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Abstract

The majority of the studies that generate test cases for graphical user interface (GUI) applica-

tions are based on or address functional requirements only. In spite of the fact that interesting

approaches have been proposed, they do not address functional and non-functional requirements

of the GUI systems, and non-functional properties of the created test suites altogether to generate

test cases. This is called a many-objective perspective where several desirable and different charac-

teristics are considered together to generate the test cases. In this study, we show how to combine

search-based (optimisation) with model-based testing to generate test cases for GUI applications

taking into account the many-objective perspective. We rely on meta and hyper-heuristics and

we address two particular issues (problems) considering code-driven and use case-driven GUI test-

ing. As for the code-driven testing, we target desktop applications and automatically read the

C++ source code of the system, translate it into an event flow graph (EFG), and use objective

functions that are graph-based measures. As for the use case-driven testing, EFGs are created

directly via use cases. A rigorous evaluation was performed using 32 problem instances where

we considered three different multi-objective evolutionary algorithms and six different selection

hyper-heuristics using those algorithms as low-level (meta)heuristics. The performance of the al-

gorithms was compared based on five different indicators, and also a new Multi-Metric Indicator

(MMI) utilising multiple indicators and providing a unique measure for all algorithms. Results

show that the metaheuristics obtained better performances overall, particularly NSGA-II, while

Choice Function was the most outstanding hyper-heuristic approach.

Keywords: Many-Objective Optimisation, Search-Based Software Testing, Model-Based Testing,

Graphical User Interface, Metaheuristics and Hyper-Heuristics

1. Introduction

A graphical user interface(GUI)-driven software application is a program with a GUI used

as the main entity for interaction with users (Nguyen et al., 2014). Nowadays, many software

systems (desktop, mobile, smart TV applications, etc.) possess a GUI front-end. GUI testing is

challenging, since the approaches for test case generation must deal with a range of uncertainties5

associated with the varying level and nature of users (for example, a user could try to add two

letters on a calculator) (Banerjee et al., 2013). This challenge is even greater in the context of non-

trivial systems where professionals from different backgrounds can make use of the same product.

In this sense, it is essential to ensure that the GUI application does not present critical defects
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so that it does neither stop working (e.g. crash) nor present erroneous information displayed via10

the interface. Note that defects in a GUI software application may be found not only in the

GUI-related code itself but also in the underlying application code (Robinson & Brooks, 2009).

Test case1 generation for GUI applications has long been studied and there are various methods

and techniques for this purpose with tool support. Model-based GUI testing (Belli et al., 2017;

Banerjee et al., 2013; Farto & Endo, 2017; Gove & Faytong, 2011; Arlt et al., 2011; Memon &15

Nguyen, 2010; Huang et al., 2010; Yuan & Memon, 2010a,b; Chinnapongse et al., 2009; Xie &

Memon, 2008), capture and replay testing (Amalfitano et al., 2019; Herbold et al., 2012; Ariss

et al., 2010), and monitoring and replay testing (Herbold et al., 2011) are some examples where

methods and techniques have been created.

However, the majority of these studies generate test cases based on or addressing functional20

properties only. For instance, they address the coverage of multiway interactions between events

of a GUI model (Yuan & Memon, 2010a,b), the coverage of all edges at least once of an event

sequence graph (ESG) (Farto & Endo, 2017), try to unlock gate GUIs (Amalfitano et al., 2019),

among others. They do not envisage an approach where functional and non-functional (e.g. en-

ergy consumption (Sahar et al., 2019), performance (Seo et al., 2012), security (Mohanta et al.,25

2020)) requirements of the GUI applications, and non-functional properties of the created test

suites (e.g. effectiveness2 and cost) are considered altogether to generate test cases. Note that

some previous studies, during evaluation, perform some analysis related to effectiveness and non-

functional requirements (e.g. perfomance) but these are considered the consequence (effect) of the

test cases and not the cause to create them. We denote this perspective where several points of30

view (functional, non-functional requirements of GUI systems and test suites) are the causes to

generate the test cases as a many-objective perspective3. As reported in the literature (Harman

et al., 2015; Balera & Santiago Júnior, 2019), taking all of these test objectives together as the

main cause to generate test cases is important because not only GUI applications but any other

non-trivial software system should be tested in accordance with this many-objective approach.35

Therefore, the reasoning of the many-objective perspective is that the test cases are, by design,

1A test case is characterised by a sequence of test steps. Note that a sequence differs from a set because repetition
of elements is allowed and order matters. The test steps may have test input data and expected result related to
them, or they may simply represent actions that must be taken. In this study, we consider a test case as being a
sequence of test steps where each test step is characterised by test input data only, omitting the expected result,
or an action. Specifically in terms of GUI applications, this definition above may be reformulated where a test case
is simply a sequence of events of the GUI.

2In this article, we use “effectiveness” to mean the ability of the test suite to detect defects in the software
system. Therefore, effectiveness here does not mean the non-functional property in using the GUI.

3In the optimisation community, multi-objective and many-objective problems are distinguished based on the
number of objectives, where “many” means more objective functions than “multi”. Hence, many-objective optimi-
sation problems are the ones with more than three objectives (four or more), and hence multi-objective would be
those with three or two objective functions (Gómez & Coello, 2015). One objective function means single objective
optimisation. In this study, we deal with four-objective optimisation problems and, hence, we may state that we
are addressing many-objective problems. This is the reason to denote a many-objective perspective.
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already suitable according to different test objectives. In a typical practical setting, if a profes-

sional needs to decide between several test case generation strategies for its new GUI application,

eventually he/she has to generate the test suites according to each strategy and, at least consid-

ering part of the system, execute the test cases, and perceive the effectiveness, feasibility of the40

test suites. Then, he/she can decide about the strategy to test the entire software system. With

the many-objective perspective, we can have a good indication about the effectiveness, feasibility

of the test cases of the different approaches without necessarily demanding their execution, if we

add this property as one of the causes to create the test suites.

It is worth mentioning that exhaustive test case generation is infeasible for basically any type of45

software system considering the immense search space. More importantly, the test case generation

problems can be formulated as constraint satisfaction problems which are, in general, NP-complete

and so computationally difficult to solve in a reasonable amount of time using exact methods in

practice (McMinn, 2004; Khari & Kumar, 2019). Thus, inexact/(meta)heuristic algorithms are

often preferred to address such problems.50

As the core idea of search-based software testing (SBST) is that the problem of testing a

software system is formulated as an optimisation problem (Harman et al., 2015; Saeed et al., 2016;

Balera & Santiago Júnior, 2019; Khari & Kumar, 2019), precisely because test objectives resemble

objective functions, it is then straightforward to think that metaheuristics (Dokeroglu et al., 2019)

and hyper-heuristics (Burke et al., 2019; Drake et al., 2019) can help a lot in this regard.55

Our hypothesis is that it is possible to combine SBST (optimisation) with other traditional type

of testing adopted for GUI applications, so that we can generate test cases according to the many-

objective perspective. Few approaches have been proposed in the context of this hypothesis where

metaheuristics such as evolutionary algorithms/genetic algorithms (Rauf & Ramzan, 2018; Latiu

et al., 2013b; Menninghaus et al., 2017; Mahmood et al., 2014; Latiu et al., 2013a), particle swarm60

optimisation (Rauf & Ramzan, 2018; Rauf et al., 2010), local search algorithms (Menninghaus

et al., 2017), and ant colony optimisation (Bauersfeld et al., 2011b,a) were used. However, these

previous approaches relied on a couple (at maximum) objectives, and no previous study presented

a robust evaluation considering several quality (performance) indicators, a very important aspect

under the optimisation point of view. Furthermore, none of these previous studies considered65

hyper-heuristics to generate test cases for GUI applications.

In this study, we show how to combine search-based with model-based testing to generate

test cases for GUI applications taking into account the many-objective perspective. We rely on

meta and hyper-heuristics and we address two particular issues (problems) considering code-driven

testing and use case-driven testing. As for the code-driven testing, we target desktop applications70

and automatically read the C++ source code of the system, translate it into an event flow graph

(EFG) (Banerjee et al., 2013; Nguyen et al., 2014), and use objective functions that are graph-
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based measures to generate the test cases. As for the use case-driven testing, EFGs are created

directly where interactions between an actor (user) and the software are defined (i.e. via use cases),

and we use the same previously defined objective functions to generate the test cases. We suggest75

four objective functions addressing not only typical functional requirements of GUI applications,

such as coverage of edges of the EFG, but also non-functional properties of the created test suites,

i.e. effectiveness and cost.

A rigorous evaluation was performed using 32 many-objective problem instances from these

two problems. In our evaluation, we considered: i) three metaheuristics, i.e. multi-objective evo-80

lutionary algorithms whose are also the low-level (meta)heuristics (LLHs) of the hyper-heuristics:

Nondominated Sorting Genetic Algorithm-II (NSGA-II) (Deb et al., 2002), Indicator-Based Evolu-

tionary Algorithm (IBEA) (Zitzler & Künzli, 2004), and Strength Pareto Evolutionary Algorithm-

2 (SPEA2) (Zitzler et al., 2001); and ii) six selection hyper-heuristics: Hyper-Heuristic based on

Reinforcement LearnIng, Balanced Heuristic Selection and Group Decision AccEptance - Respon-85

sibility (HRISE R) and Majority (HRISE M) rules (Santiago Júnior et al., 2020), Hyper-Heuristic

based on Random LLH Selection and Random Choice of Move Acceptance Methods (HRMA)

(Santiago Júnior et al., 2020; Santiago Júnior & Özcan, 2019), Choice Function hyper-heuristic

(HH-CF) (Maashi et al., 2014), a random choice (meta)heuristic selection hyper-heuristic with

All Moves acceptance (HH-ALL), and a Learning Automata-based Hyper-Heuristic with a Rank-90

ing Scheme Initialisation (HH-RILA) (Li et al., 2019). Note that even if we evaluated NSGA-II,

IBEA, and SPEA2 considering many-objective problem instances, they are typically classified as

multi-objective algorithms.

We took into account five quality indicators as follows: three convergence-diversity metrics, i.e.

hypervolume (s-metric) (Zitzler & Thiele, 1999), inverted generational distance (IGD) (Li & Zhang,95

2009), modified inverted generational distance (IGD+) (Ishibuchi et al., 2015); ii) a convergence

metric, i.e. ε indicator (Zitzler et al., 2003); and iii) a diversity indicator, i.e. generalised spread

(∆∗) (Zhou et al., 2006). Moreover, we also propose a new Multi-Metric Indicator (MMI) where

we consider all these quality indicators together providing a unique performance measure for all

algorithms.100

Furthermore, the well-known no free lunch theorem informally asserts that any two search

algorithms are equivalent when their performances are averaged across all possible problems

(Wolpert & Macready, 2005). However, the empirical results showing how the performance of

those approaches compare or which approach performs the best on some particular problems have

always been of interest to the relevant researchers and practitioners.105

In summary, the main contributions of this study are:

1. We show how optimisation algorithms and classical model-based testing can be combined to

generate test cases for GUI applications taking into account the many-objective perspective.
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We consider four objective functions which are measures defined over an EFG that represents

the GUI application, and hence addressing the problems in a more realistic and many-110

objective manner;

2. We carry out an extensive rigorous evaluation with three metaheuristics and six selection

hyper-heuristics, where the latter have never been used within the GUI test case generation

problem;

3. We use five quality (performance) indicators aiming at having a thorough experimental115

assessment of all approaches;

4. We propose a new general-purpose multi-metric analysis indicator to give a unique perfor-

mance measure so that professionals can rely on this single outcome to decide which is the

best optimisation algorithm for their problem(s).

