Celso CAP/INPE (1999) Aula 5

Detecção de Dependência (cont.)Detecção de Dependência (cont.)

• Resposta:
Se a(24*j­4) e a(5*k+15) representarem a mesma

posição de memória (mesmo elemento), para algum par
(j,k) tal que 1  j,k  N , então há dependência!

Problema Prático: Chegar a esta decisão de forma
automática (através do compilador).

Em termos formais: Existem j , k , tais que
 1  j  N , 1  k  N , e 24*j­4 = 5*k+15 ?

Airam/Celso CAP/INPE (1999) Aula 5

Detecção de Dependência (cont.)Detecção de Dependência (cont.)

• Testes de Dependência:
– Aplicados automaticamente pelos compiladores
– Inúmeros testes disponíveis na literatura
– Em geral, há diretivas que o programador pode usar

para dizer que não há dependências
• Hipótese Simplificadora:

– Índices dos arrays de interesse são combinação linear
das variáveis do loop;

 Ex: do i=1,N
 A(4*i­3)= A(3*i+2) + ...
 enddo

Airam/Celso CAP/INPE (1999) Aula 5

Detecção de Dependência (cont.)Detecção de Dependência (cont.)

• Complicações Possíveis:
– Limites do loop podem não ser conhecidos em tempo

de compilação; Ex: do i=1,N

– Pode haver subscritos de subscritos
 Ex: A(K(i)) = A(...)

– Aliasing de variáveis, tal como em:
• Fortran: common A,B

 A(...)=B(...)+...

• C (ponteiros) : *p = *q + 3 , onde

 p=&A[3*i­2], q=&A[2*i+5]

Airam/Celso CAP/INPE (1999) Aula 5

Teste de DependênciaTeste de Dependência

• Veremos apenas um teste simples: Teste do MDC
(consultar literatura para testes mais poderosos)

• Equações Diophantine: a1x1+a2x2+...+anxn=c

– Dados {a1, a2, ..., an, c} encontrar valores inteiros para
{x1,x2,...,xn} que satisfaçam a equação

• Teste: Há solução inteira se e somente se g divide c
 onde g = MDC(a1,a2,...,an)

– Se não houver solução  Não há dependência

– Se houver solução  Pode haver dependência (depende
da solução estar dentro dos limites do loop)

Airam/Celso CAP/INPE (1999) Aula 5

Teste de Dependência (cont.)Teste de Dependência (cont.)

• Exemplo-1:
do i=1,N
a(2*i) = a(2*i+1) + ...

enddo

Equação: 2*X1 = 2*X2+1  2*X1 ­ 2*X2 = 1

MDC(2,­2) = 2 mas 2 não divide 1 !

Logo, não há soluções, e assim não existe dependência;
as iterações do loop são independentes

  Loop pode ser vetorizado

Airam/Celso CAP/INPE (1999) Aula 5

Teste de Dependência (cont.)Teste de Dependência (cont.)

• Exemplo-2:
do i=1,N
a(19*i+3) = ...

 ... = a(2*i+21) + ...
enddo

Equação: 19*X1 +3=2*X2+21  19*X1­2*X2=18
MDC(19,­2) = 1 e 1 divide 18 !
Neste caso, X1=2 e X2=10 são soluções, logo:
– Não há dependência se N9 (loop pode ser vetorizado)
– Há dependência se N>9 (loop não pode ser vetorizado)

Airam/Celso CAP/INPE (1999) Aula 5

Teste de Dependência (cont.)Teste de Dependência (cont.)

• Teste do MDC:
– Ainda é muito usado hoje, devido à sua simplicidade

– Caso MDC=1 ocorre com freqüência na prática, tornando
o teste pouco conclusivo.

– Pode ser extendido para mais que uma dimensão, mas a
forma do espaço de iteração não é considerada

• Testes de Dependência em Geral:
– Continuam a ser tema de pesquisa corrente

– São importantes tanto para vetorização como para
paralelização

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

