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Abstract

Context: Search-based Software Testing (SBST) is a research field where testing

a software product is formulated as an optimization problem. It is an active

sub-area of Search-based Software Engineering (SBSE) where many studies have

been published and some reviews have been carried out. The majority of studies

in SBST has been adopted meta-heuristics while hyper-heuristics have a long

way to go. Moreover, there is still a lack of studies to perceive the state-of-the-

art of the use of hyper-heuristics within SBST.

Objective: The objective of this work is to investigate the adoption of hyper-

heuristics for Software Testing highlighting the current efforts and identifying

new research directions.

Method: A Systematic Mapping study was carried out with 5 research ques-

tions considering papers published up to may/2019, and 4 different bases. The

research questions aims to find out, among other things, what are the hyper-

heuristics used in the context of Software Testing, for what problems hyper-

heuristics have been applied, and what are the objective functions in the scope

of Software Testing.
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Results: A total of 734 studies were found via the search strings and 164 ar-

ticles were related to Software Testing. However, from these, only 26 papers

were actually in accordance with the scope of this research and 3 more papers

were considered due to snowballing or expert’s suggestion, totalizing 29 selected

papers. Few different problems and application domains where hyper-heuristics

have been considered were identified.

Conclusion: Differently from other communities (Operational Research, Ar-

tificial Intelligence), SBST has little explored the benefits of hyper-heuristics

which include generalization and less difficulty in parameterization. Hence, it

is important to further investigate this area in order to alleviate the effort of

practitioners to use such an approach in their testing activities.

Keywords: Search-Based Software Testing, Hyper-heuristics, Systematic

Mapping, Evolutionary Algorithms, Genetic Algorithms, Meta-heuristics

1. Introduction

Search-Based Software Testing (SBST) is a sub-area of Search-Based Soft-

ware Engineering (SBSE) which has been receiving a lot of attention from the

academic community [1]. By formulating the testing of a software product as

an optimization problem, SBST can benefit of several solutions which has long5

been used in Operational Research, Artificial Intelligence, and similar areas.

Meta-heuristics such as Evolutionary Algorithms (Genetic Algorithm [2,

3]), Particle Swarm Optimization (PSO) [4, 5], Simulated Annealing [6, 7],

Tabu Search [8, 9] have been considered for Software Testing. Although meta-

heuristics have long been proved beneficial to solve real-world complex search10

problems, in addition to the ones related to Software Testing, such as schedul-

ing, clustering, educational timetabling, and space allocation, it is still not so

easy to apply such meta-heuristics to new optimization problems, or even new

instances of similar problems [10]. Some of the reasons of such difficulties are

the usual high number of parameters or algorithm choices the practitioner must15

define, the absence of proper guidelines to select them, and the lack of general-
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ization in applying meta-heuristics.

In this context, hyper-heuristics [10, 11] have been showing to be a promis-

ing alternative compared with common heuristics or meta-heuristics, precisely

because it overcomes the obstacles previously mentioned. According to Burke20

et al. (2013) [10], a hyper-heuristic is “a search method or learning mechanism

for selecting or generating heuristics to solve computational search problems”.

Hence, in hyper-heuristics, the search is performed in a search space of heuristics

(or heuristics components) instead of being performed directly in the decision

space (space of solutions). Hyper-heuristics have been used for solving several25

types of problems such as scheduling [12], vehicle routing [13] and satisfiability

[14], just to name a few.

SBST community has been gradually shifting to approaches based on hyper-

heuristic as Cohen recently stated [15]. Problems such as Combinatorial Inter-

action Testing (CIT) data generation [16] and Integration and Test Order (ITO)30

[17] have been addressed, but there is no indication in the literature of how wide

and in how many ways hyper-heuristics have been considered. In other words,

some open research questions are:

• What are the hyper-heuristics used in the context of SBST? Are there

more generation or selection hyper-heuristics?35

• What are the problems addressed by such strategies? For instance, they

have been used only for test case/data generation or they have been con-

sidered for other problems?

• What are the objective functions the studies addressed? What has been

prevailed: single or multi-objective problems?40

• What is the validation context related to the application of hyper-heuristics?

• Which artifacts (source code, models, etc.) they have been relied on?

Several secondary studies (Systematic Literature Reviews (SLR), surveys)

have been published within the search-based context such as [18, 19, 20, 21,
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22, 23, 24]. However, these studies had a broader scope regarding the strate-45

gies for SBSE/SBST while we are interested in hyper-heuristics for Software

Testing. Hence, none of the previous secondary studies addressed specifically

hyper-heuristics within SBST with the research questions previously described.

Note that hyper-heuristics can also be considered an Artificial Intelligence

technique and it is a well known fact that it has played an increasingly important50

role in several disciplines, including Software Engineering and, in particular, in

Software Testing. Thus, it is important to know the state-of-the-art regarding

the development and application of hyper-heuristics for Software Testing. This

is then the objective of this paper where was have conducted a systematic map-

ping study considering papers up to may/2019 (in other words, we have covered55

all the papers up to may/2019) and 4 different bases. A total of 734 studies

were found via the search strings and 164 articles were related to Software Test-

ing. However, from these, only 26 papers were actually in accordance with the

scope of this research and 3 more papers were considered due to snowballing or

expert’s suggestion, resulting in 29 selected papers. Was identified few different60

problems and application domains where hyper-heuristics have been considered.

This paper is organized as follows. Section 2 presents background and re-

lated work. In Section 3, the research methodology to conduct the systematic

mapping is shown. Results and the discussion related to the research questions

are in Section 4. Suggestions of future directions within this research field are65

presented in Section 5. Finally, conclusions are shown in Section 6.

2. Background and related work

This section presents an overview of some fields that are important to this

systematic mapping. It also discusses some secondaries studies that are closely

related to this paper.70

2.1. Search-Based Software Testing

In SBST, test objectives are materialized in the form of objective functions

[25], and thus optimization algorithms can be used to solve problems such as
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CIT case/data generation and ITO.

Currently, Software Engineering problems consider more than a single goal,75

since the software metrics required for validation and the quality of the solution

are taken into account. Consequently, it may be necessary for the tester to deal

with multiple and likely conflicting objectives (for example, to increase the fault-

revealing potential of a set of test cases while decreasing the number of test cases,

and thus minimizing the costs). Hence, SBST community has moved towards80

multi-objective problems [26, 27, 28, 29]. Coverage, feasibility, similarity, cost,

execution time, diversity, and length distribution of test suites are some example

of objective functions that have been tackled in multi-objective test case/data

generation.