This article is organised as follows. In Section 2, we present related work. Section 3 shows120

how we combine search-based with model-based testing to generate test cases in accordance with

the many-objective perspective. The experimental design and results are shown in Sections 4 and

5, respectively. In Section 6, we discuss some relevant points related to our research. Conclusions

and future research directions are presented in Section 7.

2. Related Work125

GUI test case generation is a very active research subfield where many approaches and tools

have been proposed, since the majority of software applications have a friendly (some times not so

friendly) graphical front-end. In a previous systematic mapping (Banerjee et al., 2013), authors

identified three main classes to generate test cases where methods and techniques have been

created: model-based GUI testing (Belli et al., 2017; Banerjee et al., 2013; Farto & Endo, 2017;130

Gove & Faytong, 2011; Arlt et al., 2011; Memon & Nguyen, 2010; Huang et al., 2010; Yuan &

Memon, 2010a,b; Chinnapongse et al., 2009; Xie & Memon, 2008), capture and replay testing

(Amalfitano et al., 2019; Herbold et al., 2012; Ariss et al., 2010), and random testing (Yang et al.,

2014). Out of them, the majority of the contributions are on model-based methods, and within

this category, EFGs and finite state machines (Santiago et al., 2008) were the most commonly135

used models. We divide this section in two parts: non-optimisation and optimisation approaches.

2.1. Non-optimisation Approaches

There are several studies that rely on non-optimisation methods and techniques to generate

GUI test cases. In this section, we mention only some recent and other relevant studies within
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this category, and identify the similarities and differences of previously proposed approaches and140

ours.

In (Amalfitano et al., 2019), the authors proposed an approach, named Gate gui UnLocking for

AndRoid (juGULAR), for unlocking gate GUIs, type of GUIs that need to be solicited by specific

user input event sequences to allow the exploration of parts of the application that cannot be

reached otherwise. juGULAR automatically detects the occurrence of a gate GUI and demands145

human intervention to unlock it at runtime. It is considered an hybrid exploration technique

that combines automated GUI exploration with capture and replay, because the user behaviour

to unlock a gate GUI is captured by juGULAR and replayed when the same gate GUI is detected,

via a machine learning approach, again during the exploration. In terms of test case generation,

we may say that it is at first a manual approach via the human interaction which is later replayed150

when a gate GUI is detected. The evaluation addressed covered activities, covered lines of code,

and generated network traffic bytes which are all related to functional properties.

In the context of smart TV systems, model-based testing approaches have been proposed as

in (Bures et al., 2020). This study aimed at usability (non-functional property) testing of smart

TV applications based on the automated generation of an interaction model, via a crawler which155

analyses the application’s user interface and detects the actual clickable elements. Based on this

model, defined user tasks in the smart TV application can be evaluated automatically in terms of

the usability of the application. One limitation of their approach is that there are many parameters

and thresholds to tune. They manually performed update of thresholds, without no clear or sound

directives on how practitioners must do it, in order that their strategy could be significantly better160

than users executing test scenarios. Note that metaheuristics and hyper-heuristics usually have

parameters to tune too, but we believe that to be completely fair when comparing strategies we

must not demand that parameters should be tuned for every different application, but rather to

rely on already defined values (or approaches should rely on self-tuning of their parameters). In

this study, we used the same values of parameters defined for the algorithms in their original165

articles, as we show in Section 4.5.

Mobile applications testing was addressed in (Farto & Endo, 2017) where test models were

reused to reduce the effort on concretisation and verify other characteristics such as device-specific

events, unpredictable users’ interaction, among others. The models are focused on system testing,

mainly events of users and GUIs. Test case generation is based on ESGs which describe the170

expected behaviour of mobile applications. A test case is indeed a complete event sequence of the

ESG. Our method is similar to theirs in this respect since a test case in our approach is a simple

circuit of the EFG that represents the GUI application. However, in their case, the single coverage

criterion states that all the edges of the ESG must be covered at least once by a test suite. Thus,

this is again related to functional aspects of the application. Eventually, their approach may be175
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able to address robustness testing (unpredictable interactions) but this is not clear in the article.

A strategy to avoid infeasible test cases by predicting which test cases are indeed infeasible

using two supervised machine learning approaches, support vector machines (SVMs) and grammar

induction, was proposed in (Gove & Faytong, 2011). Their approach helps the professional by

predicting which test cases are infeasible, and hence he/she may remove the predicted infeasible180

test cases before they are executed, prioritise the test suite, or examine the test cases to determine

the reasons why they are classified as infeasible.

Another model-based testing approach aimed at producing most suitable GUI models for test

case generation (Arlt et al., 2011). They took into account two observations to create such model.

The first is that shared event handlers may imply the creation of redundant test cases, and the185

second is that user interactions are context-sensitive. Then, they generate a model for GUI testing

that analyses parts of the source code to detect sequences of user interactions that are suitable

for testing. Test case generation is performed under the functional point of view where, starting

in the initial state s0 of the model and with an empty test case, events are randomly added into

the test case until the initial state s0 of the model is reached again, and the length of the test190

case is larger than a specified threshold. Two basic differences between our approach and theirs is

that firstly, in the code-driven problems, our model may have multiple initial states (we call them

nonterminal vertices). Secondly, our approach does not demand the user to specify the length of

the test case (threshold). Rather, we define constraints which automatically decide the minimum

and maximum number of events (vertices) of the test case based on the number of vertices of the195

EFG. Hence, we avoid creating meaningless test cases in practical terms.

Creating a model of a GUI that can be used to generate potentially problematic test cases

(sequences of events) was the main objective in (Xie & Memon, 2008). The authors defined

the minimal effective event context (MEEC) of an event e. This MEEC concept was used to

empirically demonstrate that, for defect (fault) detection, the MEEC is short and has a well-200

defined structure, which may be represented by four compact regular expressions. This result was

used to automatically develop a model, called event interaction graph (EIG), which was used to

generate and execute test cases. The regular expressions provided four testing coverage criteria

which, altogether, basically demand the coverage of vertices, edges, and paths of the model.

Studies have been proposed to address the coverage of multiway interactions between events of205

a GUI model (Yuan & Memon, 2010a,b). In (Yuan & Memon, 2010a), a technique to test multiway

interactions among GUI events was presented which is based on analysis of feedback obtained from

the runtime state of GUI widgets. They define a model called event semantic interaction graph

(ESIG) which is considered for test case generation, and which is derived based on event semantic

interaction relationships. In (Yuan & Memon, 2010b), a technique to generate GUI test cases210

in batches was proposed and named as ALT. Because of its “alternating” nature, ALT enhances
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the next batch by using GUI run-time information from the current batch. It is also based on

the idea of computing event semantic interaction relationships, and it incrementally goes deeper

in generating test cases to cover multiway interactions. Test case generation is then performed

considering functional properties.215

In order to support defect reproduction, a generic, non-intrusive GUI usage monitoring mech-

anism was described in (Herbold et al., 2011). The main motivation is to support defect fixing

as the reproduction of the defect is the first important step towards its correction. The test case

generation approach may be classified as monitoring and replay, similar to capture and replay

where the monitoring mechanism resembles the capture phase of capture and replay.220

Table 1 summarises the main characteristics of the non-optimisation strategies presented above

and ours. The meaning of the columns are:

1. FUN : functional requirements;

2. EFF : effectiveness of the test suites;

3. ONF : other non-functional requirements of the GUI systems and/or of the test suites other225

than effectiveness and cost of the test suites;

4. MBT : relied on model-based testing;

5. SBST : relied on search-based software testing;

6. MNOB : in accordance with the many-objective perspective;

7. HH : supported by hyper-heuristics.230

Table 1: Main characteristics of the non-optimisation approaches and ours

Article FUN EFF ONF MBT SBST MNOB HH

(Amalfitano et al., 2019) X X

(Bures et al., 2020) X X

(Farto & Endo, 2017) X X X

(Gove & Faytong, 2011) X X

(Arlt et al., 2011) X X

(Xie & Memon, 2008) X X X

(Yuan & Memon, 2010a) X X X

(Yuan & Memon, 2010b) X X X

(Herbold et al., 2011) X ?

Ours X X X X X X

In Table 1, a question mark (?) means that it is not clear whether the characteristic is present

or not in the proposed approach. We can clearly see the benefits of our approach where we should

particularly emphasise the fact that, although these other studies are interesting, they do not meet

the many-objective perspective as we have defined, and as we have used to create GUI test suites.
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2.2. Optimisation Approaches235

In this section, we show some studies that rely on optimisation approaches to generate GUI test

cases. A strategy based on particle swarm optimisation to derive test cases for GUI applications

was described in (Rauf et al., 2010). The authors addressed a single objective problem, maximising

the coverage of test paths. In addition to address a single objetive, the experimental assessment

was very shallow with no statistical support.240

In (Rauf & Ramzan, 2018), authors used NSGA-II and multi-objective particle swarm optimi-

sation to generate test suites (sets of test cases) for testing context-free GUI applications. They

considered two objectives: minimisation of the number of test cases and maximisation of the cov-

erage of test cases. In our work, we also defined similar objectives, along with two additional

objective functions based on the concept of test case diversity. Moreover, their method is based245

on capture and replay and it is not automated as ours, particularly when dealing with the code-

driven problem where we automatically create an EFG (model) based on the source code of the

application.

In (Latiu et al., 2013b), a test case generation approach based on an evolutionary algorithm/-

genetic algorithm was presented. A tool, named EvoGuiTest, was implemented. Unfortunately,250

there is no detailed information on the algorithmic features of the proposed evolutionary algorith-

m/genetic algorithm. It is not clear if it is a novel algorithm, or else if it is an adoption of an

existing one. The authors solved a single objective problem only and, again, the evaluation was

very preliminary with no statistical tests, no use of quality indicators, and no comparison to other

algorithms. There is another study from the same authors which it is basically an adaptation for255

testing GUIs of water monitoring applications (Latiu et al., 2013a).

Hill climbing and simulated annealing as well as multi-objective evolutionary algorithms, in-

cluding NSGA-II, SPEA2, and Pareto Envelope based Selection - II (PESA-II) (Corne et al.,

2001), were used to generate test cases in (Menninghaus et al., 2017). Three objectives were

considered: maximisation of branch coverage in the source code, maximisation of EFG coverage,260

and minimisation of sequence length. However, hill climbing and simulated annealing were used

to solve a single objective problem, i.e. maximisation of branch or EFG coverage. Multi-objective

evolutionary algorithms were applied via different configurations (setups) where there were one or

two-objective problems by combining the maximisation of branch or EFG coverage plus minimisa-

tion of sequence length (in some cases, this objective was not considered). The metrics to evaluate265

the approaches were average runtime and average overall coverage on code. No evaluation was

carried out based on quality indicators (hypervolume, ε indicator, etc.) and no statistical test was

applied to the results.

EvoDroid is an evolutionary testing framework designed particularly for Android applications

(Mahmood et al., 2014). This framework combines two main techniques: (i) an Android-specific270
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program analysis technique that identifies the independent segments of the code amenable to

search, and (ii) an evolutionary algorithm that given information of such segments performs a

stepwise search for test cases reaching deep into the code. Similar to our study, the approach

automatically creates models, interface model and call graph model, reading the source code.

