
Technische Universität München

Parallel Programming
and High-Performance Computing

Part 4: Programming Memory-Coupled Systems

Dr. Ralf-Peter Mundani

CeSIM / IGSSE

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−2

4 Programming Memory-Coupled Systems

Overview

• cache coherence

• memory consistency

• dependence analysis

• programming with OpenMP

Technology is dominated by two types of people:

those who understand what they do not manage,

and those who manage what they do not understand.

—Archibald Putt

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−3

4 Programming Memory-Coupled Systems

Cache Coherence

• reminder: cache

– memory hierarchy

• exploitation of program characteristics such as locality

• compromise between costs and performance

• components with different speeds and capacities

serial access

register

cache

main memory

background memory

archive memory

single access

block access

page access

c
a
p

a
c
it
y

a
c
c
e
s
s
 t

im
e

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−4

4 Programming Memory-Coupled Systems

Cache Coherence

• reminder: cache (cont’d)

– cache memory

• fast access buffer between main memory and processor

• provides copies of current (main) memory content for fast access
during program execution

– cache management

• tries to provide always those data that processor needs for the next
computation step

• due to small capacity certain strategies for load and update
operations of cache content necessary

0 n−1
main memory
block Bj j = 0, …, n−1

0 m−1

cache memory (m << n)
cache-line Li i = 0, …, m−1

mapping Bj to Li

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−5

4 Programming Memory-Coupled Systems

Cache Coherence

• reminder: cache (cont’d)

– for any memory access the cache controller checks if

• the respective memory content has a copy stored in cache (1)

• this cache entry is labelled as valid (2)

– checkup leads to a

• cache hit: (1) and (2) are fulfilled access served by cache

• cache miss: (1) and / or (2) are not fulfilled

– read miss

» data is read from memory and a copy stored in cache

» cache entry is labelled as valid

– write miss: update strategy decides whether

» the respective block is loaded (from memory) into cache and
becomes updated due to write access

» only memory is updated and cache stays unmodified

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−6

4 Programming Memory-Coupled Systems

Cache Coherence

• definitions

– processors with local cache that have independent access to a shared
memory cause validity problems, i. e. several copies of the same
memory block exist that contain different values

– cache management is called

• coherent: a read access always provides a memory block’s value
from its last write access

• consistent: all copies of a memory block in main memory and local
caches are identical (i. e. coherence implicitly given)

– inconsistencies between cache and main memory occur when updates
are only performed in cache but not in main memory (so called copy-
back or write-back cache policy, in contrast to the write-through cache
policy)

– drawback: consistency is very expensive

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−7

4 Programming Memory-Coupled Systems

Cache Coherence

• definitions (cont’d)

– hence, inconsistencies (to some extent) can be acceptable if at least
cache coherence is assured (temporary variables, e. g.)

• write-update protocol

– an update of a copy in one cache requires also the update of all
other copies in other caches

– update can be delayed, at the latest with next access

• write-invalidate protocol

– exclusive write access of a processor to shared data that should
be updated has to be assured

– before the update of a copy in one cache all other copies in
other caches are labelled as invalid

– in general, write-invalidate protocol together with copy-back cache
policy used for SMP systems

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−8

4 Programming Memory-Coupled Systems

Cache Coherence

• definitions (cont’d)

– example: write-invalidate protocol / write-through cache policy

1. P1 gets exclusive access for A

2. invalidation of other copies of A

3. P1 writes to A

4. update of A in main memory

network / bus

A = 4

P1:

A = 4

P3:

B = 7

P2:
1, 3 2

4

B = 7

A = 4

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−9

4 Programming Memory-Coupled Systems

Cache Coherence

• definitions (cont’d)

– comparison write-update / write-invalidate

• multiple writes to same copy (without intervening read)

– write-update: requires several updates of other copies

– write-invalidate: just one invalidation per copy necessary

• cache-line with several memory words

– write-update: based on words, i. e. for each word within a block
a separate update is necessary

– write-invalidate: first write access to one word in a block
invalidates the entire cache-line

• delay between writing and reading (by another processor)

– write-update: instant read access due to update of copies

– write-invalidate: read access has to wait for valid copy

– hence, less network and memory traffic for write-invalidate

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−10

4 Programming Memory-Coupled Systems

Cache Coherence

• bus snooping

– processors with local cache are attached to a shared main memory via a
bus (SMP system, e. g.)

– each processor “listens” to all addresses sent over the bus by other
processors and compares them to its own cache-lines

– in case one cache-line matches this address, bus logic executes the
following steps dependent from the cache-line’s state

• unmodified cache-line: if a write access should be performed the
cache-line becomes invalid

• modified cache-line

– bus logic interrupts the transaction and writes the modified
cache-line to the main memory

– afterwards, the initial transaction is executed again

– MESI protocol frequently used with bus snooping

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−11

4 Programming Memory-Coupled Systems

Cache Coherence

• bus snooping (cont’d)

– example: read access with write-invalidate protocol

1. P1 wants to read A

2. P3 interrupts and updates A in main
memory

3. invalidation of other copies of A

4. P1 wants to read A and loads valid
copy from main memory

network / bus

A = 4

P1:

A = 7

P3:

A = 4

P2:
1

2

A = 4

3 3

4

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−12

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol

– cache coherence protocol (write-invalidate) for bus snooping

– each cache-line is assigned one of the following states

• exclusive modified (M): cache-line is the only copy in any of the
caches and was modified due to a write access

• exclusive unmodified (E): cache-line is the only copy in any of the
caches and was transferred for read access

• shared unmodified (S): copies of this cache-line reside in more than
one cache and were transferred for read access

• invalid (I): cache-line is invalid

– for write-through cache policy only the states shared unmodified and
invalid are relevant

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−13

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– state: invalid

• due to read / write access a valid copy is loaded into cache

• other processes (snoop hit on a read) send signal SHARED if they
have a valid copy

• read miss: read miss shared (RMS) or read miss exclusive (RME)
leads to state transition to S or E, resp.

• write miss (WM): state transition to M

I

E

S

M

RMS

RME

W
M

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−14

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– state: shared unmodified

• read hit (RH) / snoop hit on a read (SHR): state is unchanged;
process sends signal SHARED in case of SHR

• write hit (WH): state transition to M

• snoop hit on a write (SHW): state transition to I

I

E

S

M

RH / SHR

W
H

SHW

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−15

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– state: exclusive unmodified

• RH: state is unchanged; no bus usage necessary

• SHR: process sends signal SHARED; state transition to S

• SHW: state transition to I

• WH: state transition to M; no bus usage necessary

I

E

S

M
WH

SHW

RH

S
H

R

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−16

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– state: exclusive modified

• RH / WH: state is unchanged; no bus usage necessary

• SHR / SHW: other process is notified via signal RETRY that a copy-
back of this cache-line to main memory is necessary; state transition
to I or S in case of SHW or SHR, resp.

I

E

S

M
RH / WH

SHR

S
H

W

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−17

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– putting it all together

M E

SI
RMS

WH

RME

RH / SHR

W
M

SHW

RHRH / WH

W
H

SHR

S
H

W

SHW

S
H

R RH: read hit

RMS: read miss shared

RME: read miss exclusive

WH: write hit

WM: write miss

SHR: snoop hit on a read

SHW: snoop hit on a write

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−18

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– example: SMP system with two processors (1)

• subsequent read / write access to same cache-line

read miss

load valid copy from main
memory

state transition I → E

snoop hit on a read

P1:

A =

P2:

A =I I

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−19

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– example: SMP system with two processors (2)

• subsequent read / write access to same cache-line

snoop hit on a read

send signal SHARED

state transition E → S

read miss

load valid copy from main
memory

state transition I → S

P1:

A = 4

P2:

A =E I

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−20

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– example: SMP system with two processors (3)

• subsequent read / write access to same cache-line

write hit

update cache-line

state transition S → M

snoop hit on a write

state transition S → I

P1:

A = 4

P2:

A = 4S S

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−21

4 Programming Memory-Coupled Systems

Cache Coherence

• MESI protocol (cont’d)

– example: SMP system with two processors (4)

• subsequent read / write access to same cache-line

snoop hit on a read

send signal RETRY

copy back cache-line

snoop hit on a read

send signal SHARED

state transition M → S

read miss

STOP

read miss

load valid copy from main
memory

state transition I → S

P1:

A = 7

P2:

A =M I

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−22

4 Programming Memory-Coupled Systems

Cache Coherence

• directory-based protocol

– DSM / VSM systems don’t have a shared bus to leverage bus snooping
and the MESI protocol for addressing cache coherence

– hence, directory tables are used instead

• to be implemented in hardware and / or software

• stored at a central position or distributed among all nodes

– each table contains

• all blocks of the local memory that have been copied to local or
remote caches

• state of each copy

– states and state transitions are similar to the MESI protocol (before a
write access to some cache-line all caches that have a copy are
informed via invalidate-messages, e. g.)

– examples: ALLCACHE Engine (KSR), LimitLess (MIT Alewife)

4 Programming Memory-Coupled Systems

Cache Coherence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−23

4 Programming Memory-Coupled Systems

Overview

• cache coherence

• memory consistency

• dependence analysis

• programming with OpenMP

4 Programming Memory-Coupled Systems

Overview

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−24

4 Programming Memory-Coupled Systems

Memory Consistency

• motivation

– data transfer between cache and registers via load/store unit (LSU) of
the processor cache coherence takes effect at the time when LSU
performs read / write access to cache memory

– in general, modern microprocessors reorder load and store operations
for performance improvement

– example

• load operations are executed immediately

• store operations are internally buffered (FIFO)

write
bufferload

address register value

LSU

4 Programming Memory-Coupled Systems

Memory Consistency

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−25

4 Programming Memory-Coupled Systems

Memory Consistency

• motivation (cont’d)

– hence, a subsequent load operation can “pass” a waiting store
operation in case they have different addresses (to avoid that a load
operation reads obsolete values from cache while current values (still to
be written) reside in the write buffer)

– further improvement: non-blocking cache / lock-up free cache

• in case of a cache miss, execution can be continued with
subsequent operations (accessing different cache-lines) without
waiting for the blocked operation to be finished

– consequence of both strategies: modified order of execution

– nevertheless, due to local address comparison of affected values there
is no impact on the computed result of a program on the
monoprocessor system

– what happens on the multiprocessor systems?

