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Abstract

In this paper, we introduce a multi-objective selection hyper-heuristic approach combining Rein-

forcement Learning, (meta)heuristic selection, and group decision-making as acceptance methods,

referred to as Hyper-Heuristic based on Reinforcement LearnIng, Balanced Heuristic Selection

and Group Decision AccEptance (HRISE), controlling a set of Multi-Objective Evolutionary Algo-

rithms (MOEAs) as Low-Level (meta)Heuristics (LLHs). Along with the use of multiple MOEAs,

we believe that having a robust LLH selection method as well as several move acceptance meth-

ods at our disposal would lead to an improved general-purpose method producing most adequate

solutions to the problem instances across multiple domains. We present two learning hyper-

heuristics based on the HRISE framework for multi-objective optimisation, each embedding a

group decision-making acceptance method under a different rule: majority rule (HRISE M) and

responsibility rule (HRISE R). A third hyper-heuristic is also defined where both a random LLH

selection and a random move acceptance strategy are used. We also propose two variants of the

late acceptance method and a new quality indicator supporting the initialisation of selection hyper-

heuristics using low computational budget. An extensive set of experiments were performed using

39 multi-objective problem instances from various domains where 24 are from four different bench-

mark function classes, and the remaining 15 instances are from four different real-world problems.

The cross-domain search performance of the proposed learning hyper-heuristics indeed turned out

to be the best, particularly HRISE R, when compared to three other selection hyper-heuristics,

including a recently proposed one, and all low-level MOEAs each run in isolation.
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1. Introduction

The main motivation behind hyper-heuristics is to resolve some of the issues with metaheuris-

tics. Although metaheuristics have long been proved beneficial to solve real-world complex search

problems such as scheduling, clustering, educational timetabling, and space allocation, it is still not

straightforward to apply them directly to new optimisation problems from different domains with5

no or minimal change, or even to new instances of the same problem [1, 2]. Some of the reasons

of such difficulties are the usual high number of parameters or algorithm choices the practitioner

must define, and the absence of proper guidelines to select them.

Hence, hyper-heuristics have emerged which represent a class of high-level search techniques

whose goal is to raise the level of generality at which search methods work [1, 2]. In hyper-10

heuristics, the search is performed in the space of heuristics (or heuristics components) instead of

being performed directly in the decision variable space (space of solutions). Thus, hyper-heuristics

are more general and so appropriate to solve different problems rather than a specific problem

based on a set of Low-Level (meta)Heuristics (LLHs).

A generic selection hyper-heuristic consists of two key components: heuristic selection and15

move acceptance methods [3]. As the name implies, in heuristic selection there is a set of LLHs

and the strategy must choose the most appropriate one to run at a certain moment of the search

process. The move acceptance method decides whether a solution (or a subset of solutions) that

is the result of the execution of the selected LLH is accepted or not. As we will explain below,

most studies do not exploit the benefits of relying on a robust heuristic selection strategy while20

simultaneously having a more elaborate and effective move acceptance method for accepting the

generated solutions (e.g. in a population).

There are many studies on selection hyper-heuristics based on perturbative LLHs mostly using a

single point-based search framework for single objective optimisation [3, 4, 5, 6, 7, 8]. However, the

use of population-based methods is a recently growing area of research [9] where hyper-heuristics25

for multi-objective optimisation are employed either for controlling the own components of Multi-

Objective Evolutionary Algorithms (MOEAs) [10, 11, 12], e.g. mutation and crossover operators

as LLHs, or the LLHs being complete MOEAs [13, 14, 15, 16].

Despite these efforts and even if there are several proposed selection of LLHs and move ac-

ceptance methods, the hyper-heuristics usually consist of a single LLH selection method, with no30

additional policies, combined with a single move acceptance approach. Few studies have made

a contribution where more than one heuristic selection/policy and/or move acceptance method

is considered. For instance, Li et al. (2019) [16] proposed a new heuristic selection method, ε-

RouletteGreedy, which is based on greedy and roulette wheel strategies. But only a single move
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acceptance method is used. In Kheiri et al. (2016) [17], ensemble move acceptance methods are35

combined under a group decision-making framework but employing a single point-based search.

We believe that having a set of LLH selection, policies, and move acceptance methods at our

disposal can produce a most adequate strategy to solve better the optimisation problems, since

we can benefit of the combined strengths of all the techniques. Thus, in this paper we present

a novel online selection hyper-heuristic based on perturbative LLHs which aims to solve complex40

multi-objective problems via a heuristic selection approach based on Reinforcement Learning and a

balanced mechanism, and move acceptance methods. The Hyper-Heuristic based on Reinforcement

LearnIng, Balanced Heuristic Selection and Group Decision AccEptance (HRISE) contemplates a

single LLH selection method but with additional policies and three move acceptance methods

within group decision-making rules. Our hyper-heuristic considers as LLHs complete MOEAs and45

we indeed propose two variants of it based on group decision-making acceptance: one based on the

majority rule (HRISE M) and another one based on the responsibility rule (HRISE R). A third

hyper-heuristic, called Hyper-Heuristic based on Random LLH Selection and Random Choice of Move

Acceptance Methods (HRMA) is also proposed where both a random choice of (meta)heuristic

selection is performed combined with a random choice of move acceptance methods.50

We compared the performance of HRISE M, HRISE R, and HRMA to three other hyper-

heuristics, including the Choice Function hyper-heuristic (HH-CF) [13], a random choice (meta)heuristic

selection hyper-heuristic with All Moves acceptance (HH-ALL), and a recent one Learning Automata-

based Hyper-Heuristic with a Ranking Scheme Initialisation (HH-RILA) [16] which is the state-

of-the-art. We also performed the comparison to the following three MOEAs run in isolation55

which are the LLHs in all hyper-heuristics: Nondominated Sorting Genetic Algorithm-II (NSGA-

II) [18], Indicator-Based Evolutionary Algorithm (IBEA) [19], and Strength Pareto Evolutionary

Algorithm-2 (SPEA2) [20].

The main contributions of this study are:

1. We propose two new selection hyper-heuristics (HRISE M and HRISE R) based on an ap-60

proach embedding a robust heuristic selection strategy, via Reinforcement Learning, and

enabling the use of several move acceptance methods under a group-decision framework.

Our idea is to rely on a range of methods not only to select a new LLH but also to ac-

cept a population of trade-off solutions generated after the execution of a selected LLH. To

the best of our knowledge, no previous approach has stressed both the heuristic selection65

(roulette wheel supported by Reinforcement Learning plus a balanced exploitation/explo-

ration method) and the move acceptance (two-level strategy: Only Improving + group

decision-making) mechanisms as we suggest in this work;

2. We propose two new move acceptance methods based on Late Acceptance [21, 22]. In
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Qualified Late Acceptance (QLA), we compare the quality of the current generated solution70

(population) to the quality of one that has been created but accepted s steps before. In

Mean Qualified Late Acceptance (MQLA), we consider the mean value of the quality of the

already accepted populations which are stored in the memory. These methods may hence

be incorporated to any selection hyper-heuristic;

3. Based on the framework, we also defined a third hyper-heuristic (HRMA) in which we not75

only randomly select a new LLH but also randomly choose one of the move acceptance

methods;

4. We also propose a new quality indicator which does not require a True Pareto Front, Refer-

ence Set (reference points) or nondominance of solutions, but only the values of the objective

functions. Hence, even for many-objective optimisation problems, it is suitable for support-80

ing a initialisation process considering a few iterations with low computational budget;

5. We devise a dynamic control mechanism where the number of iterations a selected LLH will

run varies along the search process;

6. We formulate a real-world problem related to space applications communication which can

be used as another benchmark in the future for evaluating multi-objective optimisation85

algorithms.

This paper is organised as follows. The related work is presented in Section 2. Section 3

introduces the proposed hyper-heuristics and the problems dealt with are provided in Section 4.

The experimental results are discussed in Section 5. Finally, the conclusions and future research

directions are in Section 6.90

2. Related Work

In this section we present some relevant studies related to selection hyper-heuristics based on

perturbative LLHs. We divide them in three categories: single point search-based, population-

based with components of MOEAs, and population-based with complete MOEAs.

Single point search-based selection hyper-heuristics have been dominated the field as presented95

in [2]. The authors distributed the studies in several classes such as hyper-heuristics using de-

terministic move acceptance [4, 5], hyper-heuristics using heuristic selection with no learning and

non-deterministic move acceptance [6], and hyper-heuristics using heuristic selection with online

learning and non-deterministic move acceptance [3, 7, 8]. Although there are several heuristic

selection and move acceptance methods addressed, these studies assess the performance of a single100

selection of LLH method with no additional policies, combined with a single move acceptance
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approach. In this study, we use roulette wheel supported by Reinforcement Learning together

with policies for selecting LLHs, and a two-level (hierarchical) move acceptance method formed

by Only Improving and group decision acceptance.