2.2. Hyper-heuristics85

In accordance with the definition proposed by [10], as presented in Section 1,

in a hyper-heuristic, the search is done in a heuristic search space (or heuristic

components, such as search operators) instead of being made directly in the

decision space (space of solutions). In this way, hyper-heuristic approaches solve

the problem indirectly, through the selection/generation of Low-level Heuristics90

(LLH).

In [11], the authors presented a possible classification for hyper-heuristics

[11, 10]. The authors divided the classification in two domains: feedback and

nature of the heuristic search space. The first domain concerns the type of

learning to be used, which can be online, where virtual information about the95

performance of LLHs is used to dynamically select them, and offline, which uses

a set of training instances to gain knowledge. Moreover, no-learning means that

no feedback information is used to guide the search process.

The second domain, nature of the heuristic search space, defines the char-

acteristics of the search space, whether formed by the LLH set (that is, the100

search space of hyper-heuristics) or formed by the possible problem solutions

(decision space). In the context of the search space of the LLH set, there may

exist selection heuristics, which are methodologies designed to select from an
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already existing LLH set, and generation heuristics, which are methodologies

that generate new LLH from other pre-existing ones. Now, in the context of105

the decision space, that is where the selection or generation heuristics will act,

it is possible to have: (i) construction (constructive) heuristics, consisting of

methodologies that start from an incomplete solution and gradually construct

a complete solution; and (ii) pertubation (perturbative) heuristics, which consist

of methodologies that depart from a complete solution, gradually modifying its110

structure in order to produce better results in relation to the original.

2.3. Related work

This section has as main objective to address some of the secondary studies

and reviews which have already been conducted within the search-based context.

In [18], the aim is to analyze 5 of the major SBSE techniques in the field115

of various areas of Software Engineering, including Software Testing, in the

last decade. Such techniques are Simulated Anneling, Genetic Algorithms, Ant

Colony Optimization (ACO), PSO and Tabu Search. It defined research ques-

tions which take into consideration the main areas of application of Software

Engineering and the main contributors.120

The study [19] analyzes the current state-of-the-art of experimental appli-

cations of SBST to Model-based Testing (MBT), presenting the limitations of

current solutions and future directions. It defined research questions which take

into consideration the current state-of-the-art of SBST in the context of MBT.

The main objective of the study [20] was to provide an overview of the125

research in the field of testing of competing programs, classifying them into

various categories. The review focuses on applied techniques, the methodologies

followed, and the tools used in these approaches. The research questions focused

on the current state-of-the-art research in the area of competing program testing.

In [21], the authors explored the concepts of bio-inspired algorithms to struc-130

ture Resilient Systems, Genetic Strategies in generating test data, ACO algo-

rithms for analysis, Artificial Immune System (AIS) Mutation Testing, and

fault tolerant approaches inspired by immunity principles to increase software
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reliability. In this study, no research questions were defined.

The aim of the study [22] is to identify how SBST has been explored in135

the context of Mutation Testing, how objective functions are defined and the

challenges and opportunities of research in the application of meta-heuristics as

search techniques. The research questions defined in this paper explore the char-

acteristics that describe the context of SBST applications for use in Mutation

Testing.140

In [23], the objective is to make a bibliographical review on the application

of the algorithms of optimization based on ant colonies in the context of several

levels of Software Engineering, including Software Testing.

The study [24] is a comprehensive review aimed at finding trends in the field

of SBST by examining software testing methods and literature. Several points145

related to SBST are addressed, such as open problems and challenges, funda-

mental materials and methods, research techniques and future scope. Meta-

heuristics like Hill Climbing, Simulated Anneling, Tabu Search, Genetic Al-

gorithms, among others, are mentioned. But there is no specific mention of

hyper-heuristic and how it can be used within Software Testing.150

In [30], McMinn discusses possible future research areas and open issues in

the context of SBST based on the analysis of previous studies and the current

state-of-the-art (at that time). The author goes through points such as search-

based optimization algorithms, meta-heuristics, and their possible applications.

Again, there is no specific mention of hyper-heuristic and how it can be used155

within Software Testing.

Based on the above mentioned studies, it is possible to conclude that sev-

eral efforts are aimed at investigating the techniques used in the context of

SBST, some of them shows a validation of the application of hyper-heuristics.

However, these studies investigate the various techniques used in the context160

of a specific testing task (narrow scope) but in a broader scope regarding the

strategies, where meta-heuristics (mostly), greedy algorithms, and rarely hyper-

heuristics are mentioned. But, a secondary study that investigates exclusively

the development and use of hyper-heuristics in the context of SBST as not beed
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conducted up to now. Since hyper-heuristics is an emerging area for Software165

Testing, thus this systematic mapping aims to give a contribution in this sense.

3. Research methodology

One of the objectives of this work is to provide resources for the contextual-

ization of hyper-heuristics applied to Software Testing. For this it is necessary

to conduct a secondary study. According to [31], the methods for the genera-170

tion of secondary studies commonly used in Software Engineering are systematic

mapping and SLR. An systematic mapping is a systematic method for defin-

ing a classification scheme in a field of interest by analyzing the frequency of

publications for each of these categories. On the other hand, an SLR aims to

analyze the existing primary studies and describes its methodology and results175

in depth.

This study is an systematic mapping because it deals with a broader research

area (Software Testing activity as a whole) although in a narrow scope regarding

the strategies to accomplish Software Testing (the focus is on hyper-heuristic).

The option for an systematic mapping was motivated by the need to have a180

general idea of the research field (hyper-heuristic within SBST) since there is

an absence of such a view.

3.1. Planning

The first step of the planning phase aims at ensuring the need of the sys-

tematic mapping. In order to determine whether this secondary study was nec-185

essary, a preliminary search was performed on the bases ACM Digital Library,

IEEEXplore, ScienceDirect, and Scopus to realize whether other secondary stud-

ies (SLRs, systematic mappings, surveys) had already been conducted specifi-

cally addressing hyper-heuristics within SBST. Section 2.3 summarizes the main

findings and, as already pointed out, none of the previous secondary studies ex-190

clusively investigated the use of hyper-heuristics in detail within SBST. The

search string was defined as follows:
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(search-based OR “search based” OR “software testing”) AND (review OR

“systematic literature review” OR “systematic mapping”)

The research questions, RQx, are shown in Table 1 where the aims of such195

questions are presented as well. In order to define these questions, typical

aspects related to search-based optimization in the context of hyper-heuristics

(RQ1, RQ3), investigation of the practical application of hyper-heuristics for

Software Testing (RQ2, RQ5), and elements of the software development lifecy-

cle ( RQ4) were taken into account. Columns id and property (where each of200

the properties is represented by Propx) of Table 1 will be discussed later.

id research question aim id property

RQ1 What are the hyper-

heuristics used in the

context of SBST? Do we

have more generating or

selection hyper-heuristics ?

identify the main hyper-

heuristics used in the context

of SBST

Prop1 types of hyper-heuristics

RQ2 What are the problems ad-

dressed by such strategies?