However, this approach considers only a single objective of maximising code coverage to solve275

only one of the objectives that we tackle. We believe that our approach is much more flexible and

can be applied in different phases of the software development lifecycle.

In (Bauersfeld et al., 2011b), an approach to find test cases for GUI applications using ant

colony optimisation and a metric referred to as maximum call stacks for use within the objective

function was introduced. The approach generates test cases online, executing the software system280

and repeatedly choosing from a set of possible actions. Thus, it is not required to create a model

of the GUI. It reads the code and deals with Java SWT systems, but not C++ applications as in

our case for the code-driven problem. Again, this work is another example of a single objective

problem. There is another study from the same authors which is in the same context (Bauersfeld

et al., 2011a).285

Another approach addressing GUI test case generation aiming to automatically repair GUI

test suites, which have infeasible test cases by generating new test cases that are indeed feasible,

was presented in (Huang et al., 2010). A genetic algorithm was used to evolve new test cases that

increase the coverage of the test suite while avoiding infeasible sequences. It is a single objective

problem but we might say that this unique objective function addresses two characteristics: the290

feasibility of the test case and the new coverage a test case can contribute based on the coverage

already achieved. We might regard feasibility as a sort of non-functional property of the test suites.

But, there is no evidence that the authors considered effectiveness to create the test suites as we

did. The authors say that their technique generates smaller test suites with better coverage on

the longer test sequences. But note that this conclusion of the smaller cost is obtained a posteriori295

(consequence) and it is not a cause (objective function) to derive the test cases. Moreover, they

compared their approach to a random algorithm only while we compared nine approaches in total.

Table 2 presents the main characteristics of the optimisation approaches and ours. The meaning

of the columns have already been defined and, as earlier, a question mark (?) means that it is not

clear whether the approach presents or not the characteristics.300

Thus, in addition to all the differences that we have pointed out above between our approach

and these related optimisation studies, where we can also see them in Table 2, there is one

additional point to stress: none of them considered hyper-heuristics to generate test cases. So

it would be interesting to investigate these general-purpose optimisation algorithms that operate

at a higher abstraction level for GUI test case creation, since they have been successfully applied305

to several continuous multi/many-objective optimisation problems (Maashi et al., 2014; Li et al.,
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Table 2: Main characteristics of the optimisation approaches and ours

Article FUN EFF ONF MBT SBST MNOB HH

(Rauf et al., 2010) X ? X

(Rauf & Ramzan, 2018) X ? X

(Latiu et al., 2013b) X ? X

(Menninghaus et al., 2017) X X X

(Mahmood et al., 2014) X X X

(Bauersfeld et al., 2011b) X X

(Huang et al., 2010) X X X X

Ours X X X X X X

2019; Santiago Júnior et al., 2020), usually outperforming metaheuristics. The hyper-heuristic

research also investigates how high the level of generality of a strategy can be raised. So, it is

important to evaluate them against metaheuristics in discrete optimisation problems as well, as

explained in the next section.310

3. Many-Objective Test Case Generation for GUI Applications

In this section, we show how search-based (optimisation) and model-based testing can be

combined to generate GUI test cases in accordance with the many-objective perspective.

An EFG is indeed the main artefact for test case generation. Therefore, this is where model-

based testing fits into our proposal. An EFG is a directed graph representing all possible event315

interactions on a GUI (Nguyen et al., 2014). Each vertex in an EFG represents a GUI event (e.g.

click-on-exit-button). A directed edge from vertex x to vertex y represents a follows relationship

between x and y, indicating that y follows x, that is event y is allowed to occur immediately after

event x. Figure 1 shows an example of a GUI application and its EFG is in Figure 2.

We now provide some important definitions related to our approach.320

Definition 3.1. Decision variable as a test case. A simple circuit (Hawick & James, 2008)

of an EFG is a test case composed of a sequence of events (vertices) of such an EFG that represents

the GUI application. A decision variable is one element of a solution. Thus, each decision variable

of a solution is an integer which identifies a simple circuit, i.e. a test case4.

Definition 3.2. Solution as a test suite. A solution is formed by a sequence of decision325

variables. A solution in a population generated by an optimisation algorithm is a test suite, i.e. a

sequence of test cases.

Note that our definitions of test suite and test case differ from others. For instance, in (Huang

et al., 2010), a solution is indeed a test case and each decision variable is a test step (event). In

4Precisely, the test cases created are indeed abstract test cases but it is easy to translate them into executable
test cases. We we will denote here an abstract test case simply as a test case for simplicity.
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Figure 1: Example of a GUI application. Adapted from (Nguyen et al., 2014)

Figure 2: Example of EFG. Adapted from (Nguyen et al., 2014)
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their case, a population is indeed a test suite while in our case a population is a set of test suites.330

There are two reasons behind this decision. Firstly, in our case, the final population after executing

an algorithm is composed of nondominated solutions only. This means that each solution (test

suite) has at first the same strength in terms of Pareto dominance, and a professional may select

any of them to be executed. But, there are methods proposed by the optimisation community to

decide which of the nondominated solutions to select in a population (Ferreira et al., 2007). Hence,335

we provide flexibility to the professional to select a test suite according to his/her preference.

Secondly, as each decision variable identifies a test case (simple circuit) we may have longer

test cases and these can expose faults undetectable by shortest ones (Xie & Memon, 2008). In

our approach, constraints automatically decide the minimum and maximum number of events

(vertices) of the test case based on the number of vertices of the EFG (see Section 4.7). This340

implies that longer test cases can be created without increasing significantly the number of decision

variables. Usually, as higher the number of decision variables in a solution, more time is required

for the algorithms to finish.

Hence, this is a discrete optimisation problem. The code-driven and use case-driven problems

are considered in this study. We detail each problem in the following sections.345

3.1. Code-Driven Problem

In this problem, our approach reads the code related to GUI features of a software system

and automatically generates an EFG. We focused on the applications developed in the C++

programming language since it is still one of the most used programming languages in the global

development scenario, as recently corroborated by the TIOBE5 index (Eras et al., 2019). Precisely,350

the type of GUI application we considered is written in Qt-extended C++, where Qt6 is a cross-

platform application development framework.

The automated generation of an EFG is based on the identification of the interactive com-

ponents (e.g. buttons, text boxes, etc.) that make up the GUI. This identification is given by

reading the source code related to the GUI and depends on the implementation of each of these355

components. Once identified, each component becomes a vertex in the graph. We then define two

types of components:

1. nonterminal. The component allows to be clicked multiple times and moreover it allows,

after being selected, that another component is clicked too;

2. terminal. The component closes the GUI or, after being clicked, opens another GUI.360

5https://www.tiobe.com/tiobe-index/. Access on: May 10, 2022.
6https://www.qt.io/. Access on: May 10, 2022.
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After the identification of components/vertices, a graph is built where each vertex is connected

to every other vertex and also to itself (in this case, the origin and destination of the edge are

the same). Note that the creation of the edges respects the follows relationships that we have

previously defined. However, the generation of a simple circuit (i.e. a test case) follows the rule

in which its first vertex is always a nonterminal one, and the penultimate vertex of the simple365

circuit is always of type terminal. Hence, we guarantee that the last event to be fired according to

the test case is always a terminal component (note that in a simple circuit the first and the last

vertices are the same, and hence the last vertex (component) to be fired is the penultimate one).

With no lack of generality, these assumptions are valid for many types of GUI systems.

Figure 3 illustrates a problem instance (GUI) based on the TerraAmazon7 software product, a370

C++ geographic information system (GIS) multi-user editor for vector geographic data which has

been under development at the Instituto Nacional de Pesquisas Espaciais (INPE). This problem

instance is referred to as GUI4, which is one of the 24 problem instances from the TerraAmazon

software, considered in our study (see Section 4.3) and representing the code-driven problem to

generate test cases.375

Figure 3: TerraAmazon, GUI4: print screen

Figure 4 shows part of the Qt-extended C++ code, that is the implementation of GUI4 while

the generated EFG produced parsing this code is in Figure 5. The EFG has a single terminal

vertex, m applypushbutton, while all the others are nonterminal vertices. In this case, we can

7http://www.terraamazon.dpi.inpe.br/. Access on: May 10, 2022.
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clearly see that we have edges between each pair of vertices including self-edges. An example of

test case (simple circuit) is presented below:380

tci = {m selecteddatasetlistwidget,m datasetnamelineedit,m datasettitlelineedit,

m encodingcombobox,m sridoutputlineedit,m sridoutputpushbutton,

m sridinputpushbutton,m sridinputlineedit,m applypushbutton,

m selecteddatasetlistwidget}. (1)

Figure 4: TerraAmazon, GUI4: part of the Qt-extended C++ code
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Figure 5: TerraAmazon, GUI4: EFG
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3.2. Use Case-Driven Problem

GUI testing is essentially a type of system or acceptance testing. Our motivation behind the

use case-driven problem is to create test cases according to a more user-centered perspective, and

not necessarily based on all the possibilities that reading the source code may allow (code-driven

problem).385

In this scenario, ultimately, we would like to still produce test cases (simple circuits) based

on EFGs. However, this time, while the simple circuit still “ends” in a terminal vertex, not all

nonterminal vertices are enabled to start a simple circuit. This occurs because this is a use case

perspective where a user defines a series of steps to interact with the software system via its GUI.

This sequence of steps is usually created based on the requirements specification or even some sort390

of tutorial, user manual of the application under consideration. Hence, having terminal vertices,

we differentiate between two types of nonterminal vertices: initial, where a simple circuit may

begin, and intermediate, where a simple circuit neither starts nor ends.

We assume that there is a single terminal vertex for the use case-driven problem instances in

this study. However, the graphs can contain several initial and intermediate nonterminal vertices.395

Moreover, there is an edge whose source is the single terminal vertex and destination is an initial

nonterminal vertex. Thus, we have as many as these edges as the number of initial nonterminal

vertices. But, no edge starts in the terminal vertex and ends in an intermediate nonterminal node.

Figure 6 shows the EFG for a problem instance obtained from the social media application

WhatsApp. We directly created this EFG based on a tutorial of the application8. This problem400

instance is referred to as WUP1, which is one of the eight instances considered in this study

representing the use case-driven problem (see Section 4.3) for generating test cases. In this EFG,

the single terminal vertex is closeWU, there is a single initial nonterminal vertex, selectChat, and

all remaining vertices (typeText, playVideo, ...) are of type intermediate nonterminal. An example

of test case (simple circuit) is presented below:405

tci = {selectChat, playV ideo, selectEmoji, typeTextEmoji,

typeEmojiText, typeTextAgain, closeWU, selectChat}. (2)

3.3. Objective Functions

In order to properly characterise an optimisation problem so that algorithms (e.g. metaheuris-

tics and hyper-heuristics) can be applied for test case generation, we need to define the objective

functions. The objective functions are measures over the EFG regardless if we consider the code-

driven or use case-driven perspectives. We defined four objective functions as described below:410

8https://www.youtube.com/watch?v=y3EdIiJeTXk. Access on: May 10, 2022.
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selectChat

typeTextplayVideo

deleteTextOrEmoji

selectEmoji

typeTextEmoji

typeEmojiText

typeTextAgain

closeWU

Figure 6: WhatsApp, WUP1: EFG

1. Size of the test suite. This is a cost measure which is simply the sum of the number of

vertices (which means events of a GUI to be fired) of all test cases (decision variables) of

a test suite (solution). It is to be minimised since, in general, the fewer events required to

be stimulated by the test suite, the less demand for its execution. We denote this objective

function as f1(x̂) where x̂ is a solution;415

2. Test case diversity. Test case diversity aided by similarity measures (Hemmati et al., 2013)

is an effectiveness metric the testing community has been addressing. The idea here is to

minimise the pairwise similarity between test cases of a test suite. It is a less costly effec-

tiveness measure compared to mutation analysis (Silva et al., 2017) where we must usually

create a considerable number of mutants, execute the test suites of different approaches, and420

calculate the mutation score in order to realise which approach is the best. Note that even

if mutation testing is indeed a test case generation strategy, it is common, in the testing

community, to use the mutation score as a means of evaluating the effectiveness of different

test case generation approaches. In this case, we have two objective functions where one

relies on Gower-Legendre (dice) measure, and this is objective function f2(x̂). The other425

relies on Sokal-Sneath (anti-dice) measure and this is f3(x̂);

3. Edge coverage. This is a more traditional functional testing objective related to the GUI
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application where the goal is to cover as many as possible edges of an EFG. It is to be

maximised since, in general, the more graph edges are covered by the test suite, the better.