With respect to the studies of selection hyper-heuristics within population-based approaches,105

here we see strategies which control components (e.g. crossover and mutation operators) of a

MOEA [9]. In [23], the Water Distribution Network (WDN) design problem is addressed via a

selection hyper-heuristic based on Markov Chains [24] which is incorporated into NSGA-II and

SPEA2. They considered a range of mutation and crossover operator-based LLHs. Some of these

previous studies are in the context of Search-Based Software Testing (SBST) [25, 26, 27, 28]110

addressing problems such as integration and test order [10], derivation of products for Software

Product Line (SPL) testing [11], and Second Order Mutants (SOMs) generation strategies [12].

All these studies only consider a single heuristic selection method (e.g. Choice Function, Upper

Confidence Bound, Multi-Armed Bandit [29, 30]) with no additional policies to improve the overall

approach. Moreover, we believe that if complete MOEAs are used as LLHs, we can benefit of the115

strengths of each low-level metaheuristic as a whole.

Recent studies fall then into this latter category where instead of operators of a single meta-

heuristic, complete MOEAs are used as LLHs. In [13], the authors presented a hyper-heuristic

based on Choice Function in which NSGA-II, SPEA2, and the Multi-Objective Genetic Algorithm

(MOGA) [31] are the LLHs. In [14], researchers used NSGA-II, IBEA, and SPEA2 as LLHs and120

evaluated several heuristic selection (Fixed Sequence, Choice Function) and acceptance (Great

Deluge Acceptance (GDA) [3, 32] with D-metric, Best Acceptance) methods for wind farm layout

optimisation. The same previous remarks apply here: only one heuristic selection, no additional

policies, and only one acceptance method is defined for each hyper-heuristic.

MOABHH is an agent-based hyper-heuristic framework focused on online selection by means of125

voting techniques [15]. The main idea is to consider MOEAs as candidates and quality indicators

as voters in an election. NSGA-II, SPEA2, IBEA, and the Generalised Differential Evolution 3

(GDE3) [33] are the LLHs. They used a voting method to select an LLH based on the Condorcet’s

principle which is similar to the group decision-making majority rule, but we used this rule as a

move acceptor and not as a selector. Moreover, they used only the All Moves acceptance method130

while we have a set of acceptance methods.

In [16], the authors proposed a learning automata-based selection hyper-heuristic. There are

two variants of the hyper-heuristic depending on whether a uniform (HH-LA) or a ranking-based

(HH-RILA) initialisation process is chosen. LLHs are NSGA-II, IBEA, and SPEA2. They defined

a selection method, named ε-RouletteGreedy, in which they apply roulette wheel in the initial135

stage and, after that, they select between greedy and roulette wheel based on ε, the probability

of applying the greedy heuristic selection method. Such a probability is increased linearly during
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the execution. In our case, we defined a light (low demanding in computational terms) initiali-

sation process based on a new quality indicator, and our additional policies are within a robust

balanced exploitation/exploration approach. They used only one move acceptance method (Only140

Improving) while we have a two-level (hierarchical) approach and, moreover, we also defined a

nonuniform iterations strategy addressing the number of times an LLH can execute.

3. The HRISE/HRMA Selection Hyper-Heuristics

In this section, we describe both variants of the HRISE hyper-heuristic: HRISE M and HRISE R.

We designed the HRMA hyper-heuristic under the same general structure of HRISE and hence we145

address it here too. Figure 1 presents our hyper-heuristics using an activity diagram while Algo-

rithm 1 is the main HRISE/HRMA procedure where we show the main features of our proposals

in an algorithmic format.

Run Decision 
Points/Iterations

Select LLH:
Roulette (HRM/HRR)

/ Rnd (HMA)

stop?
yes

Apply Nonuniform 
Iterations

no

improvement 
accepted?

end

start

Execute LLH

Apply Move Acceptance:
Only Improving

Apply Move Acceptance:
Group Decision - 

HRM/HRR/HMA (Rnd)

yes

no

Run Initialisation

Apply Balanced
Exp/Exp (HRM/HRR)

Reinforcement Learning: 
Update Utility Values

(HRM/HRR)

Figure 1: The HRISE/HRMA selection hyper-heuristics: activity diagram. Caption: HRM = HRISE M; HRR =
HRISE R; HMA = HRMA; Rnd = Random; Exp/Exp = Exploitation/Exploration

We mention some general observations below to show the main differences between the three

approaches. An in-depth explanation of the features of our hyper-heuristics are provided later150

in this section. The LLHs of HRISE are complete MOEAs hence we consider not only their

components (e.g. mutation and crossover operations). Note that in Figure 1 some activities/tasks

only exist for HRISE M and HRISE R, i.e. balanced exploitation/exploration (Apply Balanced

Exp/Exp) and the activity related to Reinforcement Learning. Moreover, the heuristic selection is
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roulette wheel [34] for HRISE M and HRISE R and it is a random LLH selection within HRMA.155

In the group decision move acceptance mechanism, the majority (HRISE M) or responsibility

(HRISE R) rules are used depending on the hyper-heuristic and, for HRMA, we have a random

choice among the available move acceptance methods.

As shown in Algorithm 1, HRISE receives as inputs the problem instance (Pr), the version of

the hyper-heuristic (v = M , R, A for HRISE M, HRISE R, HRMA, respectively), the maximum160

number of interations (mi), the maximum number of decision points (md), the population size

(z), and the sequence1 of LLHs (LLH). The final resulting population is Popf .

The first activity in Figure 1 is the initialisation where we designed a computationally low

demanding procedure (compLowInitialisationRPO in Algorithm 1) in which we run each LLH k

for very few iterations2 and only once, and decide the first to be executed based on a new quality165

indicator which we detail in Section 3.1. We record the previous performance of an LLH k in Per,

a sequence whose elements indicate if k had its offspring population accepted in the last time it

was executed.

After the execution of the first selected LLH, for HRISE M and HRISE R, our approach first

selects the next LLH to run based on roulette wheel [34] considering the utility values (UV )170

associated with the LLHs. The utility value of an LLH k, µk, influences the probability of k to be

selected and as higher the utility value, the better. After the first decision point, all LLHs have

the same utility value and hence a random choice is made. However, the Reinforcement Learning

step of our approaches (see Section 3.3) rewards or penalises an LLH according to its performance,

and this reflects on the heuristic selection at future decision points.175

As for HRISE M and HRISE R, a balanced exploitation/exploration procedure (balancedExpExp

in Algorithm 1; more details in Section 3.2) is performed following the LLH selection via roulette

wheel. As we have previously mentioned, for HRMA an LHH is randomly selected and neither

the balanced exploitation/exploration mechanism nor the Reinforcement Learning step are used.

Traditionally, the number of iterations a selected LLH will run is fixed, e.g. an LLH runs for180

10 iterations [16], 250 iterations [13], and so on. We can denote it as a uniform approach regarding

the number of iterations/LLH.

But, we have observed that a nonuniform technique is worth being considered where the number

of iterations an LLH will execute varies (nonUniformIterations in Algorithm 1). We envisage

three scenarios as presented in Figure 2. The descending approach is where we give more iterations185

to a selected LLH to be executed within the very first decision points while providing less iterations

1A sequence differs from a set because repetition of elements is allowed and order matters. Even if we do not
expect that the user inputs repeated names of metaheuristics, the order that they are defined is relevant because
of the index, which is related to the metaheuristic, being used by other sequences of the approach.

2We prefer denoting “iteration” rather than “generation” in order to be more general. On the other hand, we
use “decision point” in the same sense as other authors use “iteration”.
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Algorithm 1 The HRISE/HRMA selection hyper-heuristics: algorithmic format

input: Pr, v, mi, md, z, LLH
output: Popf

1: i = 1, j = 1, Poph = ∅, Popf = ∅, EQ = ∅, AQ = ∅, IQ = {IQk = 0 | k = 1 · · · |LLH|}
2: Per = {Perk = ⊥ | k = 1 · · · |LLH|}
3: selInit = compLowInitialisationRPO(LLH, z, Pr)
4: while (j <= md) ∧ (i <= mi) do
5: if j = 1 then
6: sel = selInit
7: else
8: if (v = M) ∨ (v = R) then
9: sel = selectLLH(UV )

10: sel = balancedExpExp(sel, Per, ηa, IQ, LLH,AQ)
11: else
12: sel = getRandom(LLH)
13: end if
14: end if
15: Poph = adjustPop(Poph, z)
16: n = nonUniformIterations(EQ, j,mi, i)
17: i = i+ n
18: Popt = executeLLH(sel, z, n, Pr, Poph)
19: EQ = EQ ∪measureQuality(Popt, P r)
20: if j > 1 then
21: IQ = updateIQ(sel)
22: if onlyImproving(IQ,AQ) then
23: Poph = updatePop(Poph, Popt)
24: if groupDecAcc(v,EQj , j,md, α) then
25: Perk = >
26: AQ = AQ ∪ EQj

27: Popf = updatePop(Popf , Poph)
28: else
29: Perk = ⊥
30: end if
31: else
32: Perk = ⊥
33: penaliseUV (sel, j,md)
34: end if
35: else
36: Perk = >
37: AQ = AQ ∪ EQj

38: Popf = updatePop(Popf , Poph)
39: end if
40: j = j + 1
41: end while
42: return Popf
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in the last decision points. The main reasoning behind this idea is trying to get fitter populations

at the beginning by giving the first selected LLHs more iterations to run, but allowing more

decision points to exist by providing less iterations later.