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−26

4 Programming Memory-Coupled Systems

Memory Consistency

• motivation (cont’d)

– even cache coherence is assured for SMP systems, reordering of
operations and / or non-blocking caches might lead to unwanted results
during program execution

– example (DEKKER’s algorithm)

x = 0; y = 0 x = 0; y = 0
process p1: process p2:

x = 1 y = 1
if y = 0 then do A1 if x = 0 then do A2

– four different possibilities

• A1 will be executed, A2 will not be executed

• A2 will be executed, A1 will not be executed

• A1 and A2 will not be executed

• A1 and A2 will be executed (unexpected from programmer)

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−27

4 Programming Memory-Coupled Systems

Memory Consistency

• motivation (cont’d)

– further problems for DSM / VSM systems

– intuitively we would expect that

• updates of variables take effect everywhere at the same time

• temporal order of memory accesses is retained

– but in reality

• we would need a global clock with very high precision

• write operations are not atomic (i. e. new values don’t take effect
everywhere at the same time)

• write accesses have different latencies due to network race
between single memory accesses (local / remote read operations
subsequent to a write operation might get different (i. e. new or old)
values, e. g.)

– hence, further thoughts about memory consistency are necessary

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−28

4 Programming Memory-Coupled Systems

Memory Consistency

• notation

– one line for each processor’s memory accesses

– time proceeds from left to right

– memory / synchronisation operations

• R(X)val: read variable X, obtain value “val”

• W(X)val: write value “val” to variable X

• : synchronisation point

• AQ(L): acquire lock L for entering critical section

• RL(L): release lock L for leaving critical section

– all variables are assumed to be initialised to 0

– example (≈ x = x + 1)

P1: R(x)0 W(x)1 R(x)1
---------------------->

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−29

4 Programming Memory-Coupled Systems

Memory Consistency

• reminder: strict consistency

– definition: any read on a data item X returns a value corresponding to the
result of the most recent write on X

– main aspect is precise serialisation on all memory accesses

– example: C is not valid under strict consistency

P1: W(x)1 P1: W(x)1
A) ----------------------> B) ---------------------->

P2: R(x)1 R(x)1 P2: R(x)0 R(x)1

P1: W(x)1
C) ---------------------->

P2: R(x)0 R(x)1

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−30

4 Programming Memory-Coupled Systems

Memory Consistency

• sequential consistency

– slightly weaker model than strict consistency

– definition by LAMPORT (1979)

“The result of any execution is the same as if the operations of all the
processors were executed [on a monoprocessor] in some sequential
order, and the operations of each individual processor appear in this
sequence in the order specified by its program.”

– that means

• order of operations to be retained on individual processor

• any overlap of orders of operations is acceptable as long as the
same overlap is visible on each processor

• no global clock necessary

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−31

4 Programming Memory-Coupled Systems

Memory Consistency

• sequential consistency (cont’d)

– example: D is not valid under sequential consistency

P1: W(x)1 W(x)2 P1: W(x)1
A) ----------------------> B) ---------------------->

P2: R(x)0 R(x)2 P2: R(x)0 R(x)1

P1: W(x)1 P1: W(x)1
----------------------> ---------------------->
P2: R(x)1 R(x)2 P2: R(x)2 R(x)1

C) ----------------------> D) ---------------------->
P3: R(x)1 R(x)2 P3: R(x)1 R(x)2
----------------------> ---------------------->
P4: W(x)2 P4: W(x)2

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−32

4 Programming Memory-Coupled Systems

Memory Consistency

• sequential consistency (cont’d)

– consequences

• sequential consistent memory is very easy to use but it also entails
very high costs / drawbacks due to

– only an overlapping execution of sequential operations instead
of a complete parallel execution

– strong limitations as reordering of operations / non-blocking
caches are forbidden

– very inefficient in case of frequent write accesses

• semantic too strong for most problems weaker models necessary
that are reasonable to use and easy to implement

• furthermore, sequential consistency assures correct order of
memory accesses but not correct access to shared data objects
still synchronisation via programmer necessary

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−33

4 Programming Memory-Coupled Systems

Memory Consistency

• sequential consistency (cont’d)

– caution: cache coherence ≠ sequential consistency

– cache coherence only requires a locally consistent view, i. e.

• access to different memory locations might be seen in different
orders

• access to the same memory location is globally seen in the same
order

– sequential consistency requires a globally consistent view

– example: valid under cache coherence only

P1: W(x)1 R(y)0
---------------->
P2: W(y)1 R(x)0

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−34

4 Programming Memory-Coupled Systems

Memory Consistency

• causal consistency

– weaker model than sequential consistency

– definition by HUTTO and AHAMAD (1990)

“Writes that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen in a
different order on different machines.”