This is objective function f4(x̂).430

Hence, we follow the many-objective perspective where the test cases are, by design, already

suitable according to different objective functions (test objectives). In formal terms, our many-

objective optimisation problem can be formulated as follows:

minimise F (x̂) = (f1(x̂), f2(x̂), f3(x̂), f4(x̂))T

subject to x̂ ∈ Ω

where Ω is the decision variable space, F : Ω → R4 consists of the four objective functions we

have just described, and R4 is the objective space.435

In order to make it clear how the values of the objective functions are obtained, let us assume

the problem instance WUP1 (Figure 6) and also that we define that each solution has three decision

variables. Moreover, let us say that a test suite, i.e. a solution x̂1, is composed by the three test

cases (simple circuits) below:

tc1 = {selectChat, typeText,

deleteTextOrEmoji, typeTextAgain, closeWU, selectChat} (3)

tc2 = {selectChat, typeText, selectEmoji,

typeEmojiText, typeTextAgain, closeWU, selectChat} (4)

tc3 = {selectChat, playV ideo, selectEmoji, typeTextEmoji,

typeEmojiText, typeTextAgain, closeWU, selectChat}. (5)

Notice that x̂1 = 〈1, 2, 3〉 but each integer value represents one of the test cases, i.e. tc1, tc2,440

and tc3. Hence, f1(x̂1) is simply the sum of all vertices of all test cases, i.e. f1(x̂1) = 21.

Gower-Legendre (dice) and Sokal-Sneath (anti-dice) similarities measures are given by the

general formulation below (Hemmati et al., 2013):

sim(tci, tcj) =
|tci ∩ tcj |

|tci ∩ tcj |+ w × (|tci ∪ tcj | − |tci ∩ tcj |)
(6)
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where tci, tcj are two test cases, and w = 1/2 means the Gower-Legendre (dice) measure while

w = 2 is the Sokal-Sneath (anti-dice) one. Then, we calculate the similarity between every pair445

of test cases of a test suite (solution) and take the average of such similarity measures. In the

example above, we have:

|tc1 ∩ tc2| = 5;

|tc1 ∪ tc2| = 8;

|tc1 ∩ tc3| = 4;

|tc1 ∪ tc3| = 10;

|tc2 ∩ tc3| = 6;

|tc2 ∪ tc3| = 9. (7)

The Gower-Legendre measures are simgl(tc1, tc2) = 0.77, simgl(tc1, tc3) = 0.57, and simgl(tc2, tc3) =

0.8. Thus, the average Gower-Legendre measure is f2(x̂1) ≈ 0.71. The Sokal-Sneath measures are

simss(tc1, tc2) = 0.46, simss(tc1, tc3) = 0.25, and simss(tc2, tc3) = 0.5. The average Sokal-Sneath450

value is then f3(x̂1) ≈ 0.4.

The edge coverage must be maximised but we turn this into a minimisation problem too as

shown below:

f4(x̂1) = 1− |CE|
|E|

(8)

where |CE| is the number of covered edges due to all test cases of a test suite, and |E| is the total

number of the edges of the EFG. A covered edge is counted only once if more than one test case455

traverses it. In the example above, the EFG (Figure 6) has 24 edges and the three test cases cover

12 out of them. Hence, f4(x̂1) = 0.5.

Notice that our approach is useful not only to test GUI software applications. In fact, one

can generate test cases for any software system (desktop, mobile, web applications, critical or

noncritical software, etc.) whose structure and/or behaviour can be represented by a graph.460

4. Experimental Design

In this section, we describe the main design options of the rigorous evaluation, a controlled

experiment, we carried out to assess the performance of the metaheuristics and hyper-heuristics

for GUI test case generation.
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4.1. Objective465

The objective of this evaluation is to identify which out of nine optimisation algorithms is the

best regarding GUI test case generation. We considered three metaheuristics in our evaluation:

NSGA-II, IBEA, and SPEA2. Moreover, six selection hyper-heuristics were assessed: HRISE R,

HRISE M, HRMA, HH-CF, HH-ALL, and HH-RILA. Details about the reasons to select these

algorithms are in Section 4.4.470

It is important to stress that this experiment is designed from the point of view of the op-

timisation community evaluating the population-based approaches for the code-driven and use

case-driven problems. The use of several different quality indicators is usual and recommended in

this setting to gain insights into different search properties of the algorithms, such as convergence

and diversity. Therefore, we rely on five quality indicators: hypervolume, IGD, IGD+, ε indica-475

tor, and generalised spread (∆∗). In addition, we propose a new indicator obtained by combining

all these quality indicators together providing a unique performance measure for all algorithms.

Details about all these indicators are in Section 4.6.

We also wonder whether, considering the same problem instances (see Section 4.3), the al-

gorithms are too sensitive to different configurations of decision variables/maximum number of480

simple circuits. Hence, we define two configurations known as less and more. More information

about such configurations is in Section 4.7.

4.2. Research Questions and Variables

The research questions (RQs) related to this experiment are shown below:

1. RQ 1 - Which out of the nine algorithms is the best with respect to the configuration less?485

Overall, which one performs better: metaheuristics or hyper-heuristics?

2. RQ 2 - Which out of the nine algorithms is the best with respect to the configuration more?

Overall, which one performs better: metaheuristics or hyper-heuristics?

3. RQ 3 - Is there an algorithm that is clearly superior than all the others regarding both

configurations?490

The independent variables are the optimisation algorithms. The dependent variables are the

values of the quality indicators which may take different formats: front-normalised, normalised

(front-normalised), and our new proposed indicator (see Section 4.6).

4.3. Problems

As for the code-driven problem, we considered 24 problem instances (GUIs) of the TerraAmazon495

software product where GUIx uniquely identifies a problem instance, that is the code related to

a particular TerraAmazon GUI. In our study, the TerraAmazon product has been preferred over
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other software systems, simply because we believe that the TerraAmazon GUIs cover a variety

of functional components, including classical widgets such as buttons, combo boxes, text boxes,

etc. that a typical Qt/C++ application would have. We have shown an example of such GUIs in500

Figure 3 while part of the respective code is in Figure 4. Table 3 summarises the characteristics

of the code-driven problem instances in terms of the number of vertices and edges of the EFGs.

Table 3: Characteristics of the code-driven problem instances

Problem Instance #Vertices #Edges

GUI1 8 63

GUI2 35 1,224

GUI3 12 143

GUI4 9 80

GUI5 12 140

GUI6 13 165

GUI7 10 96

GUI8 14 192

GUI9 16 252

GUI10 20 396

GUI11 26 672

GUI12 17 285

GUI13 24 572

GUI14 11 120

GUI15 18 323

GUI16 10 99

GUI17 9 77

GUI18 24 572

GUI19 23 525

GUI20 13 165

GUI21 32 1,020

GUI22 24 572

GUI23 11 117

GUI24 9 77

We created eight problem instances related to the use case-driven problem where four are

use cases for the LibreOffice Writer application (identified as LOFx), three are for WhatsApp

(identified as WUPx), and one is for YouTube (identified as YOUx). Recall that in this problem,505

we directly defined the EFG that represents the problem instance, i.e. interactions with the GUIs

of the applications. We have shown an example of such problem instances in Figure 6. Table

4 shows the characteristics of the use case-driven problem instances in terms of the number of

vertices and edges of the EFGs.

4.4. Algorithms510

Firstly, all algorithms we selected were implemented/adapted based on the jMetal framework

(Durillo & Nebro, 2011), version 5.6. The three metaheuristics (NSGA-II, IBEA, and SPEA2) we

selected are indeed multi-objective evolutionary algorithms, and they are also the LLHs of the six
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Table 4: Characteristics of the use case-driven problem instances

Problem Instance #Vertices #Edges

LOF1 37 467

LOF2 37 608

LOF3 37 479

LOF4 37 560

WUP1 9 24

WUP2 34 191

WUP3 37 196

YOU1 26 108

selection hyper-heuristics (HRISE R, HRISE M, HRMA, HH-CF, HH-ALL, and HH-RILA) that

make part of the evaluation. We chose these metaheuristics due to their reported success in multi-515

objective optimisation and they still have competitive performances in continuous optimisation

problems. The first reason to opt for the six hyper-heuristics is that previous studies (Santiago

Júnior et al., 2020; Santiago Júnior & Özcan, 2019; Li et al., 2019) considered these hyper-heuristics

using the same three metaheuristics as LLHs for continuous optimisation problems. Hence, we

would like to contrast the conclusions of these previous articles with the outcomes of these discrete520

optimisation problems. Secondly, some of these algorithms are very recent and thus it is important

to perceive their performances in distinct types of problems. We provide a brief description of

each algorithm below.

NSGA-II (Deb et al., 2002) is one of the most popular multi-objective evolutionary algorithm

up-to-date. It is a sort of benchmark algorithm to be challenged when new population-based525

optimisation search methods are proposed. It is a fast nondominated sorting approach with lower

computational complexity which also addresses elitism. Its authors also presented a crowded-

comparison operator which guides the selection process at the various stages of the algorithm

towards a uniformly spread-out Pareto Optimal Front.

IBEA (Zitzler & Künzli, 2004) is another classical algorithm based on the idea of flexible530

integration of preference information. It is a general indicator-based multi-objective evolutionary

algorithm, and the main reasoning is to first define the optimisation goal in terms of a binary

performance measure (indicator) and then to directly use this measure in the selection process.

In SPEA2 (Zitzler et al., 2001), the authors proposed an algorithm which is an improved

version of SPEA and has, as additional characteristics, a fine-grained fitness assignment strategy,535

a density estimation technique, and an enhanced archive truncation method.

As for the selection hyper-heuristics, HRISE R and HRISE M (Santiago Júnior et al., 2020)

are two of the recent such optimisation algorithms which embed a heuristic selection method based

on roulette wheel supported by reinforcement learning followed by a balanced exploitation/explo-

ration procedure. Moreover, they use a two-level move acceptance strategy: Only Improving plus540

a group-decision framework where several move acceptance methods are considered. Within the
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group-decision framework, HRISE R relies on the responsibility rule where a single move ac-

ceptance method takes the responsibility/authority for the decision to accept a population, while

HRISE M is based on the majority rule which counts the votes for the accept/reject decision,

and the majority leads to the final decision.545

HRMA (Santiago Júnior et al., 2020; Santiago Júnior & Özcan, 2019) is a simpler version

of the two previous selection hyper-heuristics where we have a simple random heuristic selection

method. There is still a two-level move acceptance approach with Only Improving but now we have

a random choice among the available move acceptance methods under the group decision-making:

hence the one chosen decides to accept/reject a population. Sometimes, we will denote HRISE550

family these three hyper-heuristics (HRISE R, HRISE M, HRMA) since they were developed based

on the same general structure.

