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SC’99 Tutorial: Agenda

l Setting the stage
– Parallel computing, hardware, software, etc.

l OpenMP: A quick overview

l OpenMP: A detailed introduction 

l Automatic Parallelism and Tools support.

l OpenMP case studies.
– Including performance tuning. 

l Common bugs in OpenMP programs 
– and how to avoid them.

l The future of OpenMP



Parallel Computing
What is it?

l Parallel computing is when a program uses 
concurrency to either:
udecrease the runtime for the solution to a problem.
uIncrease the size of the problem that can be solved.

Parallel Computing gives you 
more performance to throw 

at  your problems.



Parallel Computing: 
Writing a parallel application.

Original Problem
Tasks, shared and local data

Decompose
into tasks 

Code with a 
parallel Prog. Env.

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);

global_array Res(TYPE);
int N = get_num_procs();

int id = get_proc_id();
if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){
tmp = func(I);

Res.accumulate( tmp);
}

}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);

global_array Res(TYPE);
int N = get_num_procs();

int id = get_proc_id();
if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){
tmp = func(I);

Res.accumulate( tmp);
}

}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);

global_array Res(TYPE);
int N = get_num_procs();

int id = get_proc_id();
if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){
tmp = func(I);

Res.accumulate( tmp);
}

}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);

global_array Res(TYPE);
int Num = get_num_procs();

int id = get_proc_id();
if (id==0) setup_problem(N, Data);

for (int I= ID; I<N;I=I+Num){
tmp = func(I, Data);

Res.accumulate( tmp);
}

}

Group onto 

execu
tio

n units.

Units of execution + new shared data 
for extracted dependencies



Parallel Computing:
The Hardware is in great shape.

Time

ProcessorProcessor

Pentium® II XeonTM

IA-64 Merced*Merced*

1998 2000 2002

ClusterCluster

100Mb
NGIOVIA

16 Boxes 32 Boxes 128 Boxes?

*Intel code name

SMPSMP

1-4 CPUs 1-8 CPUs 1-16 CPUs

Limited by what 
the market 

demands - not by 
technology

IA-64 McKinley*McKinley*



Parallel Computing: 
… but where is the software?

lMost ISV’s have ignored parallel computing 
(other than coarse-grained multithreading for GUI’s 
and systems programming)

lWhy?  
uThe perceived difficulties of writing parallel 

software out-weigh the benefits

l The benefits are clear.  To increase the 
amount of parallel software, we need to 
reduce the perceived difficulties. 



Solution: Effective Standards for 
parallel programming

l Thread Libraries
– Win32 API - a low level approach.

– threads.h++ - a high level class library.

l Compiler Directives
– OpenMP - portable shared memory parallelism.

lMessage Passing Libraries
– MPI - www.mpi-softtech.com

l High Level Tools
– www.apri.com,  www.kai.com, www.pgroup.com

Our focus
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l Setting the stage
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OpenMP: Introduction

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

– A set of compiler directives and library 
routines  for parallel application programmers

– Makes it easy to create multi-threaded (MT) 
programs in Fortran, C and C++

– Standardizes last 15 years of SMP practice

OpenMP:  An API for Writing Multithreaded 
Applications

– A set of compiler directives and library 
routines  for parallel application programmers

– Makes it easy to create multi-threaded (MT) 
programs in Fortran, C and C++

– Standardizes last 15 years of SMP practice



OpenMP: Supporters*

l Hardware vendors
– Intel, HP, SGI, IBM, SUN, Compaq

l Software tools vendors
– KAI, PGI, PSR, APR, Absoft

l Applications vendors
– ANSYS, Fluent, Oxford Molecular, NAG, DOE 

ASCI, Dash, Livermore Software, and many 
others

**These names of these vendors were taken from the OpenMP web siteThese names of these vendors were taken from the OpenMP web site (www.(www.openmpopenmp.org).  We have .org).  We have 
made no attempts to confirm OpenMP support,  verify  conformity made no attempts to confirm OpenMP support,  verify  conformity to the specifications, or measure the to the specifications, or measure the 

degree of OpenMP utilization.degree of OpenMP utilization.



OpenMP: Programming Model

Fork-Join Parallelism: 
uMaster thread spawns a team of threads as needed.

uParallelism is added incrementally: i.e. the 
sequential program evolves into a parallel program.

Parallel Regions

Master 
Thread



OpenMP:
How is OpenMP typically used?

l OpenMP is usually used to parallelize loops:
– Find your most time consuming loops.

– Split them up between threads.

Parallel  ProgramSequential Program

void main()
{

double Res[1000];

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

void main()
{

double Res[1000];
#pragma omp parallel for

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

Split-up this loop between 
multiple threads

Split-up this loop between 
multiple threads



OpenMP:
How do threads interact?

l OpenMP is a shared memory model.
– Threads communicate by sharing variables.

l Unintended sharing of data can lead to race 
conditions:

– race condition: when the program’s outcome 
changes as the threads are scheduled differently.

l To control race conditions:
– Use synchronization to protect data conflicts.

l Synchronization is expensive so:
– Change how data is stored to minimize the need 

for synchronization. 
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OpenMP:
Some syntax details to get us started

lMost of the constructs in OpenMP are compiler 
directives or pragmas.
uFor C and C++, the pragmas take the form:

#pragma omp construct [clause [clause]…]

uFor Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

l Since the constructs are directives, an 
OpenMP program can  be compiled by 
compilers that don’t support OpenMP.



OpenMP:
Structured blocks

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

uMost OpenMP constructs apply to structured blocks.

– Structured block: a block of code with one point 
of entry at the top and one point of exit at the 
bottom.  The only other branches allowed are 
STOP statements in Fortran and exit() in C/C++.

C$OMP  PARALLEL

10 wrk(id) = garbage(id)

30    res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20    print *, id

C$OMP  PARALLEL

10 wrk(id) = garbage(id)

30    res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20    print *, id

A structured block Not A structured block



OpenMP: Contents

l OpenMP’s constructs fall into 5 categories:
uParallel Regions

uWorksharing

uData Environment 

uSynchronization

uRuntime functions/environment variables

l OpenMP is basically the same between 
Fortran and C/C++



OpenMP: Parallel Regions

l You create threads in OpenMP with the “omp
parallel” pragma.

l For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_thread_num();
pooh(ID,A);

}

ll Each thread calls Each thread calls pooh(ID) for for ID = = 0 to to 3

Each thread 
redundantly 

executes  
the code
within the 
structured 

block

Each thread 
redundantly 

executes  
the code
within the 
structured 

block



OpenMP: Parallel Regions

l Each thread executes the 
same code redundantly.

double A[1000];
omp_set_num_threads(4);

#pragma omp parallel
{

int ID = omp_thread_num();
pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 
copy of A 
is shared 
between all 
threads.

A single 
copy of A 
is shared 
between all 
threads.

Threads wait  here  for all threads to 
finish before proceeding (I.e. a barrier)

Threads wait  here  for all threads to 
finish before proceeding (I.e. a barrier)



Exercise 1:
A multi-threaded “Hello world” program

lWrite a multithreaded program where each 
thread prints a simple message (such as “hello 
world”).

l Use two separate printf statements and include 
the thread ID:

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) ”, ID);

lWhat do the results tell you about I/O with 
multiple threads?