– hence, write w(t2) at time t2 is potentially dependent on write w(t1) at time
t1 (with t1 ≤ t2), when there is a read between these two writes which may
have influenced write w(t2) if w(t2) causally depends on w(t1) then only
correct sequence is w(t1) → w(t2)

– implementing causal consistency requires keeping track of which
processes have seen which writes construction and maintenance of a
dependence graph

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−35

4 Programming Memory-Coupled Systems

Memory Consistency

• causal consistency (cont’d)

– example: B is not valid under causal consistency

P1: W(x)1 W(x)3
-->
P2: R(x)1 W(x)2

A) -->
P3: R(x)1 R(x)3 R(x)2
-->
P4: R(x)1 R(x)2 R(x)3

P1: W(x)1
---------------------------------->
P2: R(x)1 W(x)2

B) ---------------------------------->
P3: R(x)2 R(x)1
---------------------------------->
P4: R(x)1 R(x)2

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−36

4 Programming Memory-Coupled Systems

Memory Consistency

• processor consistency

– also referred to as PRAM (pipelined RAM) consistency

– definition by GOODMAN (1989)

“A multiprocessor is said to be processor consistent if the result of any
execution is the same as if the operations of each individual processor
appear in the sequential order specified by its program.”

– difference to sequential consistency

• order of operations for all processors must not be uniform, i. e. write
accesses of two processors might be seen in a different sequence
from a third processor than from the previous ones

• however, write accesses of one processor are seen by all others in
the order specified by its program

• this better reflects the reality of networks due to latency

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−37

4 Programming Memory-Coupled Systems

Memory Consistency

• processor consistency (cont’d)

– example: B is not valid under processor consistency

P1: W(x)1
-->
P2: R(x)1 W(x)2 W(x)3

A) -->
P3: R(x)2 R(x)1 R(x)3
-->
P4: R(x)1 R(x)2 R(x)3

P1: W(x)1 W(x)2
B) ---------------------------->

P2: R(x)2 R(x)1

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−38

4 Programming Memory-Coupled Systems

Memory Consistency

• weak consistency

– in general, access to shared data will be protected via mutual exclusion
(i. e. obtain access, manipulate data, relinquish access); other processes
don’t need to see the intermediate values, they only need to see the final
values

– classification of shared memory accesses (GHARACHORLOO)

shared

competing non-competing
(i. e. critical section)

synchronising non-synchronising
(to be avoided)

release (unlock)acquire (lock)

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−39

4 Programming Memory-Coupled Systems

Memory Consistency

• weak consistency (cont’d)

– conditions to be fulfilled for weak consistency

1) accesses to synchronisation variables (associated with a write
operation) are sequentially consistent

2) no access to a synchronisation variable is allowed to be performed
until all preceding write operations have completed everywhere

3) no read / write operation is allowed to be performed until all
preceding accesses to synchronisation variables have been
performed

– hence, accesses to synchronisation variables are visible for all
processes in the same order (1)

– all write operations have been completed everywhere (2)

– all copies are up-to-date according to the synchronisation point (3)

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−40

4 Programming Memory-Coupled Systems

Memory Consistency

• weak consistency (cont’d)

– in weak consistent memory, modifications are not visible until a
synchronisation has been performed

– a program with properly set synchronisation behaves the same as a
program without synchronisation on sequentially consistent memory
de facto sequentially consistent groups of operations

– example: B is not valid under weak consistency

P1: W(x)1 W(x)2
------------------------------------>

A) P2: R(x)2 R(x)1 R(x)2
------------------------------------>
P3: R(x)1 R(x)2 R(x)2

P1: W(x)1 W(x)2
B) ------------------------------>

P2: R(x)1 R(x)1

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−41

4 Programming Memory-Coupled Systems

Memory Consistency

• release consistency

– synchronisation does not tell if entering / leaving a critical section

– hence, local changes need to be both propagated to all other
processors (sharing a copy) and all other changes need to be
consolidated too much communication

– release consistency helps to weaken the communication problem

– idea: consider locks and propagate locked memory only if needed

1) before a read / write operation on shared data is performed, all
preceding acquires done by the process must have completed
successfully

2) before a release is allowed to be performed, all preceding read /
write operations done by the process must have been completed

3) acquire / release accesses are processor consistent

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−42

4 Programming Memory-Coupled Systems

Memory Consistency

• release consistency (cont’d)

– eager release consistency: all changes are propagated via the release
operation still huge communication overhead

– lazy release consistency: all local copies are updated via the acquire
operation complex implementation but avoidance of redundant
communication

– example: B is not valid under release consistency

P1: AQ(L) W(x)1 W(x)2 RL(L)
-->

A) P2: AQ(L) R(x)2 RL(L)
-->
P3: R(x)1

P1: AQ(L) W(x)1 W(x)2 RL(L)
B) -->

P2: R(x)1 AQ(L) R(x)1 RL(L)

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−43

4 Programming Memory-Coupled Systems

Memory Consistency

• entry consistency

– further weakening of release consistency

– problem: all local updates are propagated during release of shared data
and an acquire has to determine which variables it needs

– idea: each shared data element to be associated with a synchronisation
variable (elements of a shared array can be accessed independently
in parallel, e. g.)