For Instance, they have been

used only for test case gener-

ation or they have been con-

sidered for other purposes?

identify the problems ad-

dressed by the strategies

based on hyper-heuristics for

software testing

Prop2 software testing activity

RQ3 What are the objective func-

tions considered?

identify the main objectives

needed to solve a given prob-

lem in the context of SBST

Prop3 test objective

RQ4 Which artifacts (source code,

models, ...) they relied on?

identify the software arti-

facts that are the basis for

the application of the hyper-

heuristic approach

Prop4 software artifacts

RQ5 What is the validation con-

text related to the applica-

tion of hyper-heuristics for

software testing?

identify the validation con-

text (case studies, etc.)

where hyper-heuristics were

applied

Prop5 validation context

Prop5.1 research method

Table 1: Research questions

Within the research protocol, 4 bases were selected: ACM Digital Library,

ScienceDirect, Scopus and IEEEXplore. The search string defined for the first
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3 bases are defined as follows:

(hyper-heuristic OR hyperheuristic OR hyper-heuristics OR hyperheuristics)205

AND (“search-based software testing” OR “search-based testing” OR “search

based software testing” OR “search based testing” OR “software testing” OR

search-based OR “search based”)

Due to the peculiarities of the IEEEXplore database, its search string is

different from the one previously defined and it is shown below:210

(hyper-heuristic OR hyperheuristic OR hyper-heuristics OR hyperheuristics)

AND (“search-based software testing” OR “search-based testing” OR “search

based software testing” OR “search based testing”)

In order to evaluate the quality of the search strings, an analysis of the

references of the selected articles was accomplished: it was verified, in each of215

the studies, which of their references were also retrieved by the search string

used. In other words, the articles retrieved and selected were used as a kind of

“guide” that allows to verify if it was possible, by means of the search string, to

return what is really related to the subject studied in this research. All articles

selected had articles as references that were also retrieved by the defined search220

string.

The inclusion criteria are: (i) primary studies in conferences and journals;

(ii) secondary studies in conference and journals; (iii) articles published until

may/2019, and; (iv) papers written in English. The exclusion criteria are: (i)

editorial, abstract, short or white paper, and; (ii) duplicated studies. Note that225

although one of the inclusion criteria was that papers must be written in English,

it was selected one paper in Portuguese which was an expert’s suggestion. This

paper was the only one that used entire Multi-Objective Evolutionary Algorithms

(MOEAs) as LLHs of a selection hyper-heuristic.

3.2. Conducting230

The search encompassed published articles until may/2019. The search itself
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began in december/2017 but the bases were systematically verified again up to

may/2019.

Figure 1 shows the amount of resulting articles in each of the main steps of

the conducting phase. The red boxes represent the number of articles removed,235

the boxes in green represent the number of articles included, and the boxes in

gray represent the number of articles as the result of each step. Finally, the blue

frame displays the number of selected articles, used for the data extraction.

search in the bases +734 734

removal of duplicate articles -58 676

application of the inclusion

and exclusion criteria
-651 26

snowballing or suggestion +3 29

Figure 1: Number of papers returned in each main step of the conducting phase. Adapted

from [32]

The last step of the conducting phase, data extraction, was done based on

[33], which defined some essential properties that should be evaluated in each of240

the selected articles, in order to support the answer of the research questions.

The properties are described in Table 1. Each of the properties described,

Propx, is associated with one of the research questions. Now each of these

properties is briefly described.

Types of Hyper-Heuristics (Prop1)245

This property is related to the types of hyper-heuristics, classified accord-

ing to [11]: type (selection or generation heuristic), base algorithm, LLH set,

learning method (online, offline or no-learning), and selection mechanism.

Software Testing Task (Prop2)

This property highlights the Software Testing task involved in the application250
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of hyper-heuristics.

Test Objective (Prop3)

This property highlights the test objectives, i.e. the objective functions, that

were addressed by the hyper-heuristic approach, taking into account the type

of test objective and the number of objectives evaluated by the hyper-heuristic.255

Software Artifacts (Prop4)

In this property, the aim is to know which are the related artifacts considered

by the selected papers.

Validation Context (Prop5)

This property characterizes the type of validation context used to evaluate260

the hyper-heuristic approach.

Research Method (Prop5.1)

The studies can be classified according to the research methodologies too.

As [33] proposed, these are the classes considered in this study: (i) case study;

(ii) experiment; (iii) report; (iv) survey; (v) systematic mapping, and; (vi) SLR.265

3.3. Threats to validity

3.3.1. Publication bias

In accordance with [34], threats to the publication bias consist in the con-

sideration of elements that can make the developed research tendentious or not

representative. In this direction, it is important to consider that during the270

development of a research, it may be that the researcher tends to emphasize the

positive results in relation to the performance of the approach proposed by him,

which means that the experimental results are not completely transparent.

According to the defined research questions for this systematic mapping

context (see Table 1), which takes into account aspects such as the type of275

hyper-heuristic used, the case studies and the problem solved, the influence of

the results achieved individually by each approach is minimal. For example, it

is not relevant in the context of this work to take into account the performance

of hyper-heuristics.
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In addition, the systematic mapping was conducted in the most general280

manner possible in terms of publication vehicles and dates. In this way, the

study was done in the most comprehensive way because it does not privilege

certain publication vehicles.

3.3.2. Identification of primary studies

The quality of the identification of the primary studies can be influenced by285

the search strings defined in the research protocol, since the primary studies

are obtained through the submission of these strings to the scientific bases.

However, the poor definition of these search strings, i.e. the choice of terms not

suitable to constitute them, can result in a search not sufficiently broad.

The technique used to evaluate the quality of the search strings used in290

this systematic mapping was made based on the data from Table 2. In order to

evaluate the quality of the selected papers, it was took into account the citations

of the articles: each of the bibliographic references of each of the selected papers

was observed in order to verify if any relevant study of the area was not returned

by the defined search string. The outcome is that all relevant studies cited by295

the selected articles were returned in this search.