Descending Constant Bathtub

DP

Ite
ra
tio
ns
/L
LH

DP DP

Ite
ra
tio
ns
/L
LH

Ite
ra
tio
ns
/L
LH

Figure 2: The nonuniform iterations strategy. Caption: DP = Decision Point

Even if we give a higher number of iterations at the beginning, it is possible, for some problem190

instances, that the populations consist of nondominated solutions but some values of objective

functions are extremely high while others are very low. This may cause the hypervolume [35],

the quality indicator we consider to drive decisions within our hyper-heuristics, to be extremely

low or even 0 at the end of the number of iterations. Hence, by naturally decreasing the number

of iterations as in the descending approach is not enough. In addition, we chose hypervolume as195

our key quality indicator since previous studies state that as maximum the hypervolume indicator

is the better, because this is equivalent to optimising the overall objective leading to an optimal

approximation of the True Pareto Front [36].

The constant strategy is then the one where we identify this issue and maintain the number

of iterations huge and with the same value up to the termination criterion. The sequence EQ is200

input to the nonuniform technique and has every value of quality indicators (hypervolumes) due

to the offspring populations (Popt). In this case, we check whether such hypervolume, hj , is less

than or equal to a threshold, γ, and count the number of these very low values. If this count

exceeds 1, hence we can conclude that it is important to keep constant and high the number of

iterations/LLH.205

The third scenario is called bathtub. In other words, we start with a high number of iterations,

decrease this number of iterations as in the descending strategy but, at some point, we realise that

offspring populations have not been accepted and hence we raise again the number of iterations

and thus provide more resources for the later selected LLHs.

Note that it is very possible that the number of decision points, and consequently the number210

of different LLHs selected, that will be really executed can be, in many situations, less than the

value md given as input to our approach. The selected LLH, sel, is then executed (executeLLH

in Algorithm 1) considering the population size, z, the number of iterations/LLH, n, and the
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problem instance, Pr. Poph is really effective after the execution of the first selected LLH and its

function is related to the sharing of populations through the decision points.215

Within our acceptance approach (lines from 20 through 39), the population due to the first

selected LLH is always accepted, and its respective performance is positive (Perk = > (True)).

The group decision acceptance (groupDecAcc in Algorithm 1) takes place to decide whether the

offspring population must be accepted. The input version of the algorithm dictates the acceptance

mechanism (more details in Section 3.4). However, regardless of the version (HRISE M, HRISE R,

HRMA), we defined a two-level (hierarchical) acceptance mechanism where in the first stage we

realise whether a quality indicator improvement (onlyImproving in Algorithm 1) happens. Con-

sidering the hypervolume [35], the hypervolume improvement, δ(hj), is accepted if the following

condition is satisfied:

δ(hj) =
hj − a|AQ|

a|AQ|
≥ γ (1)

where hj is the hypervolume of the current decision point, a|AQ| is the hypervolume of the last

accepted population which is stored in the sequence AQ, and γ is a threshold (note that this

is the same parameter we have just defined above within the nonuniform strategy). Only if this

condition holds is that the group acceptance criterion, i.e. the second level, is applied. Considering

this two-level acceptance mechanism (Only Improving and group decision), it is more demanding220

for a population to be accepted.

If a population is accepted, the current hypervolume (EQj) is added to AQ and the last

performance of the LLH k is positive (>). The final population and output of our hyper-heuristics

is Popf while Poph is a population that is considered as the initial from the second decision point

onward, and whose value is adjusted before the execution of a new selected LLH.225

The performance of an LLH k is negatively recorded (⊥, False) as well as it is penalised in

accordance with the Reinforcement Learning approach (Section 3.3) in any situation in which the

new set of solutions is rejected.

3.1. The Relative Performance Per Objective Indicator

Capacity metrics [37], such as Overall Nondominated Vector Generation (ONVG) [38], Overall230

Nondominated Vector Generation Ratio (ONVGR) [38], and Ratio of Nondominated solutions

(RNI) [39], require that populations have nondominated solutions to work out. However, if we

run a MOEA for very few iterations considering a problem instance, no solution may dominate

another one and hence these indicators are of no value in these situations.

Popular convergence metrics, such as Generation Distance (GD) [40], ε and ε+ indicators [41],235

Seven Points Average Distance (SPAD) [42], convergence-diversity metrics, such as hypervolume

(s-metric) [35], Inverted Generational Distance (IGD) [43], Modified Inverted Generational Dis-

tance (IGD+) [44], and diversity metrics, such as Uniform Distribution (UD) [39], spread (∆)
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[18] and generalised spread (∆∗) [45], demand the existence of a True Pareto Front or Reference

Set (reference points) which are not available for real-world problems. Even if there are practical240

mechanisms to overcome this issue if we think, again, about a initialisation process with very low

computational demand (very few iterations) to select an LLH, these metrics may not be suitable.

Hence, we propose the Relative Performance Per Objective (RPO) indicator which does not

demand a True Pareto Front, Reference Set (reference points) or nondominance of solutions, and

it is suitable for a initialisation process where we run all LLHs only once and for very few iterations.245

Assuming all objective functions need to be minimised, RPO is defined as shown in Algorithm

2 where Fm×l is a m × l matrix containing the maximum values of all m (1 ≤ i ≤ m) objective

functions due to the execution of all l LLHs (1 ≤ k ≤ l).

Algorithm 2 The RPO indicator

input: Fm×l
output: RPO

1: RPO = initialiseRPO()
2: NF = initialiseMatrix()
3: for i = 1 to m do
4: for k = 1 to l do
5: maxi = maxi ∪ fik
6: end for
7: mini = findMin(maxi)
8: end for
9: for i = 1 to m do

10: for k = 1 to l do
11: if mini = fik then
12: nfik = 0
13: else
14: nfik = (fik −mini)/mini
15: end if
16: end for
17: end for
18: NFT = NFT

19: for i = 1 to l do
20: for k = 1 to m do
21: rpoi = rpoi + nftik
22: end for
23: end for
24: return RPO

In Algorithm 2, NFm×l is a matrix with the same dimensions of Fm×l obtained by normalising

each element of Fm×l per objective, NFT
l×m is its transpose, and rpoi ∈ RPO. The lower the250

rpoi, the better the LLH. The main reasoning behind RPO is to calculate the minimum of the

maximum values of the objective functions related to a population.

Let us assume that a problem instance has four objective functions (m = 4) and three LLHs

(MOEAs) are used within our hyper-heuristics (l = 3). Suppose that the maximum values of
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objective functions of a population obtained by running each LLH only once and for very few255

iterations are as shown in matrix Fm×l below:

Fm×l =


1684.22 1681.65 1692.38

9.08 8.28 10.65

0.26 0.24 0.23

8.11 8.15 7.22


Matrix NFm×l is then created (lines 9 to 17 in Algorithm 2) by considering the minimum

of the maximum values for each objective independently. For instance, let us consider the first

objective function (row 1 of matrix Fm×l). The minimum value of objective function is due to

the LLH 2 = 1681.65. Thus, this becomes 0 in NFm×l, the remaining elements of the matrix are260

obtained by normalisation (line 14 in Algorithm 2), and the entire NFm×l is presented below:

NFm×l =


0.001528 0 0.006381

0.096618 0 0.286232

0.130435 0.043478 0

0.123269 0.128809 0


Matrix NFT

l×m is the transpose of NFm×l as shown below:

NFT
l×m =


0.001528 0.096618 0.130435 0.123269

0 0 0.043478 0.128809

0.006381 0.286232 0 0


Each row of NFT

l×m has the normalised values of the objective functions due to each LLH. In

order to obtain the rpo of each LLH, we simply sum the elements of each row. Hence, these are

the rpo values for this example: rpo1 = 0.35185, rpo2 = 0.172287, rpo3 = 0.296213. Since the265

smallest value is due to the LLH 2 (rpo2), then this is the one chosen to be the first to be executed.

3.2. The Balanced Exploitation/Exploration Method

We designed additional tasks to have a balanced solution regarding exploitation × exploration

as shown in Algorithm 3. These are policies (P1, P2, P3) that may alter the selected LLH due to

roulette wheel in the previous step. Note that some input parameters in Algorithm 3 are handled270

by these three policies and, as we will explain in Section 5.1, ηr is a parameter that we do not

need to tune because its value is chosen based on ηa.