– conditions to be fulfilled for entry consistency

1) an acquire access of a synchronisation variable is not allowed to
perform w. r. t. a process until all updates of the guarded shared
data have been performed w. r. t. that process

2) before an exclusive mode access to a synchronisation variable by a
process is allowed to perform w. r. t. that process, no other process
may hold the synchronisation variable, not even in non-exclusive
mode

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−44

4 Programming Memory-Coupled Systems

Memory Consistency

• entry consistency (cont’d)

3) after an exclusive mode access to a synchronisation variable has
been performed, any other process’ next non-exclusive mode
access to that synchronisation variable may not be performed until
it has performed w. r. t. that variable’s owner

– an acquire blocks until all guarded (local) data are up-to-date (1)

– each process intending to manipulate a guarded variable has to
perform an acquire on the respective synchronisation variable (2)

– an acquire operation for read access after a write access has to obtain
a variable’s current value from the last writing process (3)

P1: AQ(Lx) W(x)1 AQ(Ly) W(y)2 RL(Lx) RL(Ly)
--->
P2: AQ(Lx) R(x)1 R(y)0
--->
P3: AQ(Ly) R(y)2

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−45

4 Programming Memory-Coupled Systems

Memory Consistency

• characteristics of different models

consistency description

strict absolute time ordering of all accesses matters

sequential
all processes see all accesses in same order;
accesses are not ordered in time

causal all processes see causally-related accesses in same order

process
all processes see writes from one process in the order they were used;
writes from different processes may not always be seen in that order

weak
only after a synchronisation is done data can be counted on to be
consistent

release data is made consistent when a critical section is exited

entry data is made consistent when a critical section is entered

syn
c
h
ro

n
.

w
ith

o
u
t syn

c
h
ro

n
.

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−46

4 Programming Memory-Coupled Systems

Overview

• cache coherence

• memory consistency

• dependence analysis

• programming with OpenMP

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−47

4 Programming Memory-Coupled Systems

Dependence Analysis

• a program might have execution-order constraints between statements (i. e.
instructions) due to dependencies

• hence, dependence analysis should determine whether or not it is safe to
reorder or parallelise these statements

• topics to be addressed by dependence analysis

– control dependencies

– data dependencies

– dependence graphs

– loop dependencies

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−48

4 Programming Memory-Coupled Systems

Dependence Analysis

• control dependencies

– definition: an instruction executes if the previous instruction evaluates in
a way that allows its execution

– hence, a statement S2 is control dependent on S1 iff (if and only if) the
execution of S2 is conditionally guarded by S1

– example

1: if (u > 2) { // branch: if (u ≤ 2) goto 3
2: u = u − z }
3: v = x * y
4: w = u + v

– however, lines 3 and 4 will execute regardless of how the branch at line
1 executes lines 3 and 4 are not control dependent on line 1 and may
execute concurrently

– essential for exploitation of instruction-level parallelism

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−49

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies

– arise due to competitive access to shared data

– to be distinguished

• flow dependence: read after write (RAW)

• antidependence: write after read (WAR)

• output dependence: write after write (WAW)

• input dependence: read after read (RAR)

– data dependencies might lead to inefficiencies and bottlenecks, hence
preventing optimisations such as out-of-order execution or
parallelisation

– modern tools use dependence graphs, for instance, to find potential
problem areas (= cycles within graphs) and examine to see if they can be
broken

– example: KAP preprocessors for C, F77, and F90

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−50

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies (cont’d)

– flow dependence a. k. a. true dependence (RAW)

• a statement S2 is flow dependent on S1 iff S1 modifies a resource
that S2 reads and S1 precedes S2 in execution

• example (sequence in a loop)

1: a(i) = x(i) − 3
2: b(i) = a(i) / c(i)

• general problem: flow dependence cannot be avoided

• here, a(i) has to be calculated first in line 1 before using it in line 2
lines 1 and 2 cannot be processed in parallel

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−51

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies (cont’d)

– antidependence (WAR)

• a statement S2 is antidependent on S1 iff S2 modifies a resource that
S1 reads and S1 precedes S2 in execution

• example (sequence in a loop)

1: a(i) = x(i) − 3
2: b(i) = a(i+1) / c(i)

• a(i+1) is first used with its former value in line 2 and only then
computed at the next execution of the loop in line 1 several
iterations of the loop cannot be processed in parallel

• in general, antidependence can be avoided

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−52

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies (cont’d)

– output dependence (WAW)

• a statement S2 is output dependent on S1 iff S1 and S2 modify the
same resource and S1 precedes S2 in execution

• example (sequence in a loop)

1: c(i+4) = b(i) + a(i+1)
2: c(i+1) = x(i)

• some value is first assigned to c(i+4) in line 1 and after three
executions of the loop a new value is assigned to the same element
(in the array) again in line 2 several iterations of the loop cannot
be processed in parallel

• nevertheless, output dependence can also be avoided

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−53

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies (cont’d)

– input dependence (RAR)

• a statement S2 is input “dependent” on S1 iff S1 and S2 read the
same resource and S1 precedes S2 in execution

• example (sequence in a loop)

1: d(i) = a(i) + 3
2: b(i) = a(i+1) / c(i)

• a(i+1) is first used in line 2 and afterwards used again at the next
execution of the loop in line 1 not a dependence in the same line
as the others, hence it does not prohibit reordering instructions or
parallel execution of lines 1 and 2