In (Maashi et al., 2014), the authors presented a hyper-heuristic based on Choice Function, HH-

CF, in which NSGA-II, SPEA2, and the Multi-Objective Genetic Algorithm (MOGA) (Fonseca &

Fleming, 1998) are the LLHs. In our case, we adapted HH-CF to consider IBEA and not MOGA555

as a third LLH. The heuristic selection method is based on a two-stage ranking scheme and four

quality indicators: algorithm effort, ratio of nondominated individuals (RNI), hypervolume, and

uniform distribution (Tan et al., 2002). HH-ALL is a rather simple selection hyper-heuristic with

a random LLH selection method and All Moves acceptance approach.

HH-RILA (Li et al., 2019) is another recent selection hyper-heuristic. This algorithm is based560

on learning automata, a sort of reinforcement learning method, and it uses a ranking scheme

initialisation. LLHs are NSGA-II, IBEA, and SPEA2. The authors defined an LLH selection

method, named ε-RouletteGreedy, in which they apply roulette wheel in the initial stage and,

after that, they select between greedy and roulette wheel based on ε, the probability9 of applying

the greedy heuristic selection method. Such a probability is increased linearly during the execution.565

4.5. Parameters of the Algorithms and Execution

With respect to all metaheuristics (NSGA-II, IBEA, SPEA2), selection of individuals was

binary tournament, we used simulated binary crossover (SBX) (Deb & Agrawal, 1995) with prob-

ability 0.9 and distribution index 20, and polynomial mutation with probability 1/n (n = number

of parameters) and distribution index 20. Note that such parameters were also used in the hyper-570

heuristics where the multi-objective evolutionary algorithms are the LLHs.

We executed all approaches for each problem instance for 100,000 evaluations, population

size was fixed as 100, and each experiment was repeated for 30 trials. Table 5 summarises the

values of the main parameters used for all algorithms. For more details about the meaning of such

9This probability, ε, is not related to the quality indicator ε.
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parameters, see the research articles where the main hyper-heuristics were proposed, i.e. (Santiago575

Júnior et al., 2020; Maashi et al., 2014; Li et al., 2019).

Table 5: Experimental evaluation: values of parameters

Common Parameters

Number of Evaluations 100,000

Population Size 100

Trials 30

Specific Parameters

HRISE M, HRISE R, HRMA

Iterations/LLH 250 or 100

Maximum Iterations 1,000

Maximum Decision Points 7

α 1.0 (HRISE M) / 0.1 (HRISE R)

ηa 2 (HRISE M) / 3 (HRISE R)

ηr 2 (HRISE M) / 1 (HRISE R)

γ 0.000075

HH-RILA

Iterations/LLH 10

τ 0.9

m 3.0

K 3

∆v 0.0075

HH-CF

Maximum Iterations 1,000

Maximum Decision Points 25

α 100

HH-ALL

Maximum Iterations 1,000

Maximum Decision Points 25

NSGA-II, IBEA, SPEA2

Maximum Iterations 1,000

Maximum Decision Points 1

4.6. Quality Indicators and Types of Assessments

There are several quality indicators (Jiang et al., 2014; Tan et al., 2002) proposed in the

literature to measure the adequacy of a population generated by an algorithm to solve a given

optimisation problem. In our evaluations, we considered the following five quality indicators:580

hypervolume, IGD, IGD+, ε indicator, and generalised spread (∆∗).

We took into account at least the front-normalised values of the indicators. For instance, the

front-normalised hypervolume is obtained via the normalisation of the “raw” hypervolume based

on the minimum and maximum values of the objective functions for a problem instance. From

this point onward, we will denote the front-normalised hypervolume simply as hypervolume, h,585

and as higher this value, the better the algorithm. Likewise we will identify I, I+, ε, and ∆∗

as the (front-normalised) IGD, IGD+, ε indicator, and generalised spread, respectively, for which
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lower values indicate a better algorithm.

Furthermore, since we deal with real-world problems, in order to obtain the reference points

and the “True” Pareto Front for the calculation of the quality indicators, we created the so-called590

True Known Pareto Front where, for each problem instance, we joined all final populations of all

algorithms after the 30 trials, obtained the nondominated solutions, and removed the repeated

ones.

We carried out three types of analyses. Firstly, we performed a cross-domain analysis with the

goal of observing the generalisation strength of the algorithms across all problem instances, and595

not performing a case-by-case (single problem instance) evaluation. Generalisation is one of the

desirable characteristics of any optimisation approach. Moreover, we also defined a second level

of normalisation of the indicators. For instance, the normalised (front-normalised) hypervolume,

hN , is defined below (Santiago Júnior et al., 2020; Li et al., 2019):

hN =
hmax
(∀a,p) − h(ai,p)

hmax
(∀a,p) − h

min
(∀a,p)

(9)

where hmax
(∀a,p) and hmin

(∀a,p) are the maximum and minimum values, respectively, of the hypervolume,600

h, due to all algorithms a for a problem instance p, and h(ai,p) is the average value of the hyper-

volume due to algorithm ai for p. However, note that the formulation of hN is like a maximisation

problem (maximise hypervolume) is turned into a minimisation problem. Hence, the lower the

value of hN , the better.

However, for the other four remaining indicators, the normalised value is calculated in a stan-605

dard manner. For instance, the normalised (front-normalised) IGD, IN , is obtained as follows:

IN =
I(ai,p) − Imin

(∀a,p)

Imax
(∀a,p) − I

min
(∀a,p)

(10)

where Imax
(∀a,p) and Imin

(∀a,p) are the maximum and minimum values, respectively, of the IGD, I, due

to all algorithms a for a problem instance p, and I(ai,p) is the average value of the IGD due to

algorithm ai for p. The lower IN , the better. Thus, the normalised (front-normalised) IGD+

(I+N ), ε indicator (εN ), and generalised spread (∆∗N ) are calculated as in equation 10, and also610

the lower their values, the better. From this point onward, we will denote a normalised (front-

normalised) indicator simply as normalised indicator (e.g. normalised hypervolume, hN ).

Hence, our cross-domain analysis is carried out by calculating the averages of the normalised

quality indicators considering all problem instances of all problems: hAPR
N , εAPR

N , IAPR
N , ∆∗APR

N ,

I+APR
N . Again, the algorithm which gets the lower average of such normalised indicators is the615

best overall.

Secondly, we performed statistical analysis of the results obtained by the algorithms. Here,

27



we decided not to rely on the normalised indicators, considering indeed h, ε, I, ∆∗, and I+ in

this situation. We believe that using the second-degree of normalisation may mask the results of

the statistical test and hence the choice for the first-degree of normalisation. We applied a two-620

tailed permutation test (conditional inference procedure) (Hothorn et al., 2008) for multi-group

comparison with significance level equal to 0.05. Moreover, we now performed a case-by-case

analysis, i.e. we checked for each problem instance if an algorithm ai was significantly better

(“>”) than an algorithm aj , if it was worse (“<”), or else if there was no significant difference

(“∼”).625

Analysing the results of the performances of all algorithms considering multiple quality indi-

cators is really important. But, eventually, a decision-maker would prefer having a single unified

result that indicates which is the most suitable optimisation algorithm for all problems, or for

a particular problem, rather than looking at each quality indicator in its own, i.e. in isolation.

We then propose a Multi-Metric Indicator (MMI) where we take the results of all five quality630

indicators together and provide a single outcome. This is our third type of evaluation.

The calculation of the MMI is as follows:

1. Firstly, we get the average values of all normalised quality indicators of all algorithms for

all problem instances. This is the final outcome of the cross-domain analysis. Specifically,

we get hAPR
N , εAPR

N , IAPR
N , ∆∗APR

N , I+APR
N which are such average values of hypervolume,635

ε indicator, IGD, generalised spread, and IGD+, respectively;

2. Then, we perform a normalisation by identifying the minimum and maximum values of each

quality indicator in isolation as presented below. Roughly speaking, this can be seen as a

third level of normalisation. In Equation 11, qNN is the new normalised value of a quality

indicator of an algorithm, qN is the original average value of a normalised quality indicator640

(hAPR
N , εAPR

N , IAPR
N , ∆∗APR

N , I+APR
N ) of an algorithm, qmin

N and qmax
N are the minimum and

maximum values considering a certain normalised indicator:

qNN =
qN − qmin

N

qmax
N − qmin

N

; (11)

3. Hence, we calculate the Euclidean distance considering the performance of each algorithm

under all quality indicators and an ideal point (0̂). This is the MMI, M, of an algorithm:

M = ||〈0, 0, 0, 0, 0〉 − 〈hNN , εNN , INN ,∆
∗
NN , I+NN 〉|| (12)

4. The best algorithm is the one with the lowest M.645
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4.7. Simple Circuits Configurations and Constraints

As we have mentioned earlier in Section 4.1, we would like to know about the sensitiveness of

the algorithms regarding different configurations of decision variables/maximum number of simple

circuits. We then defined two simple circuits configurations and obtained the results according to

them. In the configuration less, a solution (test suite) has five decision variables (set DV ; recall650

that each decision variable is an integer which identifies a simple circuit) and we set a maximum of

500× |DV | = 2, 500 possible test cases (simple circuits). On the other hand, in the configuration

more, there are 10 decision variables and 1, 000× |DV | = 10, 000 possible simple circuits.

Moreover, we also defined two constraints in the number of vertices a test case (simple circuit)

may have. In the constraint narrow, the length of a test case (the number of vertices it may

have), |tci|, is:

narrow =⇒ (0.75× |V |) ≤ |tci| ≤ (1.25× |V |) (13)

where |V | is the number of vertices of the EFG that represents the problem instance. On the other

hand, the constraint wide is as follows:

wide =⇒ (0.5× |V |) ≤ |tci| ≤ (1.5× |V |). (14)

These constraints serve to avoid generating short and meaningless test cases in practical terms.

Table 6 shows how we used the configurations and constraints in accordance with each problem.655

Hence, the constraint narrow was selected only for the code-driven problem instances under the

configuration less. In the other cases, the constraint wide was the option.

Table 6: Simple circuits configurations and constraints

Problem Configuration less Configuration more

code-driven narrow wide

use case-driven wide wide

4.8. Validity

Our results are associated with version 5.6 of the jMetal framework where the metaheuristics

and quality indicators are implemented, and where we also developed the hyper-heuristics on top660

of it. Moreover, all runs were executed on the same hardware/software platform, an iMac with

2.7 GHz Intel i5 processor, 8 GB of RAM memory, and macOS High Sierra Operating System.

This avoids any influence of the computing platform on the results. We believe that replication of

this study by other researchers will produce similar results, and our study has a high conclusion

validity since the measures are reliable.665

The problem instances were GUIs of a software product and use cases of three other appli-

cations, and thus we neither had any human/nature/social factor nor unanticipated events to
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interrupt the collection of the measures once started to pose an internal validity. Hence, our

controlled experiment has a high internal validity.

However, we have a threat to external validity related to the population. The 32 problem670

instances are interesting but we need to consider more code-driven and use case-driven problem

instances in order to generalise the results. However, the results of this controlled experiment are

valuable as shown in the next section.