Based on the analysis of Table 2, where each of the selected article is iden-

tified by Px (more details about the papers are in Table 3), it is also possible

to conclude that the article with the greatest influence in the context of this

research is article P12, which was cited by most other studies.300

4. Results and analysis

Results and analysis of this systematic mapping are in this section. A total

of 734 studies were found at first by means of the search strings. The vast

majority of these studies were not related to the scope of this research. As can

be seen in Figure 2, these 734 articles were grouped into 22 classes.305

Out of the 164 articles related to Software Testing, only 29 were actually

within the scope of this research, considering the 3 papers suggested by an

expert, and these are listed in Table 3. The others were discarded because
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article cites

P1 [16] P4, P12

P2 [17] P9, P11, P12

P7 [15] P8

P8 [35] P12

P9 [36] P12

P10 [37] P3, P9, P11, P12, P14

P11 [38] P8, P9, P12

P13 [39] P3, P9, P11, P12, P14

P14 [40] P3, P9, P11, P12

P15 [41] P2, P9, P16, P17

P16 [42] P9, P12

P18 [43] P9, P12

P22 [44] P1, P4

P24 [45] P5, P12

P25 [46] P1, P9, P8, P12

P26 [47] P3, P9, P11, P12, P14, P17

P27 [48] P3, P14, P26

P28 [49] P15, P12

P29 [50] P18, P15, P12

Table 2: Citations mapping within this systematic mapping

they were not really related to hyper-heuristics in Software Testing context.

Therefore, only 22.65% 1 of articles were related to software testing, and only310

3.54%2 of the total articles were in the context of hyper-heuristics for Software

Testing. Thus, the amount of articles returned and which are related to the use

of hyper-heuristics in the context of Software Testing is very small, indicating

1Not considering the 3 articles obtained in snowballing process.
2Not considering the 3 articles obtained in snowballing process.
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a clear need for more efforts in this regard.

article title reference

P1 An experimental study of hyper-heuristic selection and acceptance mechanism for combina-

torial t-way test suite generation

[16]

P2 A multi-objective and evolutionary hyper-heuristic applied to the Integration and Test Order

Problem

[17]

P3 Deriving products for variability test of Feature Models with a hyper-heuristic approach [51]

P4 A Tabu Search hyper-heuristic strategy for t-way test suite generation [52]

P5 An orchestrated survey of methodologies for automated software test case generation [53]

P6 A survey on Test Suite Reduction frameworks and tools [54]

P7 The Evolutionary Landscape of SBST: a 10 Year Perspective [15]

P8 Hyperheuristics Search for SBST [35]

P9 A Hyper-Heuristic for the Multi-Objective Integration and Test Order Problem [36]

P10 Automatic Generation of Search-Based Algorithms Applied to the Feature Testing of Software

Product Lines

[37]

P11 Grammatical Evolution for the Multi-Objective Integration Test Order Problem [38]

P12 Learning Combinatorial Interaction Test Generation Strategies using Hyperheuristic Search [55]

P13 A Multi-objective optimization approach for selection of second order mutant generation

strategies

[39]

P14 Hyper-Heuristic Based Produt Selection for Software Product Line Testing [40]

P15 A Hyper-Heuristic for Multi-Objective Integration and Test Order Problem in Google Guava [41]

P16 Evaluating a Multi-Objective Hyper-Heuristic for the Integration and Test Order Problem [42]

P17 Product Selection Based on Upper Confidence Bound MOEA/D-DRA for Testing Software

Product Lines

[56]

P18 Uma hiper-heuŕıstica de seleção de meta-heuŕısticas para estabelecer sequências de módulos

para o teste de software

[43]

P19 A New Hybrid Algorithm for Software Fault Localization [57]

P20 Quality Improvement and Optimization of Test Cases: A Hybrid Genetic Algorithm Based

Approach

[58]

P21 An Empirical Analysis of the Mutation Operator for Run-time Adaptive Testing in Self-

adaptive Systems

[59]

P22 A Parameter Free Choice Function Based Hyper-Heuristic Strategy for Pairwise Test Gener-

ation

[44]

P23 Automatically Generating Search Heuristics for Concolic Testing [60]

P24 Boosting Search Based Software Testing by Using Ensemble Methods [45]

P25 Concrete hyperheuristic framework for test case prioritization [46]

P26 Incorporating User Preferences in a Software Product Line Testing Hyper-Heuristic Approach [47]

P27 Multiple Objective Test Set Selection for Software Product Line Testing: Evaluating Different

Preference-based Algorithms

[48]

P28 A pattern-driven solution for designing multi-objective evolutionary algorithms [49]

P29 Uma Solução Baseada em Hiper-Heuŕıstica para Determinar Ordens de Teste na Presença de

Restrições de Modularização

[50]

Table 3: Selected studies

Out of the 29 studies selected, 4 were classified as secondary studies. More-315
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Figure 2: Distribution of articles: classes

over, 19 articles proposed/adapted hyper-heuristic approaches to solving prob-

lems such as ITO problem, CIT data generation, derivation of products for

Software Product Line (SPL) testing, Second Order Mutants (SOM) generation

strategies, Debbuging, Concolic Testing, Regression Testing, and Random Test-

ing. The other studies are experimentations of the proposed hyper-heuristics.320

Another general remark is that 56 authors from 28 different institutions

were identified. Figure 3 presents the institutions of the authors of the arti-

cles published. There is a concentration of works published by a particular

research group (Federal University of Paraná, Brazil) evidencing that it is neces-

sary a greater spread of the efforts related to the use of hyper-heuristics within325

SBST, including the involvement of researchers from other communities such as

16



Operational Research and Artificial Intelligence.

Regarding the publication vehicles, the Applied Software Computing, IEEE

Congress on Evolutionary Computation and the International Workshop on

Search-Based Software Testing with published 3 papers, and this is the highest330

number of papers in a single vehicle. Other publication vehicles are Journal

of Systems and Software (1), Brazilian Conference on Intelligent Systems (1),

and Brazilian Symposium on Software Engineering (1). In addition, most of the

studies were published in conferences (9), while the remaining are in journals

(6) and workshops (2). This indicates that there is no specialized publication335

vehicle yet on this topic.

In the following sections, the research questions proposed in this systematic

mapping are answered.

4.1. What are the hyper-heuristics used in the context of SBST? (RQ1)

To answer this question, it is important to adopt a classification for hyper-340

heuristics according to the main relevant characteristics of its implementation.