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−54

4 Programming Memory-Coupled Systems

Dependence Analysis

• data dependencies (cont’d)

– removing of name dependencies

• antidependence and output dependence may be removed through
renaming of variables

• example:

1: a = 2 * x 1: c = 2 * x
2: b = a / 3 renaming → 2: b = c / 3
3: a = 9 * y 3: a = 9 * y

• problem: line 3 (in variable a) is both antidependent on line 2 and
output dependent on line 1

• after renaming, both dependencies have been removed, but line 2 (in
variable c) is still flow dependent on line 1

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−55

4 Programming Memory-Coupled Systems

Dependence Analysis

• dependence graphs

– control and data dependencies can be visualised via graphs

– definition: directed graph G = (N, E) with

• set of statements N = {S1, S2, …, Sn}
• set of dependencies E, thus (Si, Sj) ∈ E iff Sj is control or data

dependent on Si

– example

1: x = y * 5
2: if (x > 100) {
3: x = 100 }

1

2

3

RAW

WAW

x > 100

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−56

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies

– statements (almost always w. r. t. array access and modification) within a
loop body might form a dependence

– problem: finding dependencies throughout different iterations

– prototype of a “normalised” nested loop with N levels

for (i1 = 1; i1 < n1; ++i1) // loop #1
for (i2 = 1; i2 < n2; ++i2) // loop #2

for (iN = 1; iN < nN; ++iN) // loop #N
… = … // statements

– nesting level K (1 ≤ K ≤ N): number of surrounding loops + 1

– iteration number IK: value of iteration variable at nesting level K

… …

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−57

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– iteration vector I: vector of integers containing the iteration numbers IK of
a particular iteration for each of the loops in order of the nesting levels

I = (I1, I2, …, IN)T with iteration numbers IK , 1 ≤ K ≤ N

– iteration space: set of all possible iteration vectors (for a statement)

– precedence I < J: iteration I precedes iteration J iff

∃K: IR = JR , ∀R: 1 ≤ R < K, and IK < JK

– statement instance S(I): statement S under iteration vector I

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−58

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– a statement instance S2(J) is loop dependent on S1(I) iff

1) I < J or
I = J and there exists a path from S1 to S2 in the loop body

2) a memory location is accessed by S1 on iteration I and by S2

on iteration J

3) one of these accesses is a write

– theorem of loop dependence

There exists a dependence graph from statement S1 to statement S2

in a common nested loop if and only if there exist two iteration vectors
I and J (for the nested loop), such that S2(J) is loop dependent on S1(I).

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−59

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– distance vector D(I,J): if statement instance S2(J) is loop dependent on
S1(I) then the dependence distance vector is computed as follows

D(I,J)K = JK − IK , 1 ≤ K ≤ N

– direction vector R(I,J): if statement instance S2(J) is loop dependent on
S1(I) then the dependence direction vector is computed as follows

R(I,J)K

“<” if D(I,J)K > 0

“=” if D(I,J)K = 0 , 1 ≤ K ≤ N

“>” if D(I,J)K < 0⎪
⎪
⎩

⎪⎪
⎨

⎧

=

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−60

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– types of different loop dependencies

• loop-carried dependence

– dependence from statement S1 in iteration I to statement S2 in
iteration J iff R(I,J) contains a “<” as its leftmost component
which is not equal to “=”

– level of a loop-carried dependence conforms to the index of the
leftmost component of R(I,J) that is not equal to “=”

• loop-independent dependence

– dependence from statement S1 in iteration I to statement S2 in
iteration J iff I = J

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−61

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– example (1)

for (i = 1; i < N; ++i)
for (j = 1; j < M; ++j)

1: a(i,j) = b(i,j)
2: c(i,j) = 2*c(i,j) + a(i−1,j)

• again, loop dependence iff

– 1) I ≤ J

– 2) S1(I) and S2(J) access the same resource

– 3) one of these accesses is a write

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−62

4 Programming Memory-Coupled Systems

Dependence Analysis

• loop dependencies (cont’d)

– example (2)

• flow dependence (RAW) in variable “a”

1: a(i,j) = …
2: … = … + a(i−1,j)

– D(I,J) = (1, 0)T and R(I,J) = (“<”, “=”)T

– hence, a loop-carried dependence of level 1

• antidependence (WAR) in variable “c”

2: … = 2*c(i,j) + …
2: c(i,j) = …

– D(I,J) = (0, 0)T and R(I,J) = (“=”, “=”)T

– hence, a loop-independent dependence

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−63

4 Programming Memory-Coupled Systems

Overview

• cache coherence

• memory consistency

• dependence analysis

• programming with OpenMP

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−64

4 Programming Memory-Coupled Systems

Programming with OpenMP

• brief overview

– OpenMP is an application programming interface (API) for writing
multithreaded programs, consisting of

• a set of compiler directives

• (runtime) library routines

• environment variables

– available for C, C++, and Fortran

– explicit programming model with fork/join-model for threads

– suited for programming

• UMA and SMP systems

• DSM / VSM systems (i. e. NUMA, ccNUMA, and COMA)

• hybrid systems (i. e. MesMS with shared-memory nodes) in
combination with message passing (MPI, e. g.)