OpenMP: Some subtle details (don’t 
worry about these at first)

l Dynamic mode (the default mode):
– The number of threads used in a parallel region 

can vary from one parallel region to another. 

– Setting the number of threads only sets  the 
maximum number of threads - you could get 
less. 

l Static mode:
– The number of threads is fixed and controlled by 

the programmer.

l OpenMP lets you nest parallel regions, but…
– A compiler can choose to serialize the nested 

parallel region (i.e. use a team with only one 
thread).



OpenMP: Contents

l OpenMP’s constructs fall into 5 categories:
uParallel Regions

uWorksharing

uData Environment 

uSynchronization

uRuntime functions/environment variables



OpenMP: Work-Sharing Constructs

l The “for” Work-Sharing construct splits up 
loop iterations  among the threads in a team

#pragma omp parallel
#pragma omp for 

for (I=0;I<N;I++){
NEAT_STUFF(I);

}

By default, there is a barrier at the end of 
the “omp for”.  Use the “nowait” clause to 
turn off the barrier.



Work Sharing Constructs
A motivating example

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 
#pragma omp for schedule(static) 

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 
region

OpenMP parallel 
region and a 
work-sharing for-
construct



OpenMP For constuct:
The schedule clause

l The schedule clause effects how loop iterations are 
mapped onto threads

uschedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

uschedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all 

iterations have been handled.

uschedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of 

the block starts large and shrinks down to size “chunk” as 
the calculation proceeds.

uschedule(runtime)
– Schedule  and chunk size taken from the 

OMP_SCHEDULE environment variable.



OpenMP: Work-Sharing Constructs

l The Sections work-sharing construct gives a 
different structured block to each thread.  

#pragma omp parallel
#pragma omp sections
{

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

By default, there is a barrier at the end of the “omp 
sections”.  Use the “nowait” clause to turn off the barrier.



OpenMP: Combined Parallel Work-
Sharing Constructs

l A short hand notation that combines the 
Parallel and work-sharing construct.

#pragma omp parallel for 
for (I=0;I<N;I++){

NEAT_STUFF(I);
}

l There’s also a “parallel sections” construct.



Exercise 2:
A multi-threaded “pi” program

l On the following slide, you’ll see a sequential 
program that uses numerical integration to 
compute an estimate of PI.

l Parallelize this program using OpenMP.  There 
are several options (do them all if you have 
time):

– Do it as an SPMD program using a parallel region 
only.

– Do it with a work sharing construct.

l Remember, you’ll need to make sure multiple 
threads don’t overwrite each other’s variables. 



PI Program: 
The sequential program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}



OpenMP:
More details: Scope of OpenMP constructs

Static or 
lexical
extent of 
parallel 
region

C$OMP PARALLEL

call whoami

C$OMP END PARALLEL

subroutine whoami

external omp_get_thread_num

integer iam, omp_get_thread_num

iam = omp_get_thread_num()

C$OMP CRITICAL

print*,’Hello from ‘, iam

C$OMP END CRITICAL

return

end

+

Orphan directives
can appear outside a 
parallel region

Dynamic extent
of parallel 
region includes 
static extent

bar.f
poo.f

OpenMP constructs can span multiple source files.



OpenMP: Contents

l OpenMP’s constructs fall into 5 categories:
uParallel Regions

uWorksharing

uData Environment 

uSynchronization

uRuntime functions/environment variables



Data Environment:
Default storage attributes

l Shared Memory programming model: 
– Most variables are shared by default

l Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE 

variables

– C: File scope variables, static

l But not everything is shared...
– Stack variables in sub-programs called from parallel regions 

are PRIVATE

– Automatic variables within a statement block are PRIVATE.



program sort

common /input/ A(10)

integer index(10)

call input

C$OMP PARALLEL  

call work(index)

C$OMP END PARALLEL

print*, index(1)

subroutine work

common /input/ A(10)

real temp(10)

integer count

save count

…………

Data Environment:
Example storage attributes

A, index, count

temp temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread

A, index and count are 
shared by all threads.

temp is local to each 
thread



Data Environment:
Changing storage attributes

l One can selectively change storage attributes 
constructs using the following clauses*

– SHARED

– PRIVATE
– FIRSTPRIVATE

– THREADPRIVATE

l The value of a private inside a parallel loop can be 
transmitted to a  global value outside the loop with:

– LASTPRIVATE

l The default status can be modified with:
– DEFAULT (PRIVATE | SHARED | NONE)

All the  clauses on this page 
only apply to the lexical extent
of the OpenMP construct.

All the  clauses on this page 
only apply to the lexical extent
of the OpenMP construct.

All data clauses apply to parallel regions and worksharing constructs except 
“shared” which only applies to parallel regions.



Private Clause

program wrong

IS = 0

C$OMP PARALLEL DO PRIVATE(IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

l private(var)  creates a local copy of var for each 
thread.

– The value is uninitialized

– Private copy is not storage associated with the original

IS  was not 
initialized

IS  was not 
initializedRegardless of 

initialization, IS is 
undefined at this 
point

Regardless of 
initialization, IS is 
undefined at this 
point



Firstprivate Clause

l Firstprivate is a special case of private.
– Initializes each private copy with the corresponding 

value from the master thread.

Regardless of initialization, IS is 
undefined at this point

Regardless of initialization, IS is 
undefined at this point

program almost_right

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

Each thread gets its own IS 
with an initial value of 0

Each thread gets its own IS 
with an initial value of 0



Lastprivate Clause

l Lastprivate passes the value of a  private from the 
last iteration  to a global variable.

IS is defined as its value at the last 
iteration (I.e. for J=1000)

IS is defined as its value at the last 
iteration (I.e. for J=1000)

program closer

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS) 

C$OMP+ LASTPRIVATE(IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

Each thread gets its own IS 
with an initial value of 0

Each thread gets its own IS 
with an initial value of 0



OpenMP: 
Another data environment example
l Here’s an example of PRIVATE and FIRSTPRIVATE

variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B) 
C$OMP& FIRSTPRIVATE(C)

l Inside this parallel region ...

l “A” is shared by all threads; equals 1

l “B” and “C” are local to each thread.
– B’s initial value is undefined

– C’s initial value equals  1

l Outside this parallel region ...

l The values of “B” and “C” are undefined.



OpenMP:
Default Clause

l Note that the default storage attribute is 
DEFAULT(SHARED) (so no need to specify)

l To change default: DEFAULT(PRIVATE)

ueach variable in static extent of the parallel region is made 
private as if specified in a private clause

umostly saves typing  

l DEFAULT(NONE): no default for variables in static 
extent. Must list storage attribute for each variable 
in static extent

Only the Fortran API supports default(private).  

C/C++ only has default(shared) or default(none).



OpenMP:
Default Clause Example

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads() 

each = itotal/np

………

C$OMP END PARALLEL

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads() 

each = itotal/np

………

C$OMP END PARALLEL These two 
codes are 
equivalent



Threadprivate

l Makes global data private to a thread
uFortran: COMMON blocks

uC: File scope and static variables

l Different from making them PRIVATE

uwith PRIVATE global variables are masked. 

uTHREADPRIVATE preserves global scope within each 
thread

l Threadprivate variables can be initialized using
COPYIN or by using DATA statements.