The classification adopted in this work is in accordance with property Prop1.

In addition to establishing a classification, the first step is to identify which

studies propose or not a new hyper-heuristic. Out of the 29 studies, 19 pro-

pose/adapted a new hyper-heuristic approach (see Table 3 for the identification345

of the papers): P1, P3, P4, P9, P11, P12, P13, P14, P17, P18, P19, P20, P21, P22, P23,

P24, P25, P26 and P27. The studies P5-P8 were classified as secondary studies.

The other studies consist of the application of existing hyper-heuristics.

Based on the 19 studies that propose/adapted new hyper-heuristics, Table

4 was constructed where the properties of interest for the classification of each350

of the proposed hyper-heuristics are presented. The symbol “?” represents the

information that could not be extracted from the papers.

It is important to stress that some approaches are not really defined as hyper-

heuristics by the authors. However, some of them were selected to extract data

aiming at increasing the number of selected papers. Characteristics such as355

hybridization and self-adaptiveness helped classifying them as hyper-heuristics.
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With respect to Prop1 (see Section 3.2), it is possible to note that the

most used base algorithm was the Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) [61]. The NSGA-II algorithm was chosen as the base algorithm of

the hyper-heuristics proposed in P3 and P14 based on a comparative evaluation360

among other MOEAs that best solve instances of the target problem found in

the literature. After this evaluation, in which the NSGA-II algorithm was the

most successful, the basic algorithm was incorporated into the hyper-heuristics.

In P9, authors do not discuss the reasons why NSGA-II was used as the base

algorithm. In P13, authors justify the use of NSGA-II because it is the most365

commonly used MOEA in the context of SBSE [62].

Regarding the type of hyper-heuristic, and based on Table 4, only 4 studies,

P10, P11, P23 and P28, are not selection hyper-heuristics but the studies P10 and

P28 are based on P11. Thus, it can be realized that selection hyper-heuristics

are often more used than generation hyper-heuristics. One of the reasons for370

this may be the fact that the supervised training, usually used in generation

heuristics, may demand a lot of time, a fact that can contribute with the greater

preference of the selection approach.

With respect to other characteristic of Prop1, LLH set, although by defi-

nition they may be composed of complete heuristics/meta-heuristics, 13 out of375

the 19 studies in which a new hyper-heuristic is proposed considered as LLH

simple search operators derived from already existing heuristics: the most used

ones have been mutation and crossover operators. They vary not only in type

(such as two point crossover, swap mutation, etc.) as in the values they assume.

Only 6 papers considered a complete MOEA as LLH, the papers P4, P18,380

P19, P20, P24 and P25. There is not much information as to why these operators

are used, perhaps because there is still little use of hyper-heuristic approaches

in the context of SBST and, therefore, there is no much information to justify

a choice which makes it empirical.

Still on Prop1, it can observed a certain relationship between the type and385

the learning of hyper-heuristics approaches: selection hyper-heuristics have been

associated only to online learning. The study [38] not only confirms but also
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justifies the above relationship, when discussing the fact that generation hyper-

heuristics generally perform well in unknown instances of the problem, so some

type of training is usually employed and therefore it relates to offline learning.390

Although online is the widely used learning approach, it offers some dis-

advantages, such as the need to allocate resources to the training mechanism

during problem solving, which is overcome with the use of offline learning which

solves this by using a previously trained heuristic [38].

The approaches that make use of selection hyper-heuristics rely on selection395

mechanisms which form the selection hyper-heuristic. The most used selection

mechanisms are three: Choice Function [16, 17, 39] which adaptively ranks

the LLHs with measures which make a balance between exploitation and explo-

ration; Multi-Armed Bandit (MAB) [51, 36, 41] which takes into account the av-

erage of the performance of the LLH evaluated; and Random Select [51, 40, 41].400

The most used selection hyper-heuristic was proposed in P9, Hyper-heuristic

for the Integration and Test Order Problem (HITO). This approach was tried in

three other studies, where it was used in the context of the Integration Testing.

However, such an approach had no other application than in the context of

integration testing. This proves the non-exploration of a positive characteristic405

of hyper-heuristics, i.e. generalization.

4.2. What are the problems addressed by such strategies? (RQ2)

The objective of this question is to evaluate what are the problems, in the

context of software testing, that have been solved through hyper-heuristic ap-

proaches.410

As previously mentioned, out of the 29 articles selected, 4 were secondary

studies. Addressed problems are ITO problem (8), CIT data generation (4),

derivation of products for SPL testing (6), SOMs generation strategies (1), Ran-

dom Testing (1), Debugging (1), Concolic Testing (1), and Regression Testing

(3). Figure 4 shows the distribution of problem classes solved in relation to the415

type of approach applied.
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The problems that have been addressed by testing based on hyper-heuristics

are described below:

(a) ITO problem: Integration Testing is one of the levels of Software Testing

and its purpose is to verify that the smallest units of the software function420

properly when they are integrated. However, the order in which these

units3 are executed can influence in a series of factors, such as the masking

of defects and the costs related to the execution time [17];

(b) CIT data generation: the motivation for CIT data generation is based

on the idea that most of the faults can be revealed from the interaction of425

the parameters of the system considered. Thus, all parameter interactions

and values of these parameters according to a certain degree of interaction

must be present at least once in a covering array. [16];

(c) Derivation of products for SPL testing: SPL is commonly defined as

a set of similar software (whose purpose is the same) constructed from the430

same base, which is defined by a set of requirements in common to them.

The feature models Variability Test is a problem in which a set of possible

products derived from an SPL is generated based on its requirements [37];

(d) SOMs generation strategies: the problem of Higher-order Mutants

(HOMs) is to generate mutants from the combination of failures of other435

First-order Mutants (FOMs) (which generates n-order Mutants). The

advantage of using this technique is to generate stronger mutants than

the original ones, in addition to reducing the amount of mutants used

[39];

(e) Debugging: Debugging is part of fault localization, a task of the testing440

activity [57]. Debugging consists of: (i) identification of the exact fault

3The authors consider the software developed under the Object-oriented Programming

Paradigm, so the smallest parts of a software here are the classes.
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location; and (ii) fixing the program defect and testing to confirm that

the fault has been removed;

(f) Random Testing: Random Testing is to generate random, variable-

based test cases. It is a Black Box testing strategy which has been receiv-445

ing lots of attention from the community [63];

(g) Regression Testing: Regression Testing is one of the phases of the

software testing activity that ensures that new defects have not been in-

troduced during software maintenance [64]. Usually, Regression Testing

is supported by the prioritization of test cases, in which certain test cases450

acquire execution priority;

(h) Concolic Testing: Concolic Testing is a test case generation technique

that employs the symbolic execution of a program paired with its actual

execution [46]. Its goal is to generate actual test cases based on code

coverage.455

Note that the range of problems is still very limited given the wide spectrum

of software testing activities and tasks. For instance, no work has been published

addressing the automated oracle problem. This is a problem which the testing

community has long been addressing using other approaches. Mutation Testing

is basically absent where only 1 paper addressed SOMs generation strategy.460

Hence, much more effort is required to properly perceive the advantages of

hyper-heuristics for Software Testing.