– further information: http://www.openmp.org

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−65

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives

– prototypical form of compiler directives (C and C++)

#pragma omp directive-name [clause, …] newline

• directive-name: a valid OpenMP directive such as

– parallel

– for, sections, single

– master, critical, barrier

– …
• clause: optional statements such as

– if

– private, firstprivate, lastprivate, shared

– reduction

– …

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−66

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– parallel region construct (1)

#pragma omp parallel [clause, …] newline

• precedes a parallel region (i. e. structured block of code) that will be
executed by multiple threads

• when a thread reaches a “parallel” directive, it creates a team of
threads and becomes the master of that team

• code is duplicated and all threads will execute that code

• implicit barrier at the end of parallel region

• it is illegal to branch into or out of a parallel region

• amount of threads set via omp_set_num_threads() library function
or OMP_NUM_THREADS environment variable

• threads numbered from 0 (master thread) to N−1

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−67

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– parallel region construct (2)

• some clauses

– if (condition): must evaluate to TRUE in order for a team of
threads to be created; only a single “if” clause is permitted

– private (list): listed variables are private to each thread; variables
are uninitialised and not persistent (i. e. they do not longer exist
when the parallel region is left)

– shared (list): listed variables are shared among all threads

– default (shared | none): default value for all variables in a parallel
region

– firstprivate (list): like private, but listed variables are initialised
according to the value of their original objects

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−68

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– parallel region construct (3)

• example

#include <omp.h>

main () {
int nthreads, tid;
#pragma omp parallel private (tid)

{
tid = omp_get_thread_num ();
if (tid == 0) {

nthreads = omp_get_num_threads ();
printf (“%d threads running\n”, nthreads);

} else {
printf (“thread %d: Hello World!\n”, tid);

}
}

}

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−69

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs

• divides the execution of the enclosed code region among the
members of the team that encounter it

• work-sharing constructs do not launch new threads

• there is no implied barrier upon entry of a work-sharing constructs,
only at the end

• different types of work-sharing constructs

– for: shares iterations of a loop (data parallelism)

– sections: work is broken down into separate sections, each to
be executed by a thread (function parallelism)

– single: serialises a section of code

• must be encountered by all members of a team or none at all

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−70

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: for (1)

#pragma omp for [clause, …] newline

• iterations of the loop immediately following the “for” directive to be
executed in parallel (only in case a parallel region has already been
initiated)

• to branch out of a loop (break, return, exit, e. g.) associated with a
“for” directive is illegal

• program correctness must not depend upon which thread executes
a particular iteration

• some clauses

– lastprivate (list): like private, but values of listed variables are
copied back at the end into their original variables

– nowait: threads do not synchronise at the end of loop

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−71

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: for (2)

• clause schedule (type [,chunk]): describes how iterations of the loop
are divided among the threads; the default schedule is
implementation dependent

– static: iterations are divided into pieces of size chunk and
statically assigned to threads (if chunk is omitted, the iterations
are evenly distributed)

– dynamic: when a thread finishes one chunk, it is dynamically
assigned another (default chunk size is 1)

– guided: for a chunk size of 1, the iterations are divided in pieces
that exponentially decrease; for chunk size with value K, chunks
do not contain fewer than K iterations

– runtime: the scheduling decision is deferred until runtime by the
environment variable OMP_SCHEDULE

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−72

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: for (3)

• example

main () {
int i;
float a[N], b[N], c[N];

…

#pragma omp parallel shared (a, b, c) private (i)
{
#pragma omp for schedule (dynamic, 10) nowait

for (i = 0; i < N; ++i)
c[i] = a[i] + b[i];

}
…

}

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−73

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: sections (1)

#pragma omp sections [clause, …] newline
{
#pragma omp section newline

structured_block

#pragma omp section newline
structured_block

}

– independent “section” directives are nested within a “sections” directive;
each section is executed once by a thread, different sections may be
executed by different threads

– there is an implied barrier at the end of a “sections” directive

– to branch into or out of section blocks is illegal

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−74

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: sections (2)

• example

int i;
float a[N], b[N], c[N];

…
#pragma omp parallel shared (a, b, c) private (i)

{
#pragma omp sections nowait

{
#pragma omp section

for (i = 0; i < N/2; ++i) c[i] = a[i] + b[i];

#pragma omp section
for (i = N/2; i < N; ++i) c[i] = a[i] + b[i];

}
}

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−75

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– work-sharing constructs: single

#pragma omp single [clause, …] newline

– the enclosed code block is to be executed by only one thread (the
thread that reaches the code block first)

– threads that do not execute the “single” directive, wait at the end of the
enclosed code block

– might be useful when dealing with sections of code that are not thread
safe (such as I/O)

– to branch into or out of a single block is illegal

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−76

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– combined parallel work-sharing constructs

#pragma omp parallel for [clause, …] newline

• iterations will be distributed in equal sized blocks (i. e. schedule
static) to each thread

#pragma omp parallel sections [clause, …] newline

• specifies a parallel region containing a single “sections” directive

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−77

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– synchronisation constructs