5. Experimental Results

In this section, we present the results of our experiment whose features have been explained675

in Section 4. All final populations (VAR files) of all algorithms, the respective values of objective

functions (FUN files), all True Known Pareto Fronts (.pf files), and all EFGs (.dot files) of both

configurations (less and more) are available online10. Furthermore, two tools11 were developed to

fully support our approach and they are publicly available too.

5.1. Configuration Less680

As for the configuration less, Table 7 presents the results of the cross-domain performance

analysis using as metric the normalised hypervolume, hN , for the code-driven problem instances,

while Table 8 presents the results regarding the use case-driven problem instances and all problem

instances. In these tables, hCOD
N is the average value of hN for the code-driven problem instances,

hUSE
N is the average value of hN for the use case-driven problem instances, and the average of all685

32 problem instances is hAPR
N . The intermediate means of the normalised hypervolume, hCOD

N

and hUSE
N , are placed here only for a better understanding of the calculation required by the

cross-domain analysis. But, the value that really matters is the average value that represents all

problem instances of all problems, i.e. hAPR
N . In grey background we show the top performance

approaches where in bold it is the best algorithm, normal font is the second best, and in italics it690

is the third best.

In terms of the code-driven problem, we see that NSGA-II was the best, followed by HH-CF

and SPEA2 and, in the use case-driven problem, NSGA-II was again the best, the second best

was SPEA2, and HH-CF was the third. However, overall concerning hN , NSGA-II was the top

algorithm followed by HH-CF and SPEA2. The first important remark is about HH-CF where we695

have already pointed out, in previous study (Santiago Júnior et al., 2020), the good performance

of this hyper-heuristic for some problem instances contradicting previous results where HH-CF

presented low performance with respect to the hypervolume (Li et al., 2019).

10https://github.com/vsantjr/HRISE-DiscreteReal/tree/master/Experiment%20Data. Access on: May 10, 2022.
11https://github.com/vsantjr/HRISE-DiscreteReal; https://github.com/BaleraJuliana/CppEFGTranslator. Ac-

cess on: May 10, 2022.
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Table 9 presents a summarised version of the results of the four remaining normalised quality

indicators showing only the average values of all problem instances: ε indicator (εAPR
N ), IGD700

(IAPR
N ), generalised spread (∆∗APR

N ), and IGD+ (I+APR
N ). In two normalised quality indicators,

εN and IN , we see the very same previous order of best performance algorithms: NSGA-II, HH-CF,

and SPEA2. As for I+N , NSGA-II was still the best approach where SPEA2 and HH-CF switched

positions, i.e. SPEA2 was the second and HH-CF was the third best algorithm. But, surprisingly,

HH-ALL was the best approach regarding ∆∗N where IBEA was the second and SPEA2 was the705

third one.

With respect to the statistical evaluation, in Table 10 “>” means the leftmost algorithm was

significantly better than the rightmost one, “<” means the leftmost algorithm was significantly

worse than the rightmost one, and “∼” means no significant difference. Moreover, the number that

appears in each cell of the table means in how many times, out of the 32 instances, the leftmost710

algorithm was significantly better than the rightmost one, in how many problem instances there

was no statistical difference, and also in how many times the leftmost was the worse. For example,

regarding the hypervolume, in the third line of the table we see that HRISE M was significantly

better than IBEA in 14 problem instances, in 15 instances there was no statistical difference, and

in three problem instances IBEA was significantly better than HRISE M.715

We realise that the statistical outcomes are basically in line with the previous results based on

the cross-domain analysis considering the normalised values of the quality indicators. For instance,

in terms of h, ε and I, NSGA-II won all the pairwise comparisons (eight wins), HH-CF obtained

seven wins while SPEA2 got six wins12. These are the top contenders just as in the cross-domain

analysis. In terms of ∆∗, HH-ALL, IBEA, and NSGA-II obtained eight, seven, and five wins,720

respectively, and these are the three best approaches. Hence, the only difference is that SPEA2

and not NSGA-II was the third according to the cross-domain analysis. As for I+, there is an

agreement that NSGA-II was the best (eight wins) but now HH-CF (seven wins) and SPEA2 (six

wins) switched positions.

If we compare the recently proposed selection hyper-heuristics, the HRISE family and HH-725

RILA, there is basically an agreement. The cross-domain analysis states that HRISE R and

HRISE M were each better than HH-RILA in terms of εN , IN , and ∆∗N while HH-RILA was

better with respect to hN and I+N . We can clearly confirm these performances by looking at

Table 10. The only disagreement regarding this previous conclusion is related to the comparison

HRMA × HH-RILA in terms of the generalised spread because the cross-domain analysis says730

that HH-RILA was slightly better than HRMA, while the statistical evaluation states that HRMA

12Each algorithm can get at maximum eight wins since we have nine algorithms in total. Hence, a “win” means
that an algorithm ai was significantly better more times than other algorithm aj .

33



T
a
b

le
9
:

C
ro

ss
-d

o
m

a
in

a
n

a
ly

si
s

fo
r

a
ll

p
ro

b
le

m
in

st
a
n

ce
s,

co
n

fi
g
u

ra
ti

o
n

le
ss

:
ε N

,
I N

,
∆

∗ N
,
I
+

N

H
R

IS
E

M
H

R
IS

E
R

H
R

M
A

IB
E

A
N

S
G

A
-I

I
S

P
E

A
2

H
H

-A
L

L
H

H
-C

F
H

H
-R

IL
A

εA
P
R

N
0
.1

7
0
8
1
7
0
6

0
.1

6
9
2
5
1
0
4

0
.1

7
3
8
4
1
0
2

0
.4

0
1
4
2
6
8

8
.3

6
7
4
6
1
e
-0

2
0

.1
2

2
3

8
4

6
0

7
0
.3

2
6
4
6
3
3

1
.0

6
6
2
8
7
e-

0
1

0
.2

0
5
9
8
5
6
7

I
A
P
R

N
0
.0

8
1
4
9
9
8
8

0
.0

7
7
9
4
3
9
8

0
.0

8
2
9
8
3
7
2

0
.2

9
3
1
8
4
1
1

0
.0

3
5
8
5
6
6
6
9

0
.0

5
2

2
8

4
5

4
3

0
.2

0
3
5
2
2
9
3

0
.0

4
7
0
6
0
6
6
3

0
.0

9
9
4
7
3
2
9

∆
∗A

P
R

N
0
.6

9
6
6
3
7
6

0
.6

9
7
6
1
7
8

0
.6

9
8
9
1
9
9

0
.5

9
1
0
1
5
1

0
.6

7
7
3
3
1
7

0
.6

6
3

4
8

1
1

0
.5

3
9
3
3
0
1

0
.6

7
9
7
9
9
8

0
.6

9
8
0
8
8
2

I
+

A
P
R

N
0
.0

3
2
3
4
7
3
6
5

0
.0

3
0
8
2
9
4
1
3

0
.0

3
3
2
3
0
2
5
5

0
.0

6
6
9
6
0
1
7
0

1
.0

0
3
4
7
0
e
-0

2
1
.3

1
9
6
8
7
e-

0
2

0
.1

4
8
6
7
5
3
5

1
.4

3
2

0
1

1
e-

0
2

0
.0

2
4
4
5
0
6
7
1

34



Table 10: Statistical evaluation, configuration less. Caption: Comp = Comparison

Comp > ∼ < > ∼ < > ∼ < > ∼ < > ∼ <

h ε I ∆∗ I+
HRISE M × HRISE R 2 28 2 1 31 0 1 31 0 0 31 1 1 31 0

HRISE M × HRMA 1 31 0 0 32 0 0 32 0 1 31 0 1 31 0

HRISE M × IBEA 14 15 3 31 1 0 31 0 1 1 5 26 28 2 2

HRISE M × NSGA-II 0 1 31 0 2 30 0 2 30 5 14 13 1 0 31

HRISE M × SPEA2 0 12 20 0 12 20 0 9 23 9 11 12 0 4 28

HRISE M × HH-ALL 32 0 0 25 7 0 26 6 0 0 4 28 25 7 0

HRISE M × HH-CF 0 6 26 0 5 27 0 6 26 1 30 1 0 3 29

HRISE M × HH-RILA 2 9 21 7 24 1 8 23 1 7 20 5 4 17 11

HRISE R × HRMA 0 31 1 1 31 0 0 32 0 0 32 0 0 31 1

HRISE R × IBEA 16 12 4 31 1 0 31 0 1 1 5 26 27 3 2

HRISE R × NSGA-II 0 1 31 0 2 30 0 3 29 3 16 13 0 1 31

HRISE R × SPEA2 0 13 19 0 9 23 0 9 23 10 8 14 0 6 26

HRISE R × HH-ALL 32 0 0 27 5 0 26 6 0 0 7 25 28 4 0

HRISE R × HH-CF 0 4 28 0 4 28 0 5 27 0 31 1 0 3 29

HRISE R × HH-RILA 3 9 20 11 19 2 8 23 1 8 18 6 5 17 10

HRMA × IBEA 11 18 3 31 0 1 31 0 1 1 6 25 27 3 2

HRMA × NSGA-II 0 1 31 0 0 32 0 1 31 4 16 12 0 1 31

HRMA × SPEA2 0 9 23 0 10 22 0 10 22 8 13 11 0 3 29

HRMA × HH-ALL 31 1 0 27 5 0 25 7 0 0 6 26 25 7 0

HRMA × HH-CF 0 3 29 0 4 28 0 5 27 0 30 2 0 2 30

HRMA × HH-RILA 3 4 25 11 18 3 9 21 2 7 22 3 4 17 11

IBEA × NSGA-II 0 1 31 0 0 32 0 0 32 27 4 1 0 2 30

IBEA × SPEA2 0 4 28 0 1 31 0 1 31 17 8 7 1 0 31

IBEA × HH-ALL 29 3 0 3 12 17 2 18 12 3 19 10 12 20 0

IBEA × HH-CF 0 3 29 0 1 31 0 1 31 21 10 1 0 1 31

IBEA × HH-RILA 0 0 32 0 1 31 0 1 31 21 8 3 0 1 31

NSGA-II × SPEA2 19 11 2 19 13 0 24 7 1 14 4 14 24 4 4

NSGA-II × HH-ALL 32 0 0 32 0 0 31 1 0 0 14 18 30 2 0

NSGA-II × HH-CF 20 11 1 15 17 0 14 17 1 12 17 3 25 6 1

NSGA-II × HH-RILA 22 9 1 31 1 0 31 0 1 13 10 9 28 0 4

SPEA2 × HH-ALL 32 0 0 32 0 0 31 1 0 1 15 16 30 2 0

SPEA2 × HH-CF 2 24 6 0 27 5 1 26 5 6 16 10 4 19 9

SPEA2 × HH-RILA 8 20 4 27 4 1 30 2 0 6 25 1 28 3 1

HH-ALL × HH-CF 0 0 32 0 0 32 0 1 31 23 9 0 0 2 30

HH-ALL × HH-RILA 0 0 32 0 14 18 0 14 18 26 6 0 0 7 25

HH-CF × HH-RILA 8 22 2 29 3 0 28 4 0 8 23 1 24 4 4

was indeed better than HH-RILA.

Table 11 shows the results of the third evaluation we have proposed based on the MMI indicator.

Here, we realise that there is a difference in the ranking if we compare to the previous results (cross-

domain analysis, statistical evaluation). Now, SPEA2 was the best approach followed by NSGA-II735

and HH-CF.