A threadprivate example

subroutine poo

parameter (N=1000)

common/buf/A(N),B(N)

C$OMP THREADPRIVATE(/buf/)

do i=1, N

B(i)= const* A(i) 

end do      

return      

end

subroutine poo

parameter (N=1000)

common/buf/A(N),B(N)

C$OMP THREADPRIVATE(/buf/)

do i=1, N

B(i)= const* A(i) 

end do      

return      

end

subroutine bar

parameter (N=1000)

common/buf/A(N),B(N)

C$OMP THREADPRIVATE(/buf/)

do i=1, N         

A(i) = sqrt(B(i))     

end do      

return      

end

subroutine bar

parameter (N=1000)

common/buf/A(N),B(N)

C$OMP THREADPRIVATE(/buf/)

do i=1, N         

A(i) = sqrt(B(i))     

end do      

return      

end

Consider two different routines called within a 
parallel region.

Because of the threadprivate construct, each 
thread executing these routines has its own copy 
of the common block /buf/.



OpenMP: Reduction

l Another clause that effects the way variables 
are shared:

– reduction (op : list)

l The variables in “list” must be shared in the 
enclosing parallel region.  

l Inside a parallel or a worksharing construct:
– A local copy of each list variable is made and 

initialized depending on the “op” (e.g. 0 for “+”)

– pair wise “op” is updated on the local value

– Local copies are reduced into a single global 
copy at the end of the construct.



OpenMP:  
Reduction example

#include <omp.h>
#define NUM_THREADS 2
void main ()
{

int i; 
double ZZ, func(), res=0.0;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel for reduction(+:res) private(ZZ) 
for (i=0; i< 1000; i++){

ZZ = func(I);
res = res + ZZ;

}
}



Exercise 3:
A multi-threaded “pi” program

l Return to your “pi” program and this time, use 
private, reduction and a worksharing construct 
to parallelize it. 

l See how similar you can make it to the original 
sequential program.



OpenMP: Some subtle details (don’t 
worry about these at first)

l The data scope clauses take a list argument
– The list can be a common block name with is a 

short hand for listing all the variables in the 
common block. 

l Default private for some loop indices:
– Fortran: loop indices are  private even if they are 

specified as shared.

– C: Loop indices on “work-shared loops” are 
private when  they otherwise would be shared.

l Not all privates are undefined
– Allocatable arrays in Fortran

– Class type (I.e. non-POD) variables in C++.

See the OpenMP spec. 
for more details.



OpenMP: More subtle details (don’t 
worry about these at first)

l Variables privitized in a parallel region can not be 
reprivitzied on an enclosed worksharing directive.

l Assumed size and assumed shape arrays can not be 
privitized.

l Fortran pointers or allocatable arrays can be private or 
shared but not lastprivate or firstprivate.

l When a common block is listed in a private, 
firstprivate, or lastprivate clause, its constituent 
elements can’t appear in other data scope clauses. 

l If an element of a shared common block is privitized, it 
is no longer storage associated with the common 
block.



OpenMP: Contents

l OpenMP’s constructs fall into 5 categories:
uParallel Regions

uWorksharing

uData Environment 

uSynchronization

uRuntime functions/environment variables



OpenMP: Synchronization

l OpenMP has the following constructs to 
support synchronization:

– atomic

– critical section

– barrier

– flush

– ordered

– single

– master
We discus  this here, but it really 
isn’t a synchronization construct.

We discus  this here, but it really 
isn’t a synchronization construct.

We discuss  this here, but it really 
isn’t a synchronization construct.  
It’s a work-sharing construct that 
includes synchronization.

We discuss  this here, but it really 
isn’t a synchronization construct.  
It’s a work-sharing construct that 
includes synchronization.



OpenMP: Synchronization

l Only one thread at a time can enter a critical
section.

C$OMP PARALLEL DO PRIVATE(B) 
C$OMP& SHARED(RES)

DO 100 I=1,NITERS
B =  DOIT(I)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE



OpenMP: Synchronization

l Atomic is a special case of a critical section 
that can be used for certain simple statements.  

l It applies only to the update of a memory 
location (the update of X in the following 
example)

C$OMP PARALLEL PRIVATE(B) 
B =  DOIT(I)

C$OMP ATOMIC
X = X + B

C$OMP END PARALLEL



OpenMP: Synchronization

l Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier 
#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
A[id] = big_calc3(id);

}
implicit barrier at the end 
of a parallel region

implicit barrier at the end 
of a parallel region

implicit barrier at the 
end of a for work-
sharing construct

implicit barrier at the 
end of a for work-
sharing construct

no implicit barrier 
due to nowait

no implicit barrier 
due to nowait



OpenMP: Synchronization

l The ordered construct enforces the 
sequential order for a block.

#pragma omp parallel private (tmp)
#pragma omp for ordered 

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res = consum(tmp);

}



OpenMP: Synchronization

l The master construct denotes a structured 
block  that is only executed by the master 
thread. The other threads just skip it (no 
implied barriers or flushes).

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp master

{     exchange_boundaries();   }
#pragma barrier

do_many_other_things();
}



OpenMP: Synchronization

l The single construct denotes a block of code 
that is executed by only one thread.

l A barrier and a flush are implied at the end of 
the single block.

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp single

{     exchange_boundaries();   }
do_many_other_things();

}



OpenMP: Synchronization

l The flush construct denotes a sequence point where a 
thread tries to create a consistent view of memory.

– All memory operations (both reads and writes) defined 
prior to the sequence point must complete. 

– All memory operations (both reads and writes) defined 
after  the sequence point must follow the flush.

– Variables in registers or write buffers must be updated in 
memory.

l Arguments to flush specify which variables are 
flushed. No arguments specifies that all thread visible 
variables are flushed.

This is a confusing construct and we won’t say much about it.  
To learn more, consult  the OpenMP specifications.



OpenMP:
A flush example

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1    ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

l This example shows how  flush is used to implement 
pair-wise synchronization. 

Make sure other threads can 
see my write.

Make sure the read picks up a 
good copy from memory.



OpenMP:
Implicit synchronization
l Barriers are implied on the following OpenMP 

constructs:

l Flush is implied on the following OpenMP 
constructs:

barrier
critical, end critical
end do
end parallel

barrier
critical, end critical
end do
end parallel

end sections
end single
ordered, end ordered

end sections
end single
ordered, end ordered

end parallel
end do  (except when nowait is used)
end sections (except when nowait is used) 
end critical
end single (except when nowiat is used)

end parallel
end do  (except when nowait is used)
end sections (except when nowait is used) 
end critical
end single (except when nowiat is used)



OpenMP: Some subtle details on 
directive nesting

l For, sections and single directives binding to the same 
parallel region can’t be nested.

l Critical sections with the same name can’t be nested.

l For, sections, and single can not appear in the dynamic 
extent of critical, ordered or master.

l Barrier can not appear in the dynamic extent of for, 
ordered, sections, single., master or critical

l Master can not appear in the dynamic extent of for, 
sections and single.

l Ordered are not allowed inside critical

l Any directives legal inside a parallel region are also 
legal outside a parallel region in which case they are 
treated as part of a team of size one.