#pragma omp master newline

• specifies a region that is only to be executed by the master

• there is no implied barrier associated with this directive

• to branch into or out of a master block is illegal

#pragma omp critical [name] newline

• specifies a region of code that must be executed by only one thread
at a time; threads trying to enter critical region are blocked until they
get permission

• optional name enables multiple critical regions to exist

• to branch into or out of a critical region is illegal

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−78

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– synchronisation constructs (cont’d)

#pragma omp barrier newline

• synchronises all threads, i. e. before resuming execution a thread
has to wait at that point until all other threads have reached that
barrier, too

#pragma omp atomic newline

• specifies the atomic update of a specific memory location

• applies only to a single, immediately following statement

• example

#pragma omp atomic
x = x + 1;

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−79

4 Programming Memory-Coupled Systems

Programming with OpenMP

• compiler directives (cont’d)

– synchronisation constructs (cont’d)

#pragma omp flush (list) newline

• identifies a synchronisation point at which the implementation must
provide a consistent view of memory, i. e. thread-visible variables
are written back to memory at this point

• optional list contains variables that will be flushed in order to avoid
flushing all variables

#pragma omp ordered newline

• specifies that iterations of the enclosed loop will be executed in
same order as if they were executed on a monoprocessor

• further details see http://www.openmp.org

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−80

4 Programming Memory-Coupled Systems

Programming with OpenMP

• data scope attribute clauses

#pragma omp threadprivate (list)

– used to make global file scope variables local and persistent to a thread
through the execution of multiple parallel regions

– directive must appear after declaration of listed variables

– each thread gets its own copies of variables, hence data written by one
thread is not visible to other threads

– threadprivate variables differ from private variables because they are
able to persist between different parallel sections of a code

– on first entry to a parallel region, data in threadprivate variables should
be assumed undefined, unless a “copyin” clause is specified in the
“parallel” directive

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−81

4 Programming Memory-Coupled Systems

Programming with OpenMP

• data scope attribute clauses (cont’d)

– clauses (1)

• if (condition)

• private (list), firstprivate (list), lastprivate (list), shared (list)

• default (shared | none)

• nowait

• schedule (static | dynamic | guarded | runtime [, chunk])

• ordered

• copyin (list)

– provides a means for assigning the same value to listed
threadprivate variables for all threads

– master thread variable is used as copy source, team threads are
initialised with its value upon entry into the parallel construct

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−82

4 Programming Memory-Coupled Systems

Programming with OpenMP

• data scope attribute clauses (cont’d)

– clauses (2)

• reduction (operator: list)

– performs a reduction on the listed variables, i. e. several values
are reduced to a single scalar value combined via the named
operation operator (sum, product, e. g.)

– listed variables must be of scalar type (no arrays and structs)
and be declared shared in the enclosing context

– the final result is written to the global shared variable

– operator can be one of the following types

» numerical: “+”, “−”, “∗”, “/”
» logical: AND (“&&”), OR (“||”)

» bitwise: AND (“&”), OR (“|”), XOR (“^”)

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−83

4 Programming Memory-Coupled Systems

Programming with OpenMP

• data scope attribute clauses (cont’d)

– example

main () {
int i;
int a[MAX], b[MAX];
int res = 0;

…

#pragma omp parallel default (shared) private (i)
{
#pragma omp for reduction (+: res) nowait

for (i = 0; i < MAX; ++i)
res = res + a[i]*b[i];

}

printf (“result = %d\n”, res);
}

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−84

4 Programming Memory-Coupled Systems

Programming with OpenMP

• data scope attribute clauses (cont’d)

directive
clause

parallel for sections single parallel for parallel sections

if

private

shared

default

firstprivate

lastprivate

reduction

copyin

schedule

ordered

nowait

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−85

4 Programming Memory-Coupled Systems

Programming with OpenMP

• runtime library

void omp_set_num_threads (int num_threads)

– sets the number of threads that will be used in the next parallel region; it
has precedence over the OMP_NUM_THREADS environment variable

– can only be called from serial portions of the code

int omp_get_num_threads (void)
int omp_get_max_threads (void)

– returns

• the number of threads that are currently executing in the parallel
region from which it is called

• the maximum number of threads that can be active

Technische Universität München

Dr. Ralf-Peter Mundani - Parallel Programming and High-Performance Computing - Summer Term 2008 4−86

4 Programming Memory-Coupled Systems

Programming with OpenMP

• runtime library (cont’d)

int omp_get_thread_num (void)

– returns the number (0 ≤ TID ≤ N−1) of the thread making this call, the
master thread has number “0”

int omp_in_parallel (void)

– may be called to determine if the section of code which is executing is
parallel or not returns a non-zero integer if parallel, and zero
otherwise

– further runtime library routines available, see OpenMP specification
(http://www.openmp.org) for details

	Parallel Programming�and High-Performance Computing
	4 Programming Memory-Coupled Systems�Overview
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Cache Coherence
	4 Programming Memory-Coupled Systems�Overview
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Memory Consistency
	4 Programming Memory-Coupled Systems�Overview
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Dependence Analysis
	4 Programming Memory-Coupled Systems�Overview
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP
	4 Programming Memory-Coupled Systems�Programming with OpenMP