This difference might be explained precisely by the combination of all metrics and the three-

level normalisation process. In other words, even if NSGA-II was better than SPEA2, looking at

the results of the cross-domain analysis, in terms of hN , εN , IN , and I+N , SPEA2 got superior

35



performance regarding ∆∗N . Eventually this better performance under ∆∗N and consistent results740

considering the other four quality indicators are enough, and SPEA2 turned out to be the most

standing approach according to the MMI. Since MMI is based on the outcomes of the cross-

domain analysis, where we do not adopt a case-by-case evaluation but rather we consider the

averages of the normalised quality indicators across all problem instances of all problems, the

consistent performance of an algorithm taking into account all problem instances influences its745

MMI. NSGA-II and HH-CF obtained the second and third places, respectively, and HRISE M,

HRISE R, HRMA all surpassed HH-RILA.

Table 11: MMI, configuration less

Ranking Algorithm Euclidean Distance

1 SPEA2 0.792036643075591

2 NSGA-II 0.864726943701915

3 HH-CF 0.885445758314289

4 HRISE M 1.05859485301485

5 HRISE R 1.05861066340369

6 HRMA 1.07721572577917

7 HH-RILA 1.10197819263326

8 IBEA 1.52926425105214

9 HH-ALL 1.73446292695956

Regardless the assessment considered, one point is clear according to the results and this

helps answering RQ 1. As for the configuration less, the metaheuristics, particularly SPEA2 and

NSGA-II, obtained in general better performances than the hyper-heuristics. This conclusion750

is in disagreement with the outcomes recently published in the literature where hyper-heuristics

got superior achievements (Li et al., 2019; Santiago Júnior et al., 2020; Carvalho et al., 2020).

Moreover, the hyper-heuristic which stood out among all was HH-CF which is not also in line

with some recent studies (Li et al., 2019).

We now show some Solution Fronts13 for the configuration less in Figure 7 where we see one755

front of an algorithm related to the LOF4 problem instance. In each subfigure we show the True

Known Pareto Front, the Solution Fronts of SPEA2 (the best algorithm in accordance with the

MMI), and one of the other algorithms (from the second to the fifth best approaches according

to the MMI). Moreover, we show three out of the four objective functions: edge coverage (x axis;

Obj 4), test case diversity via Gower-Legendre (dice) similarity measure (y axis; Obj 2), and test760

case diversity via Sokal-Sneath (anti-dice) similarity measure (z axis; Obj 3). Note the very good

performance of SPEA2, where the elements of its Solution Front overlap many elements of the

True Known Pareto Front.

13The final population obtained by the algorithms is also known as the Solution Set. The Solution Front lies in
the objective space, and it is composed of the values of the objective functions of the elements (solutions) in the
Solution Set.
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Figure 7: True Known Pareto and Solution Fronts, configuration less, best algorithms: LOF4

5.2. Configuration More

Table 12 presents the results of the cross-domain analysis for the configuration more where765

we see only the average values of all problem instances and considering all normalised quality

indicators: hAPR
N , εAPR

N , IAPR
N , ∆∗APR

N , and I+APR
N . HH-RILA, NSGA-II, and IBEA were the

first three regarding hN and I+N . NSGA-II, SPEA2, and HH-CF, in this order, were the best

regarding εN and IN while IBEA, HH-ALL, and NSGA-II were the top three algorithms regarding

∆∗N .770

Table 13 presents the results according to the statistical evaluation. There is a total agreement

between the statistical results and the cross-domain analysis in terms of h, ε, I, and ∆∗. In other

words, regarding these four quality indicators, the classification of the three best approaches in

the statistical evaluation is the same as presented in the cross-domain analysis. In terms of I+,

there is a tie between HH-RILA and NSGA-II (each obtained seven wins) while the cross-domain775

evaluation states that HH-RILA was better than NSGA-II. IBEA was the third in this case in total

agreement with the cross-domain analysis. Overall, we may say that both evaluations produced
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very similar results.

Table 13: Statistical evaluation, configuration more. Caption: Comp = Comparison

Comp > ∼ < > ∼ < > ∼ < > ∼ < > ∼ <

h ε I ∆∗ I+
HRISE M × HRISE R 0 31 1 0 32 0 0 32 0 0 32 0 0 31 1

HRISE M × HRMA 0 32 0 0 32 0 0 32 0 1 31 0 1 31 0

HRISE M × IBEA 2 0 30 19 11 2 28 4 0 0 3 29 2 0 30

HRISE M × NSGA-II 0 3 29 0 2 30 0 2 30 1 15 16 0 2 30

HRISE M × SPEA2 0 6 26 0 3 29 0 4 28 1 28 3 0 4 28

HRISE M × HH-ALL 27 5 0 27 4 1 28 3 1 0 12 20 25 7 0

HRISE M × HH-CF 0 6 26 0 6 26 0 4 28 0 23 9 0 6 26

HRISE M × HH-RILA 0 1 31 1 15 16 2 17 13 0 27 5 0 1 31

HRISE R × HRMA 1 31 0 1 31 0 0 32 0 1 31 0 0 32 0

HRISE R × IBEA 2 0 30 20 8 4 28 4 0 0 3 29 2 0 30

HRISE R × NSGA-II 0 2 30 0 1 31 0 2 30 1 18 13 0 2 30

HRISE R × SPEA2 0 4 28 0 0 32 0 2 30 2 27 3 0 1 31

HRISE R × HH-ALL 27 5 0 27 4 1 28 3 1 0 14 18 25 7 0

HRISE R × HH-CF 0 2 30 0 3 29 0 4 28 0 21 11 0 4 28

HRISE R × HH-RILA 0 0 32 1 14 17 1 20 11 1 28 3 0 0 32

HRMA × IBEA 2 0 30 19 9 4 27 5 0 0 3 29 2 0 30

HRMA × NSGA-II 0 1 31 0 1 31 0 1 31 1 16 15 0 1 31

HRMA × SPEA2 0 5 27 0 2 30 0 3 29 2 27 3 0 3 29

HRMA × HH-ALL 27 5 0 27 4 1 26 5 1 0 14 18 26 6 0

HRMA × HH-CF 0 2 30 0 4 28 0 2 30 0 21 11 0 3 29

HRMA × HH-RILA 0 0 32 2 13 17 2 17 13 0 27 5 0 0 32

IBEA × NSGA-II 4 19 9 1 0 31 0 0 32 28 0 4 4 18 10

IBEA × SPEA2 22 7 3 1 1 30 0 0 32 26 3 3 14 16 2

IBEA × HH-ALL 30 1 1 23 7 2 18 12 2 9 22 1 30 1 1

IBEA × HH-CF 19 11 2 1 2 29 0 0 32 24 4 4 13 17 2

IBEA × HH-RILA 0 26 6 1 3 28 0 0 32 28 3 1 2 24 6

NSGA-II × SPEA2 24 6 2 16 14 2 15 15 2 7 23 2 22 8 2

NSGA-II × HH-ALL 32 0 0 32 0 0 31 1 0 2 23 7 30 2 0

NSGA-II × HH-CF 23 9 0 13 19 0 18 13 1 3 28 1 22 9 1

NSGA-II × HH-RILA 2 27 3 23 6 3 29 1 2 9 23 0 3 26 3

SPEA2 × HH-ALL 32 0 0 32 0 0 32 0 0 3 18 11 32 0 0

SPEA2 × HH-CF 3 28 1 2 29 1 3 28 1 1 27 4 2 29 1

SPEA2 × HH-RILA 0 11 21 14 17 1 18 14 0 4 26 2 2 13 17

HH-ALL × HH-CF 0 0 32 0 0 32 0 0 32 7 22 3 0 0 32

HH-ALL × HH-RILA 0 1 31 0 1 31 0 1 31 15 17 0 0 1 31

HH-CF × HH-RILA 0 7 25 17 14 1 17 13 2 5 27 0 2 10 20

Results of the MMI for the configuration more are in Table 14. As in the previous section, the

MMI outcomes present differences comparing to the previous evaluations. NSGA-II was the best780

according to this metric followed by HH-CF and IBEA. Furthermore, even if HH-RILA obtained

two top positions (hN , I+N ) in the cross-domain analysis, not only IBEA but also SPEA2 were

here overall better than HH-RILA. Particularly, note that IBEA was the best considering ∆∗N

and got two third positions (hN , I+N ). On the other hand, SPEA2 obtained two second best

performances (εN , IN ). The same explanations given in the previous section help to explain785
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these differences: combination of all quality indicators, consistent performance of the algorithms,

three-level normalisation, not case-by-case analysis. However, here HH-RILA was superior than

HRISE R, HRISE M, and HRMA.

Table 14: MMI, configuration more

Ranking Algorithm Euclidean Distance

1 NSGA-II 0.692718771610298

2 HH-CF 0.735471598187579

3 IBEA 0.919143040464169

4 SPEA2 0.924889941707152

5 HH-RILA 0.960761946867152

6 HRISE R 1.20421090445104

7 HRISE M 1.21258602154972

8 HRMA 1.21898973079064

9 HH-ALL 2.04176066439771

Answering RQ 2 which relates to the configuration more, we may say that the metaheuris-

tics, particularly NSGA-II, obtained in general better performances than the hyper-heuristics,790

although HH-CF was now the second best according to the MMI. HH-RILA demonstrated a bet-

ter performance than in the configuration less but even so this was not enough to beat IBEA and

SPEA2.

We show again some Solution Fronts generated for the configuration more in Figure 8. Once

more, we show one front of an algorithm related to the LOF4 problem instance. As earlier, in795

each subfigure we show the True Known Pareto Front, the Solution Fronts of NSGA-II (the best

algorithm in accordance with the MMI), and one of the other algorithms (from the second to the

fifth best approaches according to the MMI). We show three out of the four objective functions:

edge coverage (x axis; Obj 4), test case diversity via Gower-Legendre (dice) similarity measure (y

axis; Obj 2), and size of the test suites (z axis; Obj 1). Again, observe the very good performance800

of NSGA-II, the best algorithm.

As for RQ 3, we can not clearly say that there is a single algorithm that is highly superior

than the others considering both configurations. Overall, even if the metaheuristics obtained

better performances, in particular NSGA-II, they are not clearly superior. To state this claim, an

algorithm must be better than the others in most of the quality indicators in the context of the805

cross-domain analysis, as well as it must obtain more wins in most of the indicators regarding the

statistical evaluation, and it must be the best in accordance with the MMI indicator. In addition,

this should consistently happen for both configurations. We have no such algorithm according to

the results. This response just corroborates the fact that generalisation is really difficult to achieve

regarding optimisation problems. Note that this conclusion, based on empirical evidences, seems810

to agree with the no free lunch theorem since “old” metaheuristics which performed worse than

hyper-heuristics solving continuous optimisation problems, now were better addressing discrete
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Figure 8: True Known Pareto and Solution Fronts, configuration more, best algorithms: LOF4

optimisation ones.

6. Discussion

In this section, we discuss the results we obtained in more detail and provide general recom-815

mendations to practitioners when facing the testing of GUI applications. Firstly, we can accept

the hypothesis we have formulated in Section 1 where we have stated that it is possible to combine

SBST with other traditional type of testing adopted for GUI applications, so that we can generate

test cases according to the many-objective perspective. We believe that the case studies (problem

instances) we considered are interesting where in one type of problem we derive test cases based820

on the source of a non-trivial software product, and the other problem is a completely different

perspective, via use cases. Additional remarks and recommendations are mentioned below.