Another important point is the application of a hyper-heuristic to a different

class of problem from which it was proposed which, in theory, is to make use

of one of the advantages of hyper-heuristics compared with the use of common465

heuristic algorithms: generalization. Only 1 study, P10, explored this capability

in the context of the selection of products for SPL testing, by using the hyper-

heuristic originally proposed in P11 for the solution of the ITO problem. Thus,

there is still little exploration of the advantages of using hyper-heuristics in this

context.470
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4.3. What are the objective functions considered? (RQ3)

The purpose of this question is to evaluate the main test objectives in the

context of the use of hyper-heuristics within SBST. At this point it is important

to take into account the type of problem to be solved. Table 5 organizes the

issues addressed and their respective test objectives. In summary, the objective475

functions the papers have addressed so far are: (i) CIT problem: number of tu-

ples not yet covered; (ii) ITO problem: number of atributes, number of methods,

number of return types, and number of parameter types; (iii) selection of prod-

ucts for SPL testing: number of products, pairwise coverage, mutation score,

and product dissimilarity; (iv) SOMs generation strategies: SOM number, effec-480

tiveness, replacement capacity; (v) Regression Test: mutation score, statement

coverage, computational cost of test case, past fault detection history, and path

coverage; (vi) Concolic Testing: branch coverage, and bug-finding, and; (vii)

Random Testing: affiliate coverage criterion.

Although 19 new hyper-heuristics have been proposed/adapted, other stud-485

ies among the 29 articles selected in this systematic mapping make use of some

of these proposed hyper-heuristics, and the great majority uses equal objectives

to solve the same problem class. However, with respect to the problem of se-

lection of products for SPL testing, which are addressed by P3 and P14, there

is a peculiarity: P14 takes into account an additional goal in relation to P3,490

as shown in Table 5. Moreover, it is highlighted in P14 that unlike the other

studies, the authors consider product dissimilarity as a test goal, since testing

one set of dissimilar products from one another may offer a greater probability

of finding non-standard errors disclosed in SPL.

Out of the 8 classes of problems found, only the CIT class is modeled as a495

single objective problem. The other problems are multi-objective. This is a good

strategy because a multi-objective scenario is a more realistic one. One can also

note this by taking into account the basic algorithms used in each of the hyper-

heuristic approaches associated with the CIT problem: P4 uses Tabu Search

and P12 uses Simulated Anneling, both algorithms were used to solve single500

objective problems (Table 4). The other approaches that solve the remaining
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problems have, as basis algorithm, multi-objective ones such as NSGA-II.

This outcome is also interesting because even in the wider engineering and

design problems in general, hyper-heuristics have been used to deal with single

objective problems, with a few attempts to apply hyper-heuristics to multi-505

objective problems [65, 66].

Thus, despite the relatively small amount of work in the context of software

testing, in 78.94% of these, the problems are multi-objective. This is indicative

that the SBST community is trying to solve the testing problems in a more

comprehensive way.510

4.4. Which artifacts (source code, models, ...) they relied on? (RQ4)

The purpose of this question is to evaluate which are the main software

artifacts used as input to the hyper-heuristic approaches. These artifacts are

associated with the type of problem solved (see previous section).

The software artifacts considered in the ITO problem are usually graphs that515

illustrate the relationship between each of the units of the system considered,

known as Object Relation Diagram (ORD). The vertices represent the units and

the edges represent the relationships between these units [36].

The problem of CIT data generation takes into account only the quantity

of parameters, values of these parameters, and degree of interaction (strength).520

With respect to the derivation of products for SPL testing, feature models, which

are tree structures that hierarchize relevant characteristics of a given product

(in this case, software), are considered.

In accordance with [39], the artifacts which are taken into account for the

SOMs generation strategies problem are the source code, the test cases, the525

FOM set, and the metadata.

Finally, Debugging takes into account only the code, while Regression Test-

ing takes into account the test suite and the source code, and random test case

generation takes into account only the quantity of parameters and values of

these parameters.530
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4.5. What is the validation context related to the application of hyper-heuristics

for Software Testing? (RQ5)

Table 5 presents the answer for this question. Note that the only hyper-

heuristics that had more than one study published were HITO [36] and Gram-

matical Evolution for the Multi-Objective Integration and Test Order Problem535

(GEMOITO) [38]. Studies P2, P15, P16 and P29 use the HITO hyper-heuristic

proposed in P9. Thus, one of the differences between each of these studies is due

to the validation context. Initially, in P9 it was used 7 real case studies, where

the number of units and dependencies of each was taken into consideration for

their selection. In P9, there are 2 research questions regarding the performance540

of the HITO and which is the best selection/acceptance mechanism used. In

P2, the case studies are exactly the same as those used in P9, however, the

study considers a third research question, intended to evaluate the set of more

appropriate LLHs. P15 takes into account the Google Guava software, a set of li-

braries for Java. In P16 the same 7 case studies used in P9 are used, however, the545

purpose here is to evaluate the performance of the HITO hyper-heuristic using

as base algorithm different MOEAs, in contrast to the original study comparing

HITO from the point of view of different selection/acceptance mechanisms, and

to P2 that compares HITO under different sets of LLHs. With respect to the

studies derived from GEMOITO [38], their differences lie in the adaptation of550

the problem, as already mentioned.

Based on the low number of case studies used for the validation of the pro-

posed hyper-heuristics, it is possible to state that the hyper-heuristic validation

context is restricted too. Studies related to the HITO hyper-heuristic provide

the basis for this claim, since P2 and P16 make use of the same case studies as P9,555

however considering different topics. Only P15 applied to a different validation

context.

The only study comparing the results of his own approach with another

hyper-heuristic was P11. This is another indication that the use of hyper-

heuristics in the SBST community is limited, and thus there is not a sufficiently560

large variability of hyper-heuristics aimed at solving the same class of problems
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in a way that a comparison is possible between approaches.