Since the Reinforcement Learning mechanism (more details in Section 3.3) rewards or penalises

the utility values, it is possible that, for a given problem instance, a certain LLH k is selected to

run several times and eventually this may be the only selected LLH for this instance resulting in275
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Algorithm 3 The Balanced Exploitation/Exploration Method

input: sel, Per, ηa, IQ, LLH, AQ
output: nsel

1: if (P1 ∨ P2 ∨ P3) then
2: nsel = selectBestPerf({LLH \ sel}, AQ)
3: if nsel = null then
4: nsel = getRandomCheckFailures({LLH \ sel}, ηr)
5: end if
6: else
7: nsel = sel
8: end if
9: if checkWeakPerfAll(LLH, ηr) then

10: enableLLH(LLH)
11: end if
12: return nsel

an extreme exploitation situation. This can happen because each time an LLH k has its offspring

population accepted, its utility value is rewarded while the others LLHs stay with the same utility

value.

In order to avoid this situation, in policy P1 we count the number of times (frequency) an

LLH k was selected to execute and verify whether the current selected LLH is above a certain280

limit (ηa), and if this is so, another LLH must be chosen to run. An exception for this is whether

the quality improvement of the last time k was run is the best overall compared to the ones of the

other LLHs when they were last executed (sequence IQ contains such information). In this case,

k is still allowed to run even if its number of executions exceeds ηa.

Policy P2 checks whether the last performance of the selected LLH was not good enough so285

that its population was rejected (check whether Perk = ⊥). In policy P3, we try to avoid an un-

necessary exploration situation, where LLHs that have been continuously failing (i.e. populations

not accepted) are ruled out if the number of failures exceed other parameter ηr. However, this

elimination is only performed if, at the end, at least 2 LLHs are enabled for the heuristic selection

process in the next decision points.290

Any of these three policies being hold is enough to change the previously selected LLH, sel. A

new LLH, nsel, is then chosen based on the best performance up to now (selectBestPerf in line

2). In other words, the decision for a certain algorithm, among the ones remaining ({LLH \ sel}),

is taken considering the LLH which had its population accepted in highest number of times so far.

In the situation where none of the remaining LLHs is superior overall, a random LLH is chosen295

among them ({LLH \ sel}) but still considering whether the number of failures do not exceed ηr

(getRandomCheckFailures in line 4).

However, the possible elimination of an LLH of the selection process may not be definitive as

presented in other studies [16]. Since we still continue counting the number of times the remaining
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LLHs poorly performed, it is possible that in a certain moment all the LLHs exceed the established300

low performance limit (ηr). Thus, all LLHs are re-enabled (enableLLH(LLH) in line 10), even

those which had already been eliminated, for the next decision points.

Let us assume the same three LLHs (1, 2, 3) as discussed in the last section. Table 1 shows an

example of the dynamics considering some decision points. In this table, DP identifies the decision

point, LLH-RW means the LLH suggested to run by roulette wheel, fk means the frequency305

(number of times) the LLH k has been run, Perk shows the last performance of the LLH k, IQk

is the quality improvement of the last time the LLH k was executed, P1, P2 and P3 are the

outcomes of the three policies in Algorithm 3, LLH-Bal means the “new” LLH selected to run

after the balanced exploitation/exploration mechanism, Pop Acc states if the selected LLH had

its population accepted, and IQk − Post is the quality improvement of k just after its execution.310

Table 1: Some decision points to illustrate the balanced exploitation/exploration method. The * means this is the
outcome of the initialisation process

DP LLH-RW fk Perk IQk P1 P2 P3 LLH-Bal Pop Acc IQk − Post
1 2∗ - - - - - - - YES -

2 2 1 > - F F F 2 NO 2× 10−5

3 1 1 - - F F F 1 YES 8× 10−5

4 1 2 > 8× 10−5 F F F 1 NO 1× 10−5

5 1 3 ⊥ 1× 10−5 T T F 2 YES 12× 10−5

6 2 3 > 12× 10−5 F F F 2 NO 0.5× 10−5

7 3 1 - - F F F 3 YES 13× 10−5

8 1 1 ⊥ 1× 10−5 F T F 2 NO 3× 10−5

9 2 1 ⊥ 3× 10−5 F T F 3 YES 15× 10−5

We consider ηa = ηr = 2 for this analysis. First note that, in the first decision point, the

selected LLH is not the outcome of roulette wheel but rather is the result of the initialisation

process previously described and supported by the RPO quality indicator (Section 3.1). We

assume that the LLH 2 is the one the initialisation process suggests as shown in the last section.

In the second decision point, roulette wheel selects LLH 2, f2 = 1 (column fk), and the previous315

performance is True (Per2 = >; column Perk) because every population of the first decision

point is always accepted. All policies are False and hence there is no change in the selected LLH

and LLH 2 is indeed executed (see column LLH-Bal). But, we assume that its population is not

accepted by our two-level acceptance mechanism. In decision point 3, roulette wheel selects LLH

1, all policies are False, LLH 1 is allowed to run, and its population is accepted. In the next320

decision point, LLH 1 is again selected by roulette wheel, there is no change in the LLH, but now

the population of LLH 1 is not accepted.

In decision point 5, since roulette wheel selects again LLH 1, we see that f1 = 3 (column fk)

is greater than ηa = 2. But, there is still a possibility to allow LLH 1 to run depending on the

quality improvement of the last time LLH 1 was run. But observe that IQ1 = 1× 10−5 (column325
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IQk) while IQ2 = 2 × 10−5 (column IQk − Post). Since the quality improvement of LLH 1 is

not better than the one of LLH 2, hence another heuristic must be chosen because policy P1 is

indeed True. Note that policy P2 is also True because of the bad last performance of LLH 1. At

this point LLH 2 had 1 population accepted (in the first decision point) and LLH 3 was never run.

Hence, the new LLH suggested by the balanced mechanism is LLH 2.330

In decision points 6 and 7, LLH 2 and LLH 3 are chosen, respectively, by roulette wheel, all

policies are False, there is no change in the suggested LLH, LLH 2 did not succeed in accepting its

population, but LLH 3 did succeed. In decision point 8, LLH 1 was selected by roulette wheel and

note that its counter is reset since it was above ηa in decision point 5. But, the last performance

of LLH 1 is still False (column Perk) and Policy P2 is satisfied. LLH 2 is then suggested as the335

new LLH because, at this point, it had two populations accepted (decision points 1 and 5) while

LLH 3 had only one (decision point 7).

Finally, in decision point 9, LLH 2 is suggested by roulette wheel and note that its counter is

also reset because it was greater than ηa in decision point 6. However, just in the last decision

point (8), the population of LLH 2 was not accepted and Per2 = ⊥ (column Perk). To select the340

new LLH, the balanced strategy realises that both LLH 1 and LLH 3 had one population accepted

so far: LLH 1 in decision point 3 and LLH 3 in decision point 7. Therefore, a random choice is

made between both heuristics and LLH 3 was chosen to run.

3.3. Reinforcement Learning

Reinforcement Learning is a field of Machine Learning which is different from both Supervised345

and Unsupervised Learning. In Reinforcement Learning, problems involve learning of what should

be done (how to map situations to actions) in order to maximise a numerical reward signal [46].

They are closed-loop problems because the application of actions influences the inputs of the

system in a later phase.

We use Reinforcement Learning to reward or penalise a certain LLH which is selected to run

(action). Hence, if the application of an LLH k results in a population that is accepted by the

group decision acceptance methods (see Section 3.4), hence we reward the utility value of the LLH

as:

µ′(k) = µ(k) + α×
(

1− j

b1.5×mdc

)
, (2)

where µ′(k) and µ(k) are the next and the current utility value of the LLH k, respectively, j is the350

current decision point, md is the maximum number of decision points, b.c is the floor function,

and α is a parameter in [0,1].

If the population of a selected LLH is not accepted, it is penalised as follows:

µ′(k) = µ(k)− α×
(

1− j

b1.5×mdc

)
. (3)
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The utility values impact on the selection of the LLH to run in the next decision point. We

only reward or penalise an LLH once per decision point within each hyper-heuristic (HRISE M

and HRISE R). In Algorithm 1, we see the penaliseUV procedure in action (line 33), in case of355

a negative performance of an LLH. However, within the groupDecAcc procedure, rewardUV and

penaliseUV can be called too, depending on whether an LLH must be rewarded or penalised,

respectively.

3.4. Group Decision-Making for Acceptance

In group decision-making, several individuals participate in a process where they analyse prob-360

lems, point out alternative courses of actions, and select from these alternatives one or more

solutions [47]. Hence, the idea is to give the responsibility to make decisions to a group of persons

rather than a single individual, although this is also an option.