6.1. State Space Explosion

State space explosion is a well-known problem related to any model-based test case generation

strategy. In other words, if the model has many states (vertices in a graph) and/or transitions825
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(edges in a graph), test case criteria may derive not only extremely lengthier test cases but also

test suites with an enormous amount of test cases. We have addressed this issue by limiting the

number of test cases a test suite may have, by adding constraints which automatically delimit

the length of the test cases based on the number of vertices of the EFG and hence avoid creating

meaningless test cases in practical terms, and also by defining configurations (less, more) which830

limit the maximum number of simple circuits to consider. All these decisions favour the generation

of test cases in a timely manner, addressing the state space explosion issue.

Another remark refers to the selected test criterion to generate test cases: simple circuits. Note

that this is equivalent to the all-simple-paths test criterion for Statechart-based testing (Santiago

Júnior, 2011; Santiago Júnior & Vijaykumar, 2012; Souza, 2000), which requires that all simple835

paths (simple circuits) are traversed at least once by a test suite. As we have just explained above,

the decisions we have made relax this condition that all simple circuits must be traversed to address

the state space explosion problem. However, we may suggest other test criteria which are in a

higher-level position in the inclusion (hierarchy) relation among Statechart test criteria which can

be adapted to EFG models. For instance, practitioners may consider all-paths-k-C0-configuration840

and all-paths-k-configurations as test criteria and perceive the benefits in their practical settings.

6.2. Model, Test Suite and Test Case

We decided to rely on EFGs to generate test cases. Note that EFG is not suitable for all

types of GUI applications. However, the way we defined the test suite and test case allowed us to

generate test cases based on the source code of GUI desktop applications (code-driven problem)845

and also via use cases (use case-driven problem). Since each decision variable of a solution is an

integer which identifies a test case which in its turn is a simple circuit of the graph, we do not

have problems of inconsistent test cases, since all of them are already consistent.

However, this does not prevent that other more sophisticated models, such as ESIG (Yuan &

Memon, 2010a), from being evaluated, in combination with the test suite and test case decisions850

we have adopted. Recall that our definitions of test suite and test case provide more flexibility to

the professional to select a test suite according to his/her preference, and also having longer but

not extremely lengthier test cases.

6.3. Choice of Algorithms and Assessments

It is naturally important to choose the most adequate algorithm to generate GUI test cases.855

The whole point of different types of assessments is giving several perspectives so that a testing

professional can decide which is the most appropriate approach. We just need to emphasise that

traditional, or eventually considered “outdated”, algorithms are still worth being investigated. As

we have mentioned in the previous section, there is no single algorithm that is highly superior than
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all the others but, considering all the evaluations we performed, NSGA-II, a metaheuristic proposed860

quite some time ago, would be a natural preference for the problem instances we considered.

Observing the results for both configurations less and more, the three types of analyses (cross-

domain, statistical, MMI) do not totally agree in their rankings. As we have pointed out, cross-

domain and MMI are assessments that do not take into account a case-by-case analysis but rather

they are performed across all problem instances of all problems. On the other hand, the statistical865

evaluation is indeed a case-by-case assessment. Hence, our recommendation is that if a practitioner

is solving a single and specific problem instance, the statistical evaluation is a better tool to rely

on. However, if the goal is to address several optimisation problem instances from many real-

world problems, cross-domain and the MMI are the approaches to go for. Particularly, the MMI

indicator we have proposed in this work is a valuable metric and it can be easily extended to n870

quality indicators.

Depending on the selected quality indicators, the conclusions could be different. Let us recall

the configuration less where even if NSGA-II was better than SPEA2 with respect to four out of the

five quality indicators in the cross-domain analysis (hN , εN , IN , and I+N ), SPEA2 got superior

performance regarding ∆∗N . This better performance under ∆∗N and consistent results considering875

the other four quality indicators were sufficient, and SPEA2 overcame NSGA-II regarding the

MMI. If we did not consider ∆∗N , there is no doubt that NSGA-II would get a better MMI value

than SPEA2. We decided to rely on five quality indicators to have a broader view where these

metrics cover three categories: convergence-diversity, convergence, and diversity.

6.4. Many-Objective Test Case Generation including other Non-Functional Requirements880

We believe that the many-objective perspective is really important to generate test cases for

non-trivial applications. The motivation is to create test cases that are, by design, already suitable

according to different test objectives.

We considered two non-functional properties, effectiveness and cost, of the created test suites.

Thus, it is truly relevant to consider other non-functional requirements related to the GUI appli-885

cations themselves such as performance, security, safety, in addition to functional requirements

and non-functional properties that we have already addressed. This is a valuable unified direction

where we try to create test cases aiming at detecting different classes of defects.

7. Conclusions

This study showed how to combine search-based with model-based testing to generate test890

cases for GUI applications taking into account the many-objective perspective. However, this

combination allows the generation of test cases for any software system whose structure and/or

behaviour can be represented by a sort of graph (e.g. EFG).
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Our main motivation was the fact that, in spite of having several previous studies supported

by tools in the literature for GUI test case generation, the majority of these approaches generate895

test cases based on or addressing functional properties only. Hence, we found the need to propose

a strategy where the many-objective perspective is satisfied. In our evaluation, in addition to

considering five quality indicators, we also proposed a new multi-metric measure, MMI, in which

all these quality indicators contribute to present a unified response.

Several previous studies in the literature show superior achievements of selection hyper-heuristics900

over metaheuristics (Santiago Júnior et al., 2020; Santiago Júnior & Özcan, 2019; Maashi et al.,

2014; Li et al., 2019; McClymont et al., 2012; Li et al., 2017; Carvalho et al., 2020; Guizzo et al.,

2017; Ferreira et al., 2017). However, based on three different assessments, i.e. cross-domain

analysis, statistical evaluation, and MMI, our findings show that the metaheuristics, particularly

NSGA-II which may be considered the best overall, produced better results for GUI test case905

generation than the hyper-heuristics. However, the HRISE family, HH-RILA, and HH-CF were all

originally designed and applied to continuous optimisation problems. In this article, we considered

discrete optimisation problems, which might have caused the performance differences deviating

from what was reported previously.

Another surprisingly conclusion is that among all hyper-heuristics, HH-CF was the best overall910

surpassing the recently proposed algorithms of the HRISE family (Santiago Júnior et al., 2020;

Santiago Júnior & Özcan, 2019) and HH-RILA (Li et al., 2019). HH-CF was even the second

best approach in the configuration more according to the MMI. While some studies (Santiago

Júnior et al., 2020) have already mentioned the good performance of HH-CF for some continuous

problems (e.g. Deb-Thiele-Laumanns-Zitzler (DTLZ) (Deb et al., 2005)) others do not agree with915

this conclusion and HH-CF was not that good (Li et al., 2019).

Note that HRISE M, HRISE R, and HH-RILA are all reinforcement learning-based algorithms.

It is possible that the learning rate/parameters of such approaches were inadequate considering

the landscapes of the discrete problems and this can be another explanation for their relative

low performances. In all algorithms to obtain the final population, we considered only the non-920

dominated solutions. We then noticed that the final populations of HRISE M, HRISE R, HRMA

were, in general, considerably smaller than the other algorithms for basically all problem instances

(recall that the initial population was randomly created with 100 solutions for all algorithms). A

smaller population can lead to poor performances with respect to the metrics. It is not completely

clear why such proportionally small populations were devised by the HRISE family. Probably, the925

two-level move acceptance mechanism is too demanding for these problems but we need further

investigations to clarify this point.

The first future direction is to design and execute a controlled experiment where we can evaluate

the algorithms under the point of view of the testing community. Hence, we need to execute the
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created test suites and realise which of the algorithms is the best based on their ability of detection930

of defects. Therefore, we may empirically corroborate our claims regarding the many-objective

perspective. We also intend to include other non-functional requirements as objective functions

in order to propose a unified test case generation approach for GUI applications. More GUI case

studies will be considered in order to have an even wider range of problem instances. Thus, we

will have more experimental ground to conclude better about generalisation. In terms of the935

HRISE family, we can relax the two-level (hierarchical) move acceptance mechanism and perceive

the influence of such modification in the final results. We also intend to embed many-objective

evolutionary algorithms as they are known, such as the Reference Vector Guided Evolutionary

Algorithm (RVEA) (Cheng et al., 2016), into the selection hyper-heuristics and thus we can

perform experimental evaluations considering such new versions of the hyper-heuristics.940
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Drake, J. H., Kheiri, A., Özcan, E., & Burke, E. K. (2019). Recent advances in selec-

tion hyper-heuristics. European Journal of Operational Research, . URL: http://www.

sciencedirect.com/science/article/pii/S0377221719306526. doi:https://doi.org/10.

1016/j.ejor.2019.07.073. . In Press (Available Online: Aug 7, 2019).

Durillo, J. J., & Nebro, A. J. (2011). jMetal: A java framework for multi-objective optimization.1015

Advances in Engineering Software, 42 , 760 – 771. URL: http://www.sciencedirect.com/

science/article/pii/S0965997811001219. doi:https://doi.org/10.1016/j.advengsoft.

2011.05.014.

Eras, E. R., Santiago Júnior, V. A., & Santos, L. B. R. (2019). Singularity: A methodology for

automatic unit test data generation for C++ applications based on model checking counterex-1020

amples. In Proceedings of the IV Brazilian Symposium on Systematic and Automated Software

Testing SAST 2019 (pp. 72–79). New York, NY, USA: Association for Computing Machinery.

URL: https://doi.org/10.1145/3356317.3356319. doi:10.1145/3356317.3356319.

Farto, G. C., & Endo, A. T. (2017). Reuse of model-based tests in mobile apps. In Proceedings

of the 31st Brazilian Symposium on Software Engineering SBES’17 (pp. 184–193). New York,1025

47

http://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1007/1-84628-137-7_6
http://dx.doi.org/10.1007/1-84628-137-7_6
http://dx.doi.org/10.1007/1-84628-137-7_6
http://dx.doi.org/10.1007/1-84628-137-7_6
http://www.sciencedirect.com/science/article/pii/S0360835219304991
http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.106040
http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.106040
http://www.sciencedirect.com/science/article/pii/S0377221719306526
http://www.sciencedirect.com/science/article/pii/S0377221719306526
http://www.sciencedirect.com/science/article/pii/S0377221719306526
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2019.07.073
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://www.sciencedirect.com/science/article/pii/S0965997811001219
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1145/3356317.3356319
http://dx.doi.org/10.1145/3356317.3356319


NY, USA: Association for Computing Machinery. URL: https://doi.org/10.1145/3131151.

3131160. doi:10.1145/3131151.3131160.

Ferreira, J. C., Fonseca, C. M., & Gaspar-Cunha, A. (2007). Methodology to select solutions

from the pareto-optimal set: A comparative study. In Proceedings of the 9th Annual Conference

on Genetic and Evolutionary Computation GECCO ’07 (pp. 789–796). New York, NY, USA:1030

Association for Computing Machinery. URL: https://doi.org/10.1145/1276958.1277117.

doi:10.1145/1276958.1277117.

Ferreira, T. N., Lima, J. A. P., Strickler, A., Kuk, J. N., Vergilio, S. R., & Pozo, A. (2017).

Hyper-heuristic based product selection for software product line testing. IEEE Computational

Intelligence Magazine, 12 , 34–45. doi:10.1109/MCI.2017.2670461.1035

Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization and multiple constraint

handling with evolutionary algorithms. i. a unified formulation. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 28 , 26–37. doi:10.1109/3468.650319.
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