5. Future directions to SBST based on hyper-heuristics

In this section, some future research directions to the SBST community

based on hyper-heuristics are present. Note that these suggestions may also be565

tailored to SBSE problems in general.

5.1. Development and use of generation hyper-heuristics for Software Testing

Based on the results of this systematic mapping study, it was possible to

verify that the number of proposed generation hyper-heuristics and their appli-

cations within the Software Testing activity have been low in relation to the use570

of selection hyper-heuristics. It may be an important point to systematically

check the reasons behind this difference in this preference, since some authors

argue that generation hyper-heuristics possess more features for greater level of

generalization compared with selection hyper-heuristics [10]. A possible expla-

nation for the greater number of selection compared with generation strategies is575

that, usually, selection hyper-heuristics are easier to implement compared with

the generation ones. But, it is necessary to certify that this is the only reason

for choosing between these two options.

Moreover, it is not mandatory to create new generation hyper-heuristics but

rather to adapt solutions already used in other problems (production scheduling,580

cutting and packing, ...) to Software Testing and realize about their effective-

ness, efficiency, and cost. For instance, Genetic Programming [67, 68] has been

used as a generation hyper-heuristics in some of these problems. Is it useful for

software test case/data generation?

5.2. Using complete MOEAs as LLHs585

Only 6 studies considered an entire MOEA as LLH in selection hyper-

heuristics for testing. This is another approach that can be further investi-

gated because the benefits of the entire MOEA can be take into account. Note
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that in other problems, such as assessing the performance considering a com-

mon benchmark for multi-objective optimization and vehicle crashworthiness590

design problem [69], and wind farm layout optimization [70], selection hyper-

heuristics with complete MOEAs (e.g. NSGA-II, Strength Pareto Evolutionary

Algorithm(SPEA2)) as LLHs have obtained better performance in most of the

cases when comparing them with each constituent MOEA used on its own (i.e.

in isolation).595

Moreover, for selection hyper-heuristics, it is necessary to create an ade-

quate mechanism to transfer the populations from one MOEA into another one,

in cases where the selected MOEA to run is different from the last MOEA

executed. While some MOEAs deal with a population, others, in addition to

the population, make use of an archive which has a representation of the non-600

dominated front among all solutions considered so far [71]. Hence, it is required

to devise a solution to properly handle this situation. In [43], the authors

proposed such a mechanism, but it is not totally clear how effective is their

proposal.

Besides the few approaches that relied on generation hyper-heuristics, the605

heuristics the techniques generate are either components of an Evolutionary Al-

gorithm (such as crossover and mutation operators) [37, 38] or search heuristics

for Concolic Testing [46]. Thus, generating entire MOEAs rather than only

components of it is worth to be investigated in the generation context as well.

5.3. Investigating the generalization characteristic of hyper-heuristics610

As previously pointed out, one of the appealing reasons for choosing hyper-

heuristics over meta-heuristics is the capability of generalization of hyper-heuristics.

According to the outcomes of this secondary study, only 1 study did it in the

context of the selection of products for SPL testing, by using a hyper-heuristic

originally proposed for the solution of the ITO problem.615

Thus, it is clearly necessary to evaluate the true potential of generalization of

hyper-heuristics strategies. Hence, for instance, a selection hyper-heuristic used

for test case/data generation addressing Graphical User Interface (GUI) appli-
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cations is adequate and presents good performance, with no additional tuning

of parameters, to work as an automated oracle for embedded software systems?620

Or, a generation hyper-heuristic used for test case prioritization of scientific

software is good, with no additional tuning of parameters, for Robustness Test-

ing in cloud platforms? These are some examples that should be addressed in

the future by the academic community.

Opponents of hyper-heuristics may argue that there is still a need for pa-625

rameterization when trying to apply a certain hyper-heuristic to different prob-

lems. Consider Choice Function, one of the most widely used methods of se-

lection in hyper-heuristics in the context of Software Testing. Although in

its initial proposal the Choice Function parameters (α, β related to intensi-

fication/exploitation; δ related to diversification/exploration) are dynamically630

adapted based on a reinforcement learning approach [72], in some works applied

to software testing (e.g. for the ITO problem [17, 43]), there is a simplified

version of the Choice Function method, where the parameters are chosen man-

ually. So, there is still a need for tuning parameters but the level of abstraction

is higher (in the Choice Function method) rather than tuning in a lower level635

(crossover and mutation operators and respective probabilities within a MOEA

in isolation).

This fact is corroborated by recently proposed selection hyper-heuristics, ap-

plied to optimization benchmarks and vehicle crashworthiness problems, which

also require tuning of parameters [73]. This is a point that is relevant to be640

investigated by the Software Testing community, since the conclusions in this

sense can be of great benefit to other communities involved in the optimization

area.

5.4. Evaluating effectiveness of test suites

To compare the performance of the proposed hyper-heuristics with other645

strategies, quality indicators such as hypervolume, Inverted Generational Dis-

tance (IGD), spread are traditionally measured by the optimization researchers.

Software testers have also done it in accordance with the papers returned by
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this systematic mapping.

However, the Software Testing community is used to rely on metrics such as650

effectiveness (e.g. ability to identify faults in the source code, code coverage) to

compare if a test suite due to an approach A is better than other test suite due

to another strategy B. No study selected for data extraction in this systematic

mapping have performed this appropriately as presented below.

While some reports which aim at deriving products for SPL testing [51,655

40, 56] had as one objective the minimization of the number of alive mutants,

and in [39] one objective function is the capacity of the SOM to reveal sub-

tler faults, i.e. faults not revealed by its constituent FOMs and hence is an

effectiveness measure, it is not totally clear what is the effectiveness of selec-

tion hyper-heuristics in other problems or validation contexts compared with660

meta-heuristic approaches or even other strategies.

The minimization of the number of alive mutants in the SPL testing problem

as mentioned above is an effectiveness metric but the problem of this objective

function is the cost to obtain it, since it is required to know the number of killed

mutants and the total number of generated non-equivalent mutants. Moreover,665

it is very likely that a lot preprocessing steps must have done in order to format

the data suitable to be treated by the hyper-heuristic algorithm.

Hence, one interesting direction is to consider less costly effectiveness metrics

as objective functions such as test case diversity aided by similarity measures

[74]. In this case, at first, there is no need to demand preprocessing efforts since670

one wants to minimize the pairwise similarity between test cases (i.e. solutions)

of a test suite (population, sets of solutions). Thus, this can be done with no

previous processing tasks.