OpenMP: Contents

l OpenMP’s constructs fall into 5 categories:
uParallel Regions

uWorksharing

uData Environment 

uSynchronization

uRuntime functions/environment variables



OpenMP: Library routines

l Lock routines
– omp_init_lock(), omp_set_lock(), omp_unset_lock(),

omp_test_lock()

l Runtime environment routines:
– Modify/Check the number of threads

– omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

– Turn on/off nesting and dynamic mode
– omp_set_nested(), omp_set_dynamic(), omp_get_nested(),

omp_get_dynamic()

– Are we in a parallel region?
– omp_in_parallel()

– How many processors in the system?
– omp_num_procs()



OpenMP: Library Routines

l Protect resources with locks.

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel private (tmp)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);
printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}    



OpenMP: Library Routines

l To fix the number of threads used in a 
program, first turn off dynamic mode and 
then set the number of threads.

#include <omp.h>
void main()
{  omp_set_dynamic(0);

omp_set_num_threads(4);
#pragma omp parallel

{  int id=omp_get_thread_num();
do_lots_of_stuff(id);  }

}



OpenMP: Environment Variables

l Control how “omp for schedule(RUNTIME)” loop 
iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

l Set the default number of threads to use.

– OMP_NUM_THREADS int_literal

l Can the program use a different number of threads in 
each parallel region?

– OMP_DYNAMIC TRUE || FALSE

l Will nested parallel regions create new teams of 
threads, or will they be serialized?

– OMP_NESTED TRUE || FALSE



SC’99 Tutorial: Agenda

l Setting the stage
– Parallel computing, hardware, software, etc.

l OpenMP: A quick overview

l OpenMP: A detailed introduction 

l Automatic Parallelism and Tools support.

l OpenMP case studies.
– Including performance tuning. 

l Common bugs in OpenMP programs 
– and how to avoid them.

l The future of OpenMP



Generating OpenMP Programs 
Automatically

OpenMP
program

user
inserts

directives

parallelizing
compiler
inserts
directives

user
tunes

program

Source-to-source
restructurers:
• F90 to F90/OpenMP
• C     to C/OpenMP

Examples:
• SGI F77 compiler

(-apo -mplist option)
• Polaris  compiler



The Basics About
Parallelizing Compilers
l Loops are the primary source of parallelism in 

scientific and engineering applications. 

l Compilers detect loops that have independent 
iterations.

DO I=1,N
A(expression1) = …

… = A(expression2)
ENDDO

The loop is 
independent if, for 
different iterations, 
expression1 is always  
different from 
expression2



Basic Compiler Transformations

Data privatization:

DO i=1,n
work(1:n) = ….
.
.
.
…  =   work(1:n)

ENDDO

C$OMP PARALLEL DO
C$OMP+ PRIVATE (work)
DO i=1,n

work(1:n) = ….
.
.
.
…  =   work(1:n)

ENDDO

Each processor is given a separate version of the 
private data, so there is no sharing conflict 



Basic Compiler Transformations

Reduction recognition:

DO i=1,n
...

sum = sum + a(i) 
… 

ENDDO

C$OMP PARALLEL DO
C$OMP+ REDUCTION (+:sum)
DO i=1,n

...
sum = sum + a(i) 
… 

ENDDO

Each processor will accumulate partial sums, followed 
by a combination of these parts at the end of the loop.



Basic Compiler Transformations

Induction variable substitution:

i1 = 0
i2 = 0
DO I =1,n

i1 = i1 + 1
B(i1) = ...

i2 = i2 + i
A(i2) = … 

ENDDO

C$OMP PARALLEL DO 
DO I =1,n

B(i) = ...

A((i**2 + i)/2) = …

ENDDO

The original loop contains data dependences: each 
processor modifies the shared variables i1, and i2.



Compiler Options

Examples of  options from the KAP parallelizing 
compiler (KAP includes some 60 options)
uoptimization levels 

– optimize : simple analysis, advanced analysis, loop 
interchanging, array expansion

– aggressive: pad common blocks, adjust data layout

usubroutine inline expansion
– inline all, specific routines, how to deal with libraries

u try specific optimizations

– e.g., recurrence and reduction recognition, loop fusion 

(These transformations may degrade performance)



More About Compiler Options

uLimits on amount of optimization: 

– e.g., size of optimization data structures, number of optimization 
variants tried

uMake certain assumptions: 
– e.g., array bounds are not violated, arrays are not aliased

uMachine parameters: 
– e.g., cache size, line size, mapping

uListing control 

Note, compiler options can be a substitute for advanced 
compiler strategies. If the compiler has limited 
information, the user can help out.



Inspecting the Translated Program

l Source-to-source restructurers:
u transformed source code is the actual output

u Example: KAP

l Code-generating compilers:
u typically have an option for viewing the translated 

(parallel) code

u Example: SGI f77 -apo -mplist

This can be the starting point for code tuning



Compiler Listing

The listing gives many useful clues for improving the 
performance:
uLoop optimization tables
uReports about data dependences
uExplanations about applied transformations
uThe annotated, transformed code
uCalling tree
uPerformance statistics

The type of reports to be included in the listing can be 
set through compiler options.
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Tuning Automatically-
Parallelized Code

l This task is similar to explicit parallel 
programming (will be discussed later)

l Two important differences :
uThe compiler gives hints in its listing,  which may 

tell you where to focus attention. E.g., which 
variables have data dependences.
uYou don’t need to perform all transformations by 

hand. If you expose the right information to the 
compiler, it will do the translation for you.

(E.g., C$assert independent)



Why Tuning Automatically-
Parallelized Code?

Hand improvements can pay off because
l compiler techniques are limited

E.g., array reductions are parallelized by only 
few compilers

l compilers may have insufficient 
information 

E.g.,
uloop iteration range may be input data
uvariables are defined in other subroutines (no 

interprocedural analysis)



SC’99 Tutorial: Agenda

l Setting the stage
– Parallel computing, hardware, software, etc.

l OpenMP: A quick overview

l OpenMP: A detailed introduction 

l Automatic Parallelism and Tools support.

l OpenMP case studies.
– Including performance tuning. 

l Common bugs in OpenMP programs 
– and how to avoid them.

l The future of OpenMP



Performance Tuning and Case 
Studies with Realistic 

Applications

1. Performance tuning of several benchmarks

2. Case study of a large-scale application



Performance Tuning 
Example 1: MDG
l MDG: A Fortran code of the “Perfect Benchmarks”.  

l Automatic parallelization does not improve this code.
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improvements were 
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MDG: Tuning Steps

Step 1: parallelize the most time-consuming 
loop. It consumes 95% of the serial 
execution time. This takes:
uarray privatization

ureduction parallelization

Step 2: balancing the iteration space of this 
loop.
uLoop is “triangular”. By default unbalanced 

assignment of iterations to processors.



MDG Code Sample

c1  =  x(1)>0

c2  =  x(1:10)>0

DO i=1,n

DO j=i,n

IF (c1) THEN rl(1:100) = …

…

IF (c2) THEN … = rl(1:100)

sum(j) = sum(j) + …

ENDDO

ENDDO

c1  =  x(1)>0
c2  =  x(1:10)>0 

Allocate(xsum(1:#proc,n))

C$OMP PARALLEL DO
C$OMP+ PRIVATE (I,j,rl,id) 
C$OMP+ SCHEDULE (STATIC,1) 
DO  i=1,n

id = omp_get_thread_num()

DO j=i,n

IF (c1) THEN rl(1:100) = …

…

IF (c2) THEN … = rl(1:100)

xsum(id,j) = xsum(id,j) + …

ENDDO

ENDDO

C$OMP PARALLEL DO
DO i=1,n

sum(i)=sum(i)+xsum(1:#proc,i)
ENDDO

Structure of the most time-
consuming loop in MDG:

Original

Parallel



ARC2D: A Fortran code of the “Perfect Benchmarks”.  

