
Software Requirements Testing Approaches: A Systematic Literature Review

 Jemison dos Santos¹ Luiz Eduardo G. Martins¹ Valdivino A. de Santiago Júnior²

 jemison321@gmail.com martinsleg@hotmail.com valdivino.santiago@inpe.br

Lucas Venezian Povoa³ Luciana Brasil R. dos Santos³

 lucasvenez@gmail.com lurebelo@gmail.com

1 Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
2 Associated Laboratory for Computing and Applied Mathematics (LABAC), National Institute for Space Research (INPE). São José dos Campos,
SP, Brazil
3 Computer Science Department - Federal Institute for Education, Science, and Technology of São Paulo (IFSP). Caraguatatuba, SP, Brazil

Abstract:

Context: Testing a software system is an important step approach to ensuring quality, safety, and reliability in safety-critical systems
(SCS). Several authors have published new approaches to improve the processes of testing safety requirements taking into
consideration existing processes that seek to improve techniques and contribute positively with software developers. Objective: This
article aims to investigate the main approaches to requirements testing, particularly focusing on safety requirements in the context of
SCS. We investigated how these approaches have been developed and what contributions they provide to academia and industry. We
evaluated the pros and cons of the approaches and how they related to the joint work of requirements engineers (RE) and testers.
Method: We performed a systematic literature review (SLR), selecting 53 papers published between 1990 and 2018. Our research was
conducted according to the guidelines proposed by Kitchenham and Biolchini. Results: The results of this SLR point out to the new
research related to the software and safety-critical systems testing. The results show issues in the integration of requirements engineers
with the application test team and gaps in the approaches found, particularly in the applications of the techniques in the industry
setting. Moreover, several approaches are presented to solve problems and help to prevent future problems. Conclusions: The results
of this research point to the main approaches to requirements testing and their use in academia and industry, as well as the advantages
and disadvantages. The shortcomings allow us to suggest new research in safety-critical systems in the scope of validation,
verification, specification, and testing of safety requirements, as well as to integrate test teams with requirements engineers in order to
get better results. Based on the results we suggest future studies for improvements in the requirements testing techniques to improve
the integration of safety requirements and test cases.
Keywords – Requirements Testing; Safety-Critical Systems; Safety Requirements

1. Introduction

One of the time-consuming activities in the software
development cycle is testing [12]. It is one of the main
ways of software quality assurance and aims to find the
existence of faults [37]. The importance of the test
observes throughout the literature where several records of
accidents caused by software failures happen. There are
several methodologies for requirements testing. However,
the causes of an accident motivated by software failure can
occur for several technical reasons [40]. With testing, it
expects that the resulting product will be pleasing to the
user and the developer, regardless of the methodology used
[12].
In the industrial setting, the requirements testing process
tends to be expensive because it requires a rigorous
methodology to meet rigorous objectives, making this
process increasingly complex for both software systems
and safety-critical systems. Critical-systems are those that
perform activities that can cause harm or risk to life or the

environment [40]. We find this type of system in
domains such as avionics, health, nuclear, automotive,
aerospace, military, among others [4, 3, 5, 9, 30, 37].

Critical systems are complicated because they
involve a variety of factors, such as the limits of analyst
knowledge that can lead to software consistency and
integrity failures, failures during system integration,
quality assurance, traceability, completeness,
ambiguities, and testability issues [37, 64]. For a Safety-
Critical System (SCS), the adoption of an appropriate
requirements testing methodology is imperative to
ensure the effectiveness of certification verification [37].

Observing studies from 1990, new approaches to
improving the generation and automation of test cases
for software systems and SCS are noteworthy. These
challenges include the development of safety
requirements, development guides and much more, both
in academia and industry [7, 24, 52].

The most significant cause of accidents caused by
software is related to poorly created software

requirements or requirements partially delivered to
developers [32]. Therefore, requirements engineering plays
an essential role in ensuring that the software objectives
are well described and provide a natural understanding of
the software, so that it can be analyzed, modeled,
specified, verified and correctly validated [1].

In order to know the state of the art and state of the
practice regarding testability of requirements in general,
and particularly to testability of safety requirements, we
conducted a Systematic Literature Review (SLR)

We also are interested to know the application of these
approaches in the industry and how this can promote the
integration between software engineers and testers. To
support this work, we take into account the following
points of view: (i) Approaches to analysis, verification,
validation, inspection of software requirements; and (ii)
how useful are such approaches to requirements testing
and / or safety-critical software; and (iii) how relevant this
is to industries; and (iv) in what extent the approaches
reported help in the integration of requirements engineers
and software testers.

This paper is organized as follows. Section 2 presents
background and related work. Section 3 presents the
research methodology. The results and the analysis related
to our research questions are presented in section 4.
Finally, we present our conclusions in section 5.

2. Background and related work

This section presents some articles published in digital
libraries described earlier in a systematic literature review,
as mentioned in section 1.

Software requirements testing is a significant activity
that aims to validate whether the software product is
functioning correctly and meets the requirements specified
[56]. Testers are accustomed to applying a series of tests of
diverse natures with diverse purposes, involving not only
the functional tests of the application but several other
activities [12].

In addition to analyzing the performance and reliability
of the system requirements, the requirements testing coop-
erate with the specification and analysis of user data and its
application domain. This process is necessary to verify as-
pects such as: profile creation, and the completeness of the
documentation, in general, facilitate the design process
[12, 56].

Software requirements testing is one of the
requirements engineering processes that is applied to
verify the consistency of the requirements raised during the
requirements analysis process and whether they are
testable. In this type of test, the testability of the
requirement is examined, that is, testability verifies
different probabilities and behavioral characteristics may

cause the code to fail if something is incorrect in the
requirement [12]. The software requirements test does
not run the software, however, it analyzes the
requirements of the system to avoid problems, unlike the
requirements-driven test that performs test cases seeking
compliance of the requirements with the software being
built [56].

Requirement Driven Testing is a non-design approach
testing approach and can be used in design
methodologies such as Waterfall, Agile, and SCRUM,
focusing on aspects such as: creating business
requirements lists ; requirement that are used to select
test cases and; report the approval or disapproval of
business requirements. It addresses issues such as
validation that the requirements are correct, complete,
unambiguous, and logically consistent, and about
designing a set of test cases sufficient to ensure that the
design, and code fully meet those requirements [12, 56].

Within the context of requirements testing and
requirements driven testing, several approaches are
sought in the literature that seeks to make these testing
processes easier and also provides the scientific
community with new contributions through new
requirements testing and requirements driven testing
methodologies. Some approaches involve testing safety
requirements; these requirements can lead to dangerous
system crashes if they are not straightforward, complete,
and concise.

 There are some good practices in requirement testing
and requirement-driven testing, such as: requirement-
driven testing, features such as risk-based analytical
strategies to perform a risk analysis to discern risk items
and their impact on the application; increases the effi-
ciency of testing activities; align testing processes with
other organizational activities; improves the value of
testing for the organization.

In requirements testing, we have found some items
that are good for performing requirements testing prac-
tices: make completeness effective using a heuristic test-
ing approach; to provide ambiguity occurs when multi-
ple interpretations are plausible.

Software engineers tend to face high demands for
reliable and robust software with short-term
development [24]. They need methodologies that make
the processes more agile and simplified. Ensuring that
the software functions do not contribute to unintended
system risks is the responsibility of the