A previous work on selection hyper-heuristic studied ensemble move acceptance methods com-

bining them under a group decision-making framework [17]. Two of the rules discussed in the365

paper are responsibility (also known as authority) and majority for making an accept/reject deci-

sion using multiple move acceptance methods. The responsibility rule imposes that a single move

acceptance method takes the responsibility/authority for the final decision, while the majority rule

counts the votes for the accept/reject decision and the majority leads to the final decision. In this

study, we consider the majority and responsibility rules to accept or reject the populations gen-370

erated by the LLHs. The majority rule is embedded into the HRISE M hyper-heuristic whereas

the responsibility rule derives HRISE R. In HRMA, we randomly select one of the acceptance

methods from the group, and recall that in HRMA we have a random heuristic selection strategy

too.

Three move acceptance methods are embedded within HRISE/HRMA where two out of them375

are new ones created by varying previous solutions. Great Deluge Acceptance (GDA) always

accepts improving moves and accepts moves that are worse but which are below a certain threshold

which is decreased over time at a linear rate [3, 32]. It is an optimisation approach which has been

demonstrating good performance in the context of selection hyper-heuristics [48].

We propose a new move acceptance method, called Qualified Late Acceptance (QLA), which380

is a variation of Late Acceptance (LA) [21, 22]. In LA, a comparison is made between a current

generated solution and one created s steps before and which is stored in a memory. The parameter

s is the memory length and it may influence the performance of the hyper-heuristic. Eventually,

if the memory length is high, it is possible that the current generated solution is accepted not

because it is too good but because the quality of the solution s steps before may be too low, and385

hence it is easier to be beaten.

To make a comparison to more fitted populations, we store in memory (QA in Algorithm 1)
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only the quality indicator values of the populations that were accepted in the past. Thus, in the

new method QLA, we compare the quality of the current generated solution (population) to the

quality of one that has been created and accepted s ≤ j steps before, where j refers to decision390

points. If the current generated solution (population) is no better than the one accepted and

created s ≤ j steps before, hence we do not take it into account and go on.

We propose another move acceptance method called Mean Qualified Late Acceptance (MQLA).

The idea is that a solution (population) is accepted if it is better than the mean value of the quality

of the already accepted populations which are stored in the memory.395

In HRISE M, success is where at least two out of the three move acceptance methods agree

in accepting the population. In the responsibility version, HRISE R, only one needs to accept

the population. We defined a sequence of applications of the methods in this case as: GDA,

QLA, MQLA. Hence, if GDA accepts then the decision of HRISE R is True. Otherwise, it tries

QLA, and a last resource is MQLA. As previously mentioned, in HRMA a random choice is made400

between GDA, QLA, and MQLA.

Recall that we have a two-level acceptance mechanism where the group decision features (sec-

ond level) are considered only if the Only Improving criterion (first level) is satisfied. The reasoning

behind this strategy is to be more confident when accepting a population and avoid that weak

ones to survive further in the process.405

4. Problems

All algorithms were evaluated against seven Deb-Thiele-Laumanns-Zitzler (DTLZx, x = 1...7)

[49] and nine Walking Fish Group (WFGx, x = 1...9) benchmark problem instances [50]. The

same parameter values for these benchmark functions were used as suggested in [49] and [50] for

DTLZ and WFG, respectively.410

Still on the benchmark problems, we also assessed three constrained problem instances as

shown in [51]: one Type-1 constrained problem instance (C1-DTLZ1) and two Type-2 constrained

problem instances (C2-DTLZ2 and Convex C2-DTLZ2). In Type-1 constrained problem instances,

the original True Pareto Front is still optimal, but there is an infeasible barrier in approaching it.

Type-2 constrained problems introduce infeasibility to a part of the True Pareto Front and their415

aim is to test the ability of an algorithm to deal with discontinuities in the True Pareto Front.

Moreover, we also considered the first five unconstrained (UFx, x = 1 ... 5) multi-objective problem

instances from the CEC 2009 Special Session and Competition benchmark [52]. Altogether, we

dealt with 24 benchmark problem instances from four problems.

The reasons for choosing the DTLZ and WFG problems and the problem instances above420

are because they were exactly the same as those used to evaluate HH-RILA [16]. We believe

that this option has allowed us to have a more adequate comparison to this recently proposed
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hyper-heuristic. Furthermore, we selected the DTLZ constrained problem instances because we

had already used its unconstrained counterpart, and hence we would like to realise about the

performance considering the constrained cases. Problem instances from the CEC 2009 benchmark425

were considered to increase even more the diversity of case studies.

We also evaluated four different real-world problems as described below. As we will explain, two

of these problems are constrained. A total of 15 real-world problem instances from four problems

were assessed. Altogether, we evaluated 39 problem instances from eight problems where four

problems are real-world applications (unconstrained and constrained). Hence, we have 61.5%430

of problem instances from benchmark problems and 38.5% of problem instances from real-world

applications. This relatively balanced proportion, between benchmark and real-world problems,

was one of our goals. In other words, we would not like to have many more problem instances

from one type than from another.

4.1. Vehicle Crashworthiness Problem435

Structural optimisation for Vehicle Crashworthiness (VC) criteria is very relevant in the au-

tomotive industry [53]. It is difficult to obtain accurate results in these types of problems due

to high nonlinearities related to this context. This problem has three objective functions to be

minimised: weight (f1), acceleration characteristics (f2), and toe-board intrusion (f3). There are

five decision variables and no constraints. The objective functions are:440

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+4.5688768x3 + 7.7213633x4 + 4.4559504x5

(4)

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4

+0.0861x1x5 + 0.3628x2x4 − 0.1106x21 − 0.3437x23 + 0.1764x24

(5)

f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3

−0.0073x1x2 + 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4

−0.008x3x5 − 0.0241x22 + 0.0109x24

(6)

We created four problem instances related to VC considering the original one (three-objective)

and by combining pairs of objectives: VC1 = {f1, f2, f3}; VC2 = {f1, f2}; VC3 = {f1, f3}; and

VC4 = {f2, f3}.

18



4.2. Water Resource Planning Problem

Water Resource (WR) systems are crucial for a proper developed of a nation. However, issues445

such as inappropriate and/or degraded infrastructure, excessive withdrawals of river flows, pollu-

tion from industrial and agricultural activities are still impediments for regions around the world

to have even basic drinking water and sanitation needs [54]. This problem has five objective func-

tions that all need to be minimised: the drainage network cost (f1), the storage facility cost (f2),

the treatment facility cost (f3), the expected flood damage cost (f4), and the expected economic450

loss due to flood (f5). There are 7 constraints and three decision variables [55]. The five objective

functions are shown below.

f1(x) = 106780.37× (x2 + x3) + 61704.67 (7)

f2(x) = 3000x1 (8)

f3(x) =
305700× 2289x2
(0.06× 2289)0.65

(9)

f4(x) = 250× 2289× e(−39.75x2+9.9x3+2.74) (10)

f5(x) = 25× (
1.39

x1x2
+ 4940x3 − 80) (11)

We created five problem instances related to WR considering the original one (five-objective)

and by combining four out of the five objectives: WR1 = {f1, f2, f3, f4, f5}; WR2 = {f1, f2, f3, f4};

WR3 = {f1, f2, f4, f5}; WR4 = {f1, f3, f4, f5}; and WR5 = {f2, f3, f4, f5}.455

4.3. Car Side Impact Problem

Another problem related to the automative industry, Car Side (CS) impact deals with the

optimisation of a vehicle side impact crashworthiness, but the formulation of this problem presents

10 constraints [56]. It has three objective functions that need to be minimised: the weight of

car (f1), the pubic force experienced by a passenger (f2), and the average velocity of the V-460

Pillar responsible for withstanding the impact load (f3). There exist 7 decision variables and the

objective functions are as follows.

f1(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7 (12)
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f2(x) = 4.72− 0.5x4 − 0.19x2x3 (13)

f3(x) = 0.5× (27.03− 0.674x1x2 − 0.67275x2 − 0.489x3x7 − 0.843x5x6) (14)

Three problem instances were created in addition to the original one: CS1 = {f1, f2, f3}; CS2

= {f1, f2}; and CS3 = {f1, f3}.

4.4. Space Applications Communication Problem465

Space Applications (SP), such as satellites, rockets, and balloons, are real-time systems. Data

that are gathered by the their various computing subsystems serve not only to make decisions

automatically during the operation of the systems but, naturally, they must be sent to ground

stations on the Earth’s surface so that controllers of such systems can perceive their health and

interfere if something is wrong. Furthermore, scientists can make studies based on the observations470

collected by the applications.

This problem refers to real-time TeleMetry (TM) data transmission from a hard X-ray imaging

telescope which is to be launched by a balloon and will operate between 40 to 42 km of altitude

[57, 58]. The On-Board Data Handling Subsystem (OBDH) is responsible for acquiring, format-

ting, and transmitting to the Ground Station (GS) all TM data generated by several subsystems475

(X-ray Camera (XRC), Attitude Control Subsystem (ACS)) of the space segment. The OBDH

continuously stores on-board and sends to the GS all TM data it obtains. The main goal is trying

to minimise the total time (associated with transmission and propagation delays) of these data

that are stored on-board and, at the same time, are visualised on the GS in real-time.