Performance Tuning 
Example 2: ARC2D
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the machine could be 
improved..



ARC2D: Tuning Steps

l Step 1: 
Loop interchanging increases cache locality through 

stride-1 references.

l Step 2: 
Move parallel loops to outer positions

l Step 3: 
Move synchronization points outward

l Step 4:
Coalesce loops



!$OMP PARALLEL DO
!$OMP+PRIVATE(R1,R2,K,J)

DO k = 2, kmax-1 
DO j = jlow, jup

r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k)
r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k)
coef(j, k) = ABS(r1/r2)

ENDDO
ENDDO

!$OMP END PARALLEL

!$OMP PARALLEL DO
!$OMP+PRIVATE(R1,R2,K,J)

DO j = jlow, jup
DO k = 2, kmax-1

r1 = prss(jminu(j), k) + prss(jplus(j), k) + (-2.)*prss(j, k)
r2 = prss(jminu(j), k) + prss(jplus(j), k) + 2.*prss(j, k)

coef(j, k) = ABS(r1/r2)
ENDDO

ENDDO
!$OMP END PARALLEL

ARC2D: Code  Samples

Loop interchanging increases cache locality



ARC2D: Code  Samples

Increasing 
parallel loop 
granularity
through 
NOWAIT clause

!$OMP PARALLEL
!$OMP+PRIVATE(LDI,LD2,LD1,J,LD,K)

DO k = 2+2, ku-2, 1
!$OMP DO

DO j = jl, ju
ld2 = a(j, k)
ld1 = b(j, k)+(-x(j, k-2))*ld2
ld = c(j, k)+(-x(j, k-1))*ld1+(-y(j, k-1))*ld2
ldi = 1./ld
f(j, k, 1) = ldi*(f(j, k, 1)+(-f(j, k-2, 1))*ld2+(-f(j, k-1, 1))*ld1)
f(j, k, 2) = ldi*(f(j, k, 2)+(-f(j, k-2, 2))*ld2+(-f(jk-2, 2))*ld1)
x(j, k) = ldi*(d(j, k)+(-y(j, k-1))*ld1)
y(j, k) = e(j, k)*ldi

ENDDO
!$OMP END DO

ENDDO
!$OMP END PARALLEL

NOWAIT



ARC2D: Code  Samples

!$OMP PARALLEL DO
!$OMP+PRIVATE(n, k,j)

DO  n = 1, 4
DO k = 2, kmax-1
DO j = jlow, jup
q(j, k, n) = q(j, k, n)+s(j, k, n)
s(j, k, n) = s(j, k, n)*phic
ENDDO
ENDDO
ENDDO

!$OMP END PARALLEL

!$OMP PARALLEL DO
!$OMP+PRIVATE(nk,n,k,j)

DO nk = 0,4*(kmax-2)-1
n = nk/(kmax-2) + 1
k = MOD(nk,kmax-2)+2
DO j = jlow, jup
q(j, k, n) = q(j, k, n)+s(j, k, n)
s(j, k, n) = s(j, k, n)*phic
ENDDO
ENDDO 

!$OMP END PARALLEL

Increasing parallel loop granularity
though loop coalescing



Performance Tuning Example 3: 
TOMCATV

TOMCATV: A Fortran code of the  SPEC 95 
benchmarks.  

TOMCATV is 
parallelized very well 
by available 
compilers. However, 
like in ARC2D, the 
mapping of the code 
to the machine could 
be improved.
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TOMCATV: Tuning Steps

l Step1:  

Parallelizing MAX reduction

l Step2: 
Cache optimization and granularity increase 

through loop interchange and array transpose



TOMCATV Code Samples

C$OMP PARALLEL DO
C$OMP+ REDUCTION (MAX:rxm,rxy)
DO j = 2, n 

DO i = 2, n
rxm= MAX(rxm, ABS(rx(i, j)))
rym = MAX(rym, ABS(ry(i, j))) 

ENDDO     
END DO

DO j = 2, n

DO i = 2, n

rxm= MAX(rxm,  ABS(rx(i, j))) 

rym= MAX(rym,  ABS(ry(i, j)))

ENDDO

ENDDO

Parallelizing MAX reduction:



TOMCATV Code Samples

REAL rx(jdim,idim)

C$OMP PARALLEL DO 

DO i = 2, n-1 

DO j = 2, n

rx(i,j) = rx(i,j-1)+...

ENDDO      

ENDDO

Better cache locality through array transposition:

REAL rx(idim,jdim)

C$OMP PARALLEL DO

DO i = 2, n-1 

DO j = 2, n

rx(j,i) = rx(j-1,i)+... 

ENDDO      

ENDDO



What Tools Did We Use for 
Performance Analysis and Tuning?

l Compilers
uthe starting point for our performance tuning was 

always the compiler-parallelized program.

uIt reports: parallelized loops, data dependences

l Subroutine and loop profilers
ufocusing attention on the  most time-consuming 

loops is absolutely essential.

l Performance tables:
utypically comparing performance differences at the 

loop level.



Guidelines for Fixing 
“Performance Bugs”
l The methodology that worked for us:
uUse compiler-parallelized code as a starting point

uGet loop profile and compiler listing

uInspect time-consuming loops (biggest potential  for 
improvement)

– Case 1. Check for parallelism where the compiler 
could not find it

– Case 2. Improve parallel loops where the 
speedup is limited



Performance Tuning

Case 1: if the loop is not parallelized 
automatically, do this:

l Check for parallelism:
uread the compiler explanation
ua variable may be independent even if the compiler 

detects dependences (compilers are conservative)
ucheck if conflicting array is privatizable (compilers 

don’t perform array privatization well)

l If you find parallelism, add OpenMP parallel 
directives, or make the information explicit for 
the parallelizer



Performance Tuning

Case 2: if the loop is parallel but does not perform well, 
consider several optimization factors:

Parallelization 
overhead

Memory

CPU CPU CPU

Spreading 
overhead

High overheads are caused by:

•parallel startup cost
•small loops
•additional parallel code
•over-optimized inner loops
•less optimization for  parallel code

•load imbalance
•synchronized section
•non-stride-1 references
•many shared references
•low cache affinity

serial
program

parallel
program



Case Study of a Large-Scale 
Application

Converting a Seismic Processing Application 

to OpenMP

l Overview of the Application

l Basic use of OpenMP

l OpenMP Issues Encountered

l Performance Results



Overview of Seismic

l Representative of modern seismic processing 
programs used in the search for oil and gas. 

l 20,000 lines of Fortran. C subroutines interface 
with the operating system.

l Available in a serial and a parallel variant.

l Parallel code is available in a message-passing 
and an OpenMP form. 

l Is part of the SPEChpc benchmark suite. 
Includes 4 data sets: small to x-large. 