5.5. Increasing the number of problems and validation contexts

As mentioned in Section 4.2, the range of problems is very limited given675

the wide spectrum of software testing activities and tasks. The automated

oracle problem is not addressed at all up to now. This is a very important

task of the testing activity which has long been addressed where specification-

32



based, metamorphic relation-based, Machine Learning-based types of oracles

have been used [75]. However, no selection or generation hyper-heuristic is680

helping in this regard. A full automated testing activity needs that not only the

test input data are generated but also to automatically identify the expected

results (oracle information) and the ability to assert that test cases pass or not

(oracle procedure).

Even though a mutation operator is one component of an Evolutionary Al-685

gorithm/Genetic Algorithm, hyper-heuristics have not been applied to the Mu-

tation Testing where only 1 paper addressed SOMs generation strategy via a

selection hyper-heuristic. Even in the context of HOMs/SOMs, an issue is

the high cost of HOM testing. Determining whether a selection or generation

hyper-heuristic is more effective for generating HOMs is an open issue. Again,690

meta-heuristics such as Genetic Algorithm [76], Simulated Anneling [77], and

ACO [78] have been used for generating test input data for killing FOMs and

HOMs but no hyper-heuristic approach did it. Detecting higher-order equiv-

alent mutants is an open question within the testing community as a whole.

Hence, this is another direction where hyper-heuristics may help.695

Increasing the validation context is very important too. For instance, from

the 8 papers on ITO problem, 5 considered the very same case studies. All

papers on derivation of products for SPL testing took into account the same

feature models. Hence, it is clear that it is necessary to further investigate more

problems and validation contexts by using hyper-heuristics.700

5.6. Addressing non-functional requirements/properties

Non-functional requirements of a system can be understood as its quality

attributes, i.e. a set of concerns related to the concept of quality [79]. Test-

ing a software system is an effort that should involve not only its functional

characteristics but also its non-functional properties.705

Within the SBST community, non-functional requirements testing have been

done as presented by Afzal et al. (2009) [80] in their SLR. The authors iden-

tified five different categories of non-functional requirements where researchers
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paid attention: execution time, quality of service, security, usability, and safety.

Genetic Algorithm, Simulated Anneling, ACO, Tabu Search, and PSO are some710

meta-heuristics used aiming at testing the system under this respect.

Later, Harman et al. (2015) [1] extended the review presented by Afzal

et al. (2009) and identified 6 more categories: availability, efficiency, energy

consumption, flexibility, robustness, and scalabilty.

In both reviews, there is no mention of any hyper-heurisitic strategy for715

testing non-funcional requirements/properties. Eventually, a multi-objective

problem solved by hyper-heuristics where some objective functions are related

to functional requirements while others deal with non-functional properties is

an interesting path to follow, since the solutions for such a problem may target

both characteristics of software systems at once.720

6. Conclusions

This article presented an systematic mapping whose purpose was to inves-

tigate the use of hyper-heuristics in the context of SBST. At first, 734 articles

were returned from 4 different databases (ACM Digital Library, IEEEXplore,

ScienceDirect, and Scopus), of which only 29 were within the context of this725

research. The research questions defined in this study seek to clarify which are

the main hyper-heuristic approaches used, what are the problems addressed,

what are the test objectives (objective functions), what artifacts are related to

the application of hyper-heuristics, and what is the validation context.

In general, one can say that among the advantages of using hyper-heuristic730

approaches is the fact that they are more general than meta-heuristic solutions

and can be applied to a class of problems rather than a single specific problem.

However, this feature has been little explored in the context of SBST, since only

one article makes use of the hyper-heuristic proposed in another one, developed

to solve the ITO problem, however in the context of the SPL testing. This735

may be associated with the fact that the use of hyper-heuristics is still very

premature, so some aspects have not yet been explored consistently by the
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Software Testing researchers.

The main findings of this systematic mapping study are presented below:

• Selection hyper-heuristics with online learning has prevailed. This kind740

of approach allows successful common algorithms to solve a given prob-

lem by working together. In addition, this type of approach makes use

of two mechanisms: (i) selection mechanism; and (ii) acceptance mecha-

nism. Both can vary which provides a greater generality of the solutions

produced. In addition, selection hyper-heuristics with online learning do745

not require training, which facilitates their usage;

• Only 6 studies were generation hyper-heuristics with offline learning. This

type of configuration offers some advantages over the selection configura-

tion with online learning: no need to choose existing algorithms, no con-

figuration of the parameters of these algorithms, no allocation of resources750

for simultaneous training execution;

• The validation context related to hyper-heuristic is restricted. In most

cases, previous case studies have been used in other future studies. In

addition, the experiments did not take into account the hyper-heuristic ×

hyper-heuristic comparison4;755

• The addressed problems related to Software Testing is also restricted, and

it is limited to 8 problems: ITO problem, CIT data generation, selection of

products for SPL testing, SOMs generation strategies, Regression Testing,

Random Testing, Concolic Testing, and Debugging. Oracle problem and

other ones have no yet been addressed. Although hyper-heuristics have as760

main appeal a greater generality than common meta-heuristics, only one

study made use of an already existing hyper-heuristic approach to solve a

different problem;

• In the 19 articles where a new hyper-heuristic is proposed/adapted, the

4Comparison between approaches of the same type: hyper-heuristic.
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LLH set was composed only of simple search operators, and only in 6 case765

the complete/entire meta-heuristic is used;

• The definition of hyper-heuristic as proposed by Burke et al. (2010) [11]

and Burke et al. (2013) [10] was the main driving factor to select the

papers for data extraction. But, even if some approaches are not really

defined as hyper-heuristics by the researchers, they were selected aiming770

at increasing the number of papers. Characteristics such as hybridization

and self-adaptiveness helped in this regard;

• It is possible to conclude, based on the low number of articles that rely on

hyper-heuristics for helping the Software Testing activity, that the SBST

researchers have not explored the benefits of this technique. Another775

factor that corroborates this fact is the publication date of the articles: the

oldest study is from the year 2010. Therefore, the use of hyper-heuristics

in the context of SBST is still taking its first steps.

In Section 5, suggestions of future directions to SBST based on hyper-

heuristics are proposed. The authors believe that this further research is relevant780

to the area of testing, or in some cases even for SBSE, so that new methodolo-

gies/methods/techniques can be created and assessments can be made to really

perceive the benefits of this optimization theory for Software Testing.
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