There are three objective functions: minimise the total time related to the delivery of scientific480

data to the GS (f1), minimise the total time related to the delivery of housekeeping data (OBDH

+ ACS) to the GS (f2), and maximise the total amount of data transmitted to the GS (f3). This

problem has no constraints while it has four decision variables: amount of scientific data TM packet

(x1); amount of housekeeping data TM packet from the OBDH (x2); amount of housekeeping data

TM packet from the ACS (x3); and amount of event packets generated by the XRC (x4). The485

objective functions are described in the sequence where f3 is formulated as a minimisation problem

too.

f1(x) = x1 × (x4 +
48x4 + 96

115200
+

48x4 + 272

500000
) + 0.300133 (15)

f2(x) =
115264x2 + 115328x3

115200
+ 0.300133 (16)
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f3(x) = 300− (x1 + x2 + x3) (17)

Three problem instances were created: the original instance, SP1 = {f1, f2, f3}; SP2 = {f1, f3};

and SP3 = {f2, f3}.

5. Experimental Results490

Our hyper-heuristics were implemented based on two frameworks: version 5.6 of jMetal [59]

and jMetalHyperHeuristicHelper [60]. As for the experimental evaluation, we considered as LLHs

three MOEAs: NSGA-II [18], IBEA [19], and SPEA2 [20]. We chose these MOEAs due to their

popularity and also because several other selection hyper-heuristics [13, 15, 16] have made use of

them, and so this is more suitable for the analysis. Selection of individuals was binary tournament,495

we used Simulated Binary Crossover (SBX) [61] with probability 0.9 and distribution index 20, and

Polynomial mutation with probability 1/n (n = number of parameters) and distribution index 20.

We compared our approaches to three other hyper-heuristics (HH-CF, HH-ALL, and HH-RILA),

and the three MOEAs run in isolation.

We executed all approaches for each problem instance for 100,000 evaluations, population500

size (z) was 100, and trials were 30. Hence, for our hyper-heuristics, HH-CF, HH-ALL, NSGA-

II, IBEA, SPEA2, the maximum number of iterations (mi) was 1,000. Within our nonuniform

strategy, the first selected LLHs run for 250 iterations and in the later decision points they run for

100 iterations (but recall that even later it is possible a huge number of iterations/LLH, i.e. 250).

With respect to HH-RILA, each selected LLH runs for 10 iterations as suggested in their study505

[16]. The maximum number of decision points (md) for our hyper-heuristics is 7, and in HH-CF

it is 25 as previously mentioned [13] as well as this is the case for HH-ALL. Table 2 summarises

the values of the main parameters used.

The choice of values for the common parameters was driven by other studies where some works

use 50,000, 75,000, 100,000 evaluations [16], depending on the problem instance, and others use510

100,000 evaluations [62]. We decided to use a fixed default value for all instances equals to 100,000

evaluations to accomplish a more uniform comparison. This choice is not related to any previous

analysis of convergence of the algorithms. As well as a population of 100 solutions and 30 trials

are quite common values in several other studies in the literature.

The tuning of parameters of our hyper-heuristics are presented in Section 5.1 while the meaning515

of the parameters of HH-RILA [16] and HH-CF [13], shown in Table 2, are described in their

respective papers. Moreover, α in our hyper-heuristics has a different meaning of α in HH-CF. All

experiments were performed on an Intel Xeon 3.5 GHz processor with 32 GB of RAM memory

and Windows 10 Operating System. All populations (VAR files) of all algorithms, the respective
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Table 2: Experimental evaluation: values of parameters

Common Parameters

Number of Evaluations 100,000

Population Size 100

Trials 30

Specific Parameters

HRISE M, HRISE R, HRMA

Iterations/LLH 250 or 100

Maximum Iterations 1,000

Maximum Decision Points 7

α 1.0 (HRISE M) / 0.1 (HRISE R)

ηa 2 (HRISE M) / 3 (HRISE R)

ηr 2 (HRISE M) / 1 (HRISE R)

γ 0.000075

HH-RILA

Iterations/LLH 10

τ 0.9

m 3.0

K 3

∆v 0.0075

HH-CF

Maximum Iterations 1,000

Maximum Decision Points 25

α 100

HH-ALL

Maximum Iterations 1,000

Maximum Decision Points 25

NSGA-II, IBEA, SPEA2

Maximum Iterations 1,000

Maximum Decision Points 1

values of objective functions (FUN files), all True and True Known (see remarks in Section 5.2)520

Pareto Fronts (.pf files) are stored in [63].

5.1. Parameter Tuning

There are two main parameters to tune within our approaches: α and ηa. The ηr parameter

was selected based on ηa:

ηr =

 ηa, if ηa = 2 (more flexible),

ηa − 2, if ηa > 2 (less flexible)

When ηr = ηa, we say that there is a greater flexibility regarding the LLHs which perform525

worse, while ηr = ηa − 2 means less flexibility because we eliminate an LLH with less number of

failures (populations not accepted). Other parameters were selected based on previous studies.

For instance, γ = 0.0075/100 = 0.000075 since 0.0075 was the value suggested in the HH-RILA

approach [16]. But in HH-RILA, the comparison is made to the hypervolume of the last population
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(regardless whether it was accepted or not) while we compare to the last accepted population.530

Thus, we gave a lower margin to avoid being too rigid to consider a population fitted.

The parameters could take the following values: α = {0.1, 0.4, 0.6, 1.0}, ηa = {2, 3, 4}. With

respect to HRISE M and HRISE R, we ran all problem instances from two theoretical benchmarks

(DTLZ, WFG) and all problem instances from VC (only) for 30 trials, for every combination

〈α, ηa〉.535

We took into account two levels of normalisation of the hypervolume indicator. The front-

normalised hypervolume, h, is obtained via the normalisation of the “raw” hypervolume based on

the minimum and maximum values of the objective functions of a problem instance. From this

point onward, we will denote it simply as hypervolume, h, and as higher its value, the better.

As for the cross-domain analysis, where we aim at realising about the generalisation features540

of hyper-heuristics, we used the normalised (front-normalised) hypervolume, hN , as defined below

[16]:

hN =
hmax
(∀a,p) − h(ai,p)

hmax
(∀a,p) − h

min
(∀a,p)

(18)

where hmax
(∀a,p) and hmin

(∀a,p) are the maximum and minimum values, respectively, of the hypervolume,

h, due to all algorithms a for a problem instance p, and h(ai,p) is the average value of the hyper-

volume due to algorithm ai for p. From this point onward, we will denote it simply as normalised545

hypervolume, hN . However, note that the formulation of hN is like a maximisation problem (max-

imise hypervolume) is turned into a minimisation problem. Hence, the lower the value of hN , the

better.

In order to decide the values of parameters for our approaches, we used hN . Tuning of HRISE M

produced as a result: {α = 1.0, ηa = 2}. The choice for HRISE R was: {α = 0.1, ηa = 3}.550

5.2. Cross-Domain Performance Analysis

One of the main claims of hyper-heuristics supporters is generalisation, i.e. their ability to

get better results across several different problems rather than a single problem domain. Hence,

the cross-domain performance analysis is a very suitable evaluation tool in this context. Tables 3

and 4 present the results of the cross-domain performance analysis using as metric the normalised555

hypervolume, hN , for the benchmark functions, where in Table 3 we show the results for problems

DTLZ, WFG, Constrained DTLZ, and in Table 4 we show the results for the UF problem. In

Table 5, we present the results for the real-world and for all (benchmark + real) problems.

In Table 3 and also in some figures later, DTx, WFx identify the DTLZ and WFG problem

instance, respectively, while C1DT1 is C1-DTLZ1, C2DT2 is C2-DTLZ2, and CONVC2DT2 is the560

Convex C2-DTLZ2 problem instances. Moreover, hDT
N , hWF

N , and hCDT
N means the average values

of hN for DTLZ, WFG, and Constrained DTLZ, respectively. In Table 4, UFx identifies the CEC
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2009 unconstrained problem instance and hUF
N is the average of such instances. Furthermore, in

Table 4, hBEN
N is the average value considering all 24 benchmark problem instances.

In Table 5 we see the identification of each real-world problem instance, the average value of565

the problem instances, hyN , the mean of all 15 real-world problem instances, hREA
N , and finally

the average value of all 39 (benchmark + real) problem instances, hAPR
N . In grey background we

show the top performance approaches where in bold it is the best algorithm while in italics it is

the second best.