Seismic:
Basic Characteristics
l Program structure: 
u240 Fortran and 119 C subroutines.

lMain algorithms:
u FFT, finite difference solvers

l Running time of Seismic (@ 500MFlops):
usmall data set:  0.1 hours
ux-large data set: 48 hours

l IO requirement:
usmall data set: 110 MB
ux-large data set: 93 GB



Basic OpenMP Use: 
Parallelization Scheme
l Split into p parallel tasks 

(p = number of processors)

Program Seismic
initialization

C$OMP PARALLEL
call main_subroutine()

C$OMP END PARALLEL

initialization done 
by master 
processor only

main computation 
enclosed in one 
large parallel region

→ SPMD execution scheme



Basic OpenMP Use: 
Data Privatization
lMost data structures are private,

i.e., Each thread has its own copy.

l Syntactic forms: 

Program Seismic
...
C$OMP PARALLEL
C$OMP+PRIVATE(a)

a = “local computation”
call x()

C$END PARALLEL

Subroutine x()
common /cc/ d
c$omp threadprivate (/cc/)
real b(100)
...
b() = “local computation”
d = “local computation”
...



Basic OpenMP Use: 
Synchronization and Communication

compute

communicate

compute

communicate

copy to shared buffer;
barrier_synchronization;
copy from shared buffer;

Copy-synchronize scheme 
corresponds to message 
send-receive operations in 
MPI programs



OpenMP Issues:
Mixing Fortran and C

l Bulk of computation is done in 
Fortran

l Utility routines are in C:
u IO operations
u data partitioning routines
u communication/synchronization 

operations

l OpenMP-related issues:
u IF C/OpenMP compiler is not 

available, data privatization must 
be done through “expansion”.

uMix of Fortran and C is 
implementation dependent

Data privatization in OpenMP/C
#pragma omp thread private (item) 
float item;
void x(){
... = item;

}

Data expansion in 
absence of OpenMP/C
float item[num_proc];
void x(){

int thread;
thread = omp_get_thread_num();
... = item[thread];

}



OpenMP Issues:
Broadcast Common Blocks

common /cc/ cdata
common /dd/ ddata
c initialization

cdata = ...
ddata = ...

C$OMP PARALEL
C$OMP+COPYIN(/cc/, /dd/)

call main_subroutine()
C$END PARALLEL 

Issues in Seismic:
• At the start of the parallel 
region is it not yet known which 
common blocks need to be 
copied in.

Solution:  
• copy-in all common blocks 

→ overhead



OpenMP Issues:
Multithreading IO and malloc
IO routines and memory allocation are called 

within parallel threads, inside C utility routines.

l OpenMP requires all standard libraries and 
instrinsics to be thread-save. However the 
implementations are not always compliant.

→→ system-dependent solutions need to be found

l The same issue arises if standard C routines 
are called inside a parallel Fortran region or in 
non-standard syntax.

Standard C compilers do not know anything about 
OpenMP and the thread-safe requirement.



OpenMP Issues:
Processor Affinity
l OpenMP currently does not specify or provide 

constructs for controlling the binding of 
threads to processors. 

l Processors can migrate, causing overhead. 
This behavior is system-dependent.

System-dependent solutions may be available.

parallel
region tasks may migrate as a result of 

an OS event

task1
task1
task1
task1

p1 2 3 4



Performance Results
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l Setting the stage
– Parallel computing, hardware, software, etc.

l OpenMP: A quick overview

l OpenMP: A detailed introduction 

l Automatic Parallelism and Tools support.

l OpenMP case studies.
– Including performance tuning. 

l Common bugs in OpenMP programs 
– and how to avoid them.

l The future of OpenMP



SMP Programming errors

l Shared memory parallel programming is a 
mixed bag:
uIt saves the programmer from having to map data 

onto multiple processors.  In this sense, its much 
easier.

uIt opens up a range of new errors coming from 
unanticipated shared resource conflicts.



2 major SMP errors

l Race Conditions
– The outcome of a program depends on the 

detailed timing of the threads in the team.

l Deadlock
– Threads lock up waiting on a locked resource 

that will never become free.



Race Conditions

l The result varies 
unpredictably based on 
detailed order of execution for 
each section.

l Wrong answers produced 
without warning! 

C$OMP PARALLEL SECTIONS

A = B + C

C$OMP SECTION

B = A + C

C$OMP SECTION

C = B + A

C$OMP END PARALLEL SECTIONS 



Race Conditions:
A complicated solution

l In this example, we choose 
the assignments to occur in 
the order A, B, C.
u ICOUNT forces this order.
u FLUSH so each thread sees 

updates to ICOUNT - NOTE: 
you need the flush on each 
read and each write. 

ICOUNT = 0

C$OMP PARALLEL SECTIONS

A = B + C

ICOUNT = 1

C$OMP FLUSH ICOUNT

C$OMP SECTION

1000 CONTINUE

C$OMP FLUSH ICOUNT

IF(ICOUNT .LT. 1) GO TO 1000

B = A + C

ICOUNT = 2

C$OMP FLUSH ICOUNT

C$OMP SECTION

2000  CONTINUE

C$OMP FLUSH ICOUNT

IF(ICOUNT .LT. 2) GO TO 2000

C = B + A

C$OMP END PARALLEL SECTIONS 



Race Conditions

l The result varies 
unpredictably because the 
value of X isn’t dependable 
until the barrier at the end of 
the do loop.

l Wrong answers produced 
without warning!

l Solution: Be careful when you 
use NOWAIT.

C$OMP PARALLEL SHARED (X)

C$OMP& PRIVATE(TMP) 

ID = OMP_GET_THREAD_NUM()

C$OMP DO REDUCTION(+:X)

DO 100 I=1,100

TMP = WORK(I)

X = X + TMP

100  CONTINUE

C$OMP END DO NOWAIT

Y(ID) = WORK(X, ID)

C$OMP END PARALLEL  



Race Conditions

l The result varies 
unpredictably because access 
to shared variable  TMP is not 
protected.

l Wrong answers produced 
without warning!

l The user probably wanted to 
make TMP private. 

REAL TMP, X

C$OMP PARALLEL DO REDUCTION(+:X)

DO 100 I=1,100

TMP = WORK(I)

X = X + TMP

100  CONTINUE

C$OMP END DO

Y(ID) = WORK(X, ID)

C$OMP END PARALLEL  
I lost an afternoon to this bug last 
year.  After spinning my wheels and 
insisting there was  a bug in KAI’s 
compilers, the KAI tool Assure 
found the problem immediately!

I lost an afternoon to this bug last 
year.  After spinning my wheels and 
insisting there was  a bug in KAI’s 
compilers, the KAI tool Assure 
found the problem immediately!



Exercise 4:
Race conditions and the “pi” program

l Return to your “pi” program and this time,  drop 
the private clause on x.  In other words, let all 
threads use the same global variable for x.
uDoes your program still work?

uRun it many times and see what happens to the 
answer.

uChange the number of threads.  Does the answer 
change?



Deadlock

l This shows a race condition and 
a deadlock.

l If A is locked by one thread and B 
by another, you have deadlock.

l If the same thread gets both 
locks, you get a race condition -
i.e. different behavior depending 
on detailed interleaving of the 
thread.

l Avoid nesting different locks.