Note that the differences are small but this is probably a consequence of the double normalisa-570

tion approach we took regarding the calculation of the hypervolume. As for the DTLZ problem,

we see that HRISE R was the best overall followed by HH-CF. The good performance of HH-CF,

as being even superior to SPEA2, contradicts previous results [16]. One possible explanation for

this relies on the fact that HH-CF, in many problem instances including some DTLZ ones, se-

lected SPEA2 as the LLH to run and this may be boosted its results regarding all DTLZ problem575

instances. As for the WFG problem, we have observed similar results as in previous studies where

IBEA presented the best performance followed by HH-RILA. Regarding the Constrained DTLZ

problem, HRISE R again produced the top performance while HRMA ranked the second. Regard-

ing UF, NSGA-II achieved the top rank and HH-RILA was the second best approach. Across all

benchmark problem instances, our hyper-heuristics performed the best where HRISE R was the580

top algorithm followed by HRISE M.

Considering the real-world problems, in order to obtain the reference points for hypervolume

calculation, we created the so called True Known Pareto Front where, for each problem instance,

we joined all final populations of all algorithms after the 30 trials, obtained the nondominated

solutions, and removed the repeated ones. Results for the VC problem are in line with previous585

studies [16] where NSGA-II got the best performance followed by HH-RILA. In two problems, WR

and SP, HRISE M and HRISE R presented the best results (HRISE M was the best in both prob-

lems). For all real-world problem instances, HH-RILA was the best being slightly superior than

HRISE M. However, considering all 39 (benchmark + real) problem instances (hAPR
N ), HRISE R

was the best followed by HRISE M, and HRMA.590

In Table 6, we present a statistical evaluation considering the 39 problem instances altogether

but we used the hypervolume, h, at this time where the higher the value, the better. We applied

a two-tailed permutation test (conditional inference procedure) [64] for multi-group comparison

with significance level equal to 0.05. In Table 6, “>” means the leftmost algorithm was signifi-

cantly better than the rightmost one, “<” means the leftmost algorithm was significantly worse,595

“∼” means no significant difference, and E in the p-values (p) represents the scientific notation

(standard form).

In accordance with the statistical outcomes, the top three approaches ranked based on the cross-
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Table 6: Statistical comparison considering all (benchmark + real) problem instances: h. Caption: Comp =
Comparison; Res = Result; p = p-value

Comp Res p

HRISE M × HRISE R ∼ 8.903E-01

HRISE M × HRMA ∼ 9.180E-01

HRISE M × IBEA > 1.105E-09

HRISE M × NSGA-II ∼ 2.937E-01

HRISE M × SPEA2 > 9.811E-03

HRISE M × HH-ALL > 3.996E-14

HRISE M × HH-CF > 2.812E-03

HRISE M × HH-RILA ∼ 2.772E-01

HRISE R × HRMA ∼ 8.297E-01

HRISE R × IBEA > 3.499E-10

HRISE R × NSGA-II ∼ 2.200E-01

HRISE R × SPEA2 > 4.948E-03

HRISE R × HH-ALL > 7.992E-15

HRISE R × HH-CF > 1.264E-03

HRISE R × HH-RILA ∼ 2.144E-01

HRMA × IBEA > 1.777E-09

HRMA × NSGA-II ∼ 3.209E-01

HRMA × SPEA2 > 1.289E-02

HRMA × HH-ALL > 6.128E-14

HRMA × HH-CF > 3.846E-03

HRMA × HH-RILA ∼ 2.958E-01

IBEA × NSGA-II < 2.819E-07

IBEA × SPEA2 < 1.955E-04

IBEA × HH-ALL ∼ 2.937E-01

IBEA × HH-CF < 5.678E-04

IBEA × HH-RILA < 1.196E-06

NSGA-II × SPEA2 ∼ 1.637E-01

NSGA-II × HH-ALL > 3.685E-11

NSGA-II × HH-CF ∼ 7.056E-02

NSGA-II × HH-RILA ∼ 9.180E-01

SPEA2 × HH-ALL > 1.605E-07

SPEA2 × HH-CF ∼ 7.826E-01

SPEA2 × HH-RILA ∼ 2.200E-01

HH-ALL × HH-CF < 5.645E-07

HH-ALL × HH-RILA < 3.520E-10

HH-CF × HH-RILA ∼ 1.118E-01

domain analysis, i.e. our three hyper-heuristics, were not better than HH-RILA and NSGA-II.

However, HRISE R, HRISE M, and HRMA were superior than all remaining algorithms, including600

SPEA2 and HH-CF, while there is a tie if we make a pairwise comparison between HH-RILA,

NSGA-II, SPEA2, and HH-CF. In other words, between these last four algorithms in a pairwise

manner (i.e. NSGA-II × SPEA2, NSGA-II × HH-CF, NSGA-II × HH-RILA, SPEA2 × HH-CF,

SPEA2 × HH-RILA, HH-CF × HH-RILA), there is no statistical difference considering h as a

metric. Thus, from the statistical point of view, we may not claim that our hyper-heuristics were605

truly better than HH-RILA and NSGA-II, but we might say that they are at least slightly better
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because of the remarks we have just presented above. We also compared all algorithms via the

normalised ε indicator (εN ) which shares the main reasoning behind the normalised hypervolume.

However, εN is calculated in the traditional manner in the context of minimisation problems since

as lower ε, and also εN , the better. In Table 7, we show a summarised version of the results610

presenting only the average values (εyN ). As in the case of hypervolume, for the real problems, we

used the True Known Pareto Front obtained along the execution of all algorithms.

Again we see the good performance of HH-CF for the DTLZ problem where it obtained the top

place followed by HRISE R. With respect to WFG, we have the same pattern as in the case of hN

while for the Constrained DTLZ problem we note a swap between the top contenders: HRMA was615

the best followed by HRISE R. As for the UF problem we notice the same classification as in the

hypervolume case, and overall, for the benchmark problem instances, HH-RILA is slightly better

than HRISE R. Considering the real-world problems, we might say that our approaches were even

better than in the previous analysis, where in three problems (WR, CS, and SP) they were the two

best solutions, as well as HRISE M presented the best results for all real-world problems followed620

by HRISE R. Considering all 39 (benchmark + real) problem instances, HRISE R showed the

best performance followed by HH-RILA, HRISE M, and HRMA.

The conclusion of all these results is that our hyper-heuristics presented the best results when

comparing to HH-CF, HH-ALL, and the MOEAs run in isolation. Regarding the comparison to

the recently proposed HH-RILA, even if we saw no statistical significance when evaluating the625

hypervolume, h, we may say that our hyper-heuristics were at least slightly better than HH-RILA

taking into account the pairwise comparison between HH-RILA and some other approaches as we

have previously pointed out. Overall, taking into account both quality indicators, HRISE R was

the best of all algorithms based on the results of the cross-domain evaluations.

However, we should mention that we still need to perform more experiments considering other630

benchmark and real-world problems to definitely conclude on the best performance of the ap-

proaches. In other words, more problems are required to conclude about generalisation. This

is known as a threat to external validity related to the population in the context of controlled

experiments [65, 66].

5.3. Evaluation of the Heuristic Selection Mechanisms: Utilisation Rate635

In this section, we aim at evaluating the heuristic selection mechanisms implemented within

our three hyper-heuristics and HH-RILA, the most recent and which got the closest performance

in comparison with our proposals. We use the utilisation rate as our main metric over all 30

trials. Figures 3 and 4 present the results regarding the benchmark problems DTLZ and WFG,

respectively. At first, it seems that HH-RILA eventually possesses more “intelligence” than our640

solutions since we clearly see that it favours much more some MOEAs in certain problem instances
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which may be a good approach. But, HH-RILA has within its initialisation process a mechanism

that may rule out an LLH, depending on its performance, for all the remaining iterations. As we

will mention, sometimes this is interesting and in other situations it is not.
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Figure 3: Utilisation Rate: DTLZ problem instances

Let us consider the DTLZ6 problem instance. HH-RILA completely eliminated NSGA-II and645

all the iterations were split between IBEA and SPEA2. But, in Figure 5a, we see that the mean

hypervolume (h) of NSGA-II over 30 trials is the second best if we compare only the three MOEAs

in isolation. It is better than IBEA. Hence, the radical measure to get rid off an LLH k at the

beginning was not a suitable measure in this case. As we have previously mentioned, in HRISE R

and HRISE M we can eliminate an LLH k but such action may be temporary because there is a650

possibility it comes back again, depending on the performance of the remaining MOEAs. This

explains a more uniform utilisation rate within our hyper-heuristics.

As for WFG, HH-RILA was even more radical excluding NSGA-II from WFG3 up WFG8

problem instances and selecting many more times IBEA. This was a good decision since the very

good outcomes produced by IBEA when applied to solve the WFG problem instances as shown in655

Section 5.2. However, note again that the mean hypervolume of NSGA-II was better than SPEA2
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Figure 4: Utilisation Rate: WFG problem instances
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for the WFG3 problem instance (Figure 5b).

In Figures 6 and 7, we show the utilisation rates for two real-world problems, respectively, SP

and WR. As in the case of the benchmark problems, HH-RILA presented a very nonuniform LLH

selection behaviour even if now only in WR5 an LLH (IBEA) was excluded definitely. As earlier,660

this can be suitable or not. If we consider SP2, HH-RILA selected proportionally many more

times IBEA even if the mean hypervolume between the three MOEAs are very close (see Figure

8a). On the other hand, in WR1, HH-RILA selected a few times IBEA and it seems suitable since

IBEA presented the smallest of all average hypervolume values for such a problem instance (see

Figure 8b).665

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SP3

SP2

SP1

HRISE_M: SP

NSGA-II IBEA SPEA2

(a) Utilisation Rate: HRISE M

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SP3

SP2

SP1

HRISE_R: SP

NSGA-II IBEA SPEA2

(b) Utilisation Rate: HRISE R

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SP3

SP2

SP1

HRMA: SP

NSGA-II IBEA SPEA2

(c) Utilisation Rate: HRMA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SP3

SP2

SP1

HH-RILA: SP

NSGA-II IBEA SPEA2

(d) Utilisation Rate: HH-RILA

Figure 6: Utilisation Rate: SP problem instances

It is not totally clear whether eliminating an LLH k and avoiding it to be executed at all,

as HH-RILA does, is overall a worse or better solution compared to a more permissive approach

where other chances are given to an LLH that was previously ruled out, as our hyper-heuristics

accomplish. This is a point that remains an open question within the context of hyper-heuristics.
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Figure 7: Utilisation Rate: WR problem instances
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We now show some Solution Fronts3 where our hyper-heuristics had better and worse per-670

formances compared to HH-RILA, considering the benchmark and real-world problem instances.

We also show the True Pareto Front or True Known Pareto Front as references. Regarding the

benchmark problem instances, DTLZ3 was one where HRISE R and HRISE M got better results

(Figure 9). Note that HH-RILA struggled here where many points in the objective space present

very low objective values given the sensation that we have only few points (Figure 9d). At first,675

we observed this behaviour in our hyper-heuristics too, but the nonuniform iterations strategy was

crucial to overcome this issue. In Figure 10, we see a better performance of HH-RILA particularly

when compared to HRISE R for the WFG1 problem instance.
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Figure 9: One of the best performances of our approaches: DTLZ3 (benchmark)

Regarding the real-world problem instances, Figures 11 and 12 show one of the best and worst

performances, respectively, compared to HH-RILA. It is evident that in SP1 (three objectives) our680

approaches surpass HH-RILA and the opposite happens in VC3 (two objectives).

Finally, we would like to emphasise the diversity of different problem instances, unconstrained

and constrained, that we addressed in the evaluation. As we know, there is a huge interest from

the community in assessing complicated real-world problems [52]. We believe we approached this

3The final population obtained by the algorithms (Popf in Algorithm 1) is also known as the Solution Set. The
Solution Front lies in the objective space, and it is composed of the values of the objective functions of the elements
(solutions) in the Solution Set.
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Figure 10: One of the worst performances of our approaches: WFG1 (benchmark)
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Figure 11: One of the best performances of our approaches: SP1 (real)
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Figure 12: One of the worst performances of our approaches: VC3 (real)

adequately by addressing four different real-world problems with problem instances with up to685

five objective functions. To highlight this point, we show the True Known Pareto Front of the

real-world problem instance VC1 in Figure 13. Looking at this front, we see that there is no clear

pattern or characteristic that defines it and, moreover, it presents discontinuities posing difficulties

for the algorithms to solve such problem instance.
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5.4. Evaluation of the Heuristic Selection Mechanisms: Accepted Populations690

Since HRMA, our random heuristic selection approach, presented results compatible with

HRISE R and HRISE M, we wonder whether the LLH selection method we designed, roulette

wheel supported by Reinforcement Learning plus balanced exploitation/exploration, was really

effective. In other words, what is the correlation between the selected LLHs due to HRISE R and

HRISE M and the number of accepted populations (by our two-level mechanism)? And is this695

correlation really better than a simple random heuristic selection technique? Recall again that,

in HRMA, Reinforcement Learning and the balanced exploitation/exploration mechanism are not

used.

To answer these questions, we relied on the Kendall rank correlation coefficient, τ , and Table

8 presents the results considering two benchmark problems, DTLZ and WFG, and all real-word700

problems. As shown in the table, HRISE R and HRISE M got basically strong positive correlations

with a few medium positive relationships. On the other hand, HRMA had mostly weak correlation

with even a negative one in the VC problem. Figure 14 shows the performance of HRISE R and

HRMA for the VC problem.

Table 8: Correlation analysis: selected LLHs × accepted populations

Problem Algorithm τ Conclusion

DTLZ

HRISE R 0.704 strong+

HRISE M 0.66 strong+

HRMA 0.133 weak+

WFG

HRISE R 0.799 strong+

HRISE M 0.754 strong+

HRMA 0.383 medium+

VC

HRISE R 0.779 strong+

HRISE M 0.646 strong+

HRMA -0.156 weak-

WR

HRISE R 0.475 medium+

HRISE M 0.654 strong+

HRMA 0.262 weak+

CS

HRISE R 0.706 strong+

HRISE M 0.366 medium+

HRMA -0.114 no

SP

HRISE R 0.514 strong+

HRISE M 0.725 strong+

HRMA 0.171 weak+

We then conclude that the heuristic selection mechanism designed within HRISE R and HRISE M705

matters and are more suitable than a simple random approach.
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Figure 14: Correlation between selected LLHs and accepted populations: VC (real)

6. Conclusions

While the studies on selection hyper-heuristics have rapidly been increasing based on single

point-based search for single objective optimisation, the studies on multi-objective hyper-heuristics

are still missing in the scientific literature, possibly because it is not straightforward to design a710

hyper-heuristic combining an appropriate heuristic selection method with a robust acceptance

method, and the use of population-based approaches as low-level (meta)heuristics introduces ad-

ditional complexities.

In this study, we presented the HRISE selection hyper-heuristics for multi-objective optimisa-

tion managing a set of low-level MOEAs and embedding the following novel algorithmic compo-715

nents:

1. Reinforcement Learning-based metaheuristic selection method complemented by a balanced

exploitation/exploration technique;

2. Dynamic control mechanism (nonuniform iterations strategy) deciding how long (for how

many iterations) a selected LLH will run;720

3. Two-level (hierarchical) acceptance approach, Only Improving and group decision-making,

where in the latter we have the responsibility and majority rules (denoted as hyper-heuristics

HRISE R and HRISE M, respectively); and

4. QLA and MQLA acceptance methods proposed to be used within the group along with

GDA.725
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A third proposed hyper-heuristic is HRMA where LLH selection is random but we still have the

nonuniform strategy, and we make a random selection of all available move acceptance methods.

Previous works in selection hyper-heuristics for single objective optimisation show the importance

of learning in heuristic selection [67] as well as how crucial the choice of move acceptance is

in combination with heuristic selection [17, 68]. This study confirms the same observations for730

multi-objective optimisation and additionally emphasises that an improved overall performance is

possible using multiple acceptance methods under a group decision-making scheme.

The empirical results, across 39 problem instances from four classes of benchmark functions

and four real-world problems, where we evaluated both unconstrained and constrained problems,

illustrate that our hyper-heuristics, with the proposed algorithmic components, performed the735

best when compared to HH-CF, HH-ALL, and each low-level MOEA run in isolation in terms of

hypervolume. Still regarding the hypervolume, both HRISE hyper-heuristics and HRMA deliver

a slightly better performance than the recently proposed state-of-the-art selection hyper-heuristic

HH-RILA. Although this performance variation is not statistically significant, we may conclude

that, considering the problem instances we selected, our hyper-heuristics were better than HH-740

RILA taking into account the pairwise comparison between HH-RILA and some other approaches

where HH-RILA was not better statistically speaking but our hyper-heuristics were. Considering

the ε indicator, HRISE R was the best followed by HH-RILA. Overall, considering both quality

indicators, HRISE R presented the best performance of all hyper-heuristics.

A natural future research direction would be evaluating and analysing the whole approach745

under various configurations, for example, including different set of low-level metaheuristics and/or

adding more move acceptance methods, such as the Iteration Limited Threshold Accepting (ILTA)

[68] and Adaptive Simulated Annealing (ASA) [69] for multi-objective optimisation. Additionally,

the proposed framework can be evaluated for many-objective optimisation based on other relevant

metrics, such as fast computation hypervolume [70] along with the RPO indicator proposed in this750

paper, and relying on other relevant approaches as low-level metaheuristics, such as NSGA-III [71]

and the Many Objective Metaheuristic Based on the R2 indicator-II (MOMBI-II) [72]. Another

natural extension to the current work would be applying this general-purpose approach to several

additional unseen real-world multi/many-objective problems to evaluate its performance, aiming

to conclude definitively in terms of generalisation.755
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[17] A. Kheiri, M. Mısır, E. Özcan, Ensemble move acceptance in selection hyper-heuristics, in:820
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