CALL OMP_INIT_LOCK (LCKA)

CALL OMP_INIT_LOCK (LCKB)

C$OMP PARALLEL SECTIONS

C$OMP SECTION

CALL OMP_SET_LOCK(LCKA)

CALL OMP_SET_LOCK(LCKB)

CALL USE_A_and_B (RES)

CALL OMP_UNSET_LOCK(LCKB)

CALL OMP_UNSET_LOCK(LCKA)

C$OMP SECTION

CALL OMP_SET_LOCK(LCKB)

CALL OMP_SET_LOCK(LCKA)

CALL USE_B_and_A (RES)

CALL OMP_UNSET_LOCK(LCKA)

CALL OMP_UNSET_LOCK(LCKB)

C$OMP END SECTIONS



Deadlock

l This shows a race condition and 
a deadlock.

l If A is locked in the first section 
and the if statement branches 
around the unset lock, threads 
running the other sections 
deadlock waiting for the lock to 
be released.

l Make sure you release your 
locks.

CALL OMP_INIT_LOCK (LCKA)

C$OMP PARALLEL SECTIONS

C$OMP SECTION

CALL OMP_SET_LOCK(LCKA)

IVAL = DOWORK()

IF (IVAL .EQ. TOL) THEN

CALL OMP_UNSET_LOCK (LCKA)

ELSE

CALL ERROR (IVAL)

ENDIF

C$OMP SECTION

CALL OMP_SET_LOCK(LCKA)

CALL USE_B_and_A (RES)

CALL OMP_UNSET_LOCK(LCKA)

C$OMP END SECTIONS



OpenMP death-traps

uAre you using threadsafe libraries?

uI/O inside a parallel region can interleave 
unpredictably. 

uMake sure you understand what your constructors 
are doing with private objects.

uPrivate variables can mask globals.

uUnderstand when shared memory is coherent.  
When in doubt, use FLUSH. 

u NOWAIT removes implied barriers.



Navigating through the Danger Zones

l Option 1: Analyze your code to make sure 
every semantically permitted interleaving of 
the threads yields the correct results.
uThis can be prohibitively difficult due to the 

explosion of possible interleavings.

uTools like KAI’s Assure can help.



Navigating through the Danger 
Zones
l Option 2: Write SMP code that  is portable and 

equivalent to the sequential form.
uUse a safe subset of OpenMP.

uFollow a set of “rules” for Sequential Equivalence.



Portable Sequential Equivalence

lWhat is Portable Sequential Equivalence 
(PSE)?

– A program is sequentially equivalent if its results 
are the same with one thread and many threads.

– For a program to be portable (i.e. runs the same 
on  different platforms/compilers) it must execute 
identically when the OpenMP constructs are 
used or ignored.  



Portable Sequential Equivalence

l Advantages of PSE
– A PSE program can run on a wide range of 

hardware and with different compilers -
minimizes software development costs.

– A PSE program can be tested and debugged in 
serial mode with off the shelf tools - even if they 
don’t support OpenMP.



2 Forms of Sequential 
Equivalence
l Two forms of Sequential equivalence based on 

what you mean by the phrase “equivalent to 
the single threaded execution”:

– Strong SE: bitwise identical results.

– Weak SE:  equivalent mathematically but due to 
quirks of floating point arithmetic, not bitwise
identical. 



Strong Sequential Equivalence: rules

uControl data scope with the base language

– Avoid the data scope clauses.

– Only use private for scratch variables local to a 
block (eg. temporaries or loop control variables) 
whose global initialization don’t matter.

uLocate all cases where a shared variable can be 
written by multiple threads.

– The access to the variable must be protected.

– If multiple threads combine results into a single 
value, enforce sequential order.

– Do not use the reduction clause.



Strong Sequential Equivalence: 
example

l Everything is shared except I 
and TMP.  These can be private 
since they are not initialized and 
they are unused outside the 
loop.

l The summation into RES occurs 
in the sequential order so the 
result from the program is 
bitwise compatible with the 
sequential program.

l Problem: Can be inefficient if 
threads finish in an order that’s 
greatly different from the 
sequential order.

C$OMP PARALLEL  PRIVATE(I, TMP) 

C$OMP DO  ORDERED

DO 100 I=1,NDIM

TMP =ALG_KERNEL(I)

C$OMP ORDERED

CALL COMBINE (TMP, RES)

C$OMP END ORDERED

100   CONTINUE 

C$OMP END PARALLEL



Weak Sequential equivalence

l For weak sequential equivalence only mathematically valid 
constraints are enforced.

– Floating point arithmetic is not associative and not commutative.

– In most cases, no particular grouping of floating point operations 
is mathematically preferred so why take a performance hit by 
forcing the sequential order?

u In most cases, if you need a particular grouping of floating point 
operations, you have a bad algorithm.

l How do you write a program that is portable and satisfies weak 
sequential equivalence?
u Follow the same rules as the strong case, but relax sequential 

ordering constraints.



Weak equivalence: example

C$OMP PARALLEL  PRIVATE(I, TMP) 

C$OMP DO

DO 100 I=1,NDIM

TMP =ALG_KERNEL(I)

C$OMP CRITICAL

CALL COMBINE (TMP, RES)

C$OMP END CRITICAL

100   CONTINUE 

C$OMP END PARALLEL

l The summation into RES 
occurs one thread at a time, 
but in any order so the result 
is not bitwise compatible with 
the sequential program.

l Much more efficient, but some 
users get upset when low 
order bits vary between 
program runs.



Sequential Equivalence isn’t a Silver Bullet

l This program follows the 
weak PSE rules, but its still 
wrong. 

l In this example, RAND() may 
not be thread safe.  Even if it 
is, the pseudo-random 
sequences might overlap 
thereby throwing  off the basic 
statistics.

C$OMP PARALLEL  

C$OMP& PRIVATE(I, ID, TMP, RVAL)

ID = OMP_GET_THREAD_NUM()    

N  = OMP_GET_NUM_THREADS()    

RVAL = RAND ( ID )

C$OMP DO 

DO 100 I=1,NDIM

RVAL = RAND (RVAL)

TMP =RAND_ALG_KERNEL(RVAL)

C$OMP CRITICAL

CALL COMBINE (TMP, RES)

C$OMP END CRITICAL

100   CONTINUE 

C$OMP END PARALLEL



Conclusion

l OpenMP is:
uA great way to write fast executing code.

uYour gateway to special, painful errors.

l You can save yourself  grief if you consider the 
possible danger zones as you write your 
OpenMP programs.

l Tools and/or a discipline of writing portable 
sequentially equivalent programs can help. 



SC’99 Tutorial: Agenda

l Setting the stage
– Parallel computing, hardware, software, etc.

l OpenMP: A quick overview

l OpenMP: A detailed introduction 

l Automatic Parallelism and Tools support.

l OpenMP case studies.
– Including performance tuning. 

l Common bugs in OpenMP programs 
– and how to avoid them.

l The future of OpenMP



OpenMP Futures: The ARB

l The future of OpenMP is in the hands of the 
OpenMP Architecture Review Board (the ARB)

– Intel, KAI, IBM, HP, Compaq, Sun, SGI, DOE ASCI

l The ARB resolves interpretation issues and 
manages the evolution of new OpenMP API’s. 

lMembership in the ARB is Open to any 
organization with a stake in OpenMP.

– Research organization (e.g. DOE ASCI)

– Hardware vendors  (e.g. Intel or HP)

– Software vendors (e.g. KAI)



ARB: What do we do

lWe meet every two to four weeks and work on:
uInterpretation - resolve ambiguities in the 

specifications.

uAnswer questions - each member organization takes 
a one month shift answering questions to the ARB.

uDevelop new specifications - We usually have a 
specification project underway .

uWhatever else it takes to further OpenMP’s impact -
press releases, tutorials, test suites, etc.

lMeetings are held by email and over the phone 
so travel costs are nil.



Goals of the ARB: Part 1

l To produce API specifications that let programmers 
write portable, efficient, and well understood parallel 
programs for shared memorysystems. 

l To produce specifications that can be readily 
implemented in robust commercial products.

– i.e. we want to standardize common or well 
understood practices, not chart new research 
agendas.

l To whatever extent makes sense, deliver consistency 
between programming languages. 

– The specification should map cleanly and 
predictably between C, Fortran, and C++.



Goals of the ARB: Part 2.

l We want OpenMP to be just large enough to express 
important, control-parallel, shared memory programs --
but no larger. 

– OpenMP needs to stay "lean and mean". 

l Legal programs under an older version of an OpenMP 
specification should  continue to be legal under newer 
specifications.

l To whatever extent possible, produce specifications 
that are sequentially  consistent.

– If sequential consistency is violated, there 
should be  documented reasons for doing so.



The Future of OpenMP

l OpenMP is an evolving standard.  We will see 
to it that it is well matched to the changing 
needs of the shard memory programming 
community. 

l Here’s what’s coming in the future:
– OpenMP 1.1 for Fortran: 

– This is a cleaned up version of 1.0 where we have fixed typos and 
merged the interpretations into the specification.

– Status: We are in the  final proofreading stage.  Release: this fall.

– OpenMP 2.0 for Fortran: 
– This is a major update  of OpenMP for Fortran. 

– Status.  Under  active development. Done sometime in 2000. 



OpenMP version 2.0: 
Time line.

l Began gathering feedback winter 1999.

l Started regular meetings to create the standard, 
late spring 1999.

l Freeze list of features to consider, end of 
September, 1999.

l Completion date? Probably sometime next year 
but we will not rush it.  Its better to be a little late 
than to do a poor job.



OpenMP 2.0: Goals*

l In addition to the general goals laid out by the 
ARB, we have some specific goals for OpenMP 
2.0:
uWe want to support the Fortran95 language and the 

programming practices Fortran95 programmers typically 
use.

uFortran77 compilers must be able to conform to 
OpenMP 2.0.

uWe want to extend the range of applications that can be 
parallelized with OpenMP.

*This is an unofficial set of goals.  We’ve discussed them, but a final vote has 
not been taken.



OpenMP 2.0:
Some key items on “the list”

l Define threadprivate module data.
uOur  number one request from Fortran90 users.

l Define worksharing constructs for Fortran90 
array expressions.

l Allow arrays in reductions.

l Cleanup the language
uallow comments on a directive

ureprivatization of private variables

uprovide a module defining runtime library interfaces.

u… and many more subtle changes



OpenMP 2.0:
Some key items dropped from “the list”

l Parallel I/O.
– This would be a huge addition to the language … 

violates the “lean and mean” goal. 

l Explicit thread groups.
– Violates the “lean and mean” rule, but also, how 

to implement and use this construct is a research 
question.

l Condition variable synchronization. 
– violates the sequential consistency goal.  Makes 

it too easy to write programs that dead-lock 
under sequential readings.



l Get more performance from applications running 
on multiprocessor workstations

l Get software to market sooner using a simplified 
programming model

l Reduce support costs by developing for multiple 
platforms with a single source code

Summary: OpenMP Benefits*

*Disclaimer: these benefits depend upon individual circumstance*Disclaimer: these benefits depend upon individual circumstances or system configurations and might not always be available.s or system configurations and might not always be available.

Learn more at www.openmp.org



Extra Slides
A series of parallel pi programs

®®



PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}



Parallel Pi Program

l Let’s speed up the program with multiple 
threads.

l Consider the Win32 threads library:
uThread management and interaction is explicit.

uProgrammer has full control over the threads



Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{

int i, start;
double x, sum = 0.0;

start = *(int *) arg;
step = 1.0/(double) num_steps;

for (i=start;i<= num_steps; i=i+NUM_THREADS){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

void main ()
{

double pi; int i;
DWORD threadID;
int threadArg[NUM_THREADS];

for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){
thread_handles[i] = CreateThread(0, 0,

(LPTHREAD_START_ROUTINE) Pi,
&threadArg[i], 0, &threadID);

}

WaitForMultipleObjects(NUM_THREADS, 
thread_handles, TRUE,INFINITE);

pi = global_sum * step;

printf(" pi is %f \n",pi);
}

Doubles code size!



Solution: Keep it simple

Threads libraries:
– Pro: Programmer has control over everything

– Con: Programmer must control everything

Full 
control

Increased 
complexity

Programmers 
scared away

Sometimes a simple evolutionary 
approach is better



OpenMP PI Program:  
Parallel Region example (SPMD Program)
#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel 
{ double x; int id;

id = omp_get_thraead_num();
for (i=id, sum[id]=0.0;i< num_steps; i=i+NUM_THREADS){

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

SPMD 
Programs:

Each thread 
runs the same 
code with the 
thread ID 
selecting any  
thread specific 
behavior.

SPMD 
Programs:

Each thread 
runs the same 
code with the 
thread ID 
selecting any  
thread specific 
behavior.



OpenMP PI Program:  
Work sharing construct
#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel 
{ double x; int id;

id = omp_get_thraead_num();       sum[id] = 0;
#pragma omp for

for (i=id;i< num_steps; i++){
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
} for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}



OpenMP PI Program:  
private clause and a critical section
#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i; double  x, sum, pi=0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel private (x, sum)
{

id = omp_get_thread_num();
for (i=id,sum=0.0;i< num_steps;i=i+NUM_THREADS){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum
}
}

Note: We didn’t 
need to create an 
array to hold local 
sums or clutter the 
code with explicit 
declarations of “x” 
and “sum”.

Note: We didn’t 
need to create an 
array to hold local 
sums or clutter the 
code with explicit 
declarations of “x” 
and “sum”.



OpenMP PI Program :  
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel for reduction(+:sum) private(x)
for (i=1;i<= num_steps; i++){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
OpenMP adds 2 to 4 

lines of code



Reference Material on OpenMP

OpenMP Homepage www.openmp.org: The primary source of in formation about 
OpenMP and its development.

Books on OpenMP: Several books are currently being written on the subject but 
are not yet available by the time of this writing.

Research papers: There is also an increasing number of papers that discuss 
experiences, performance, proposed extensions etc. of OpenMP. Two examples 
of such papers are

• Transparent adaptive parallelism on NOWs using OpenMP; Alex Scherer, Honghui
Lu, Thomas Gross, and Willy Zwaenepoel; Proceedings of the 7th ACM SIGPLAN 
Symposium on Principles and practice of parallel programming , 1999, Pages 96 -106

• Parallel Programming with Message Passing and Directives; Steve W. Bova, Clay P.
Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner, Bob Kuhn, Bill Magro, 
Stefano Salvini; SIAM News, Volume 32, No 9, Nov. 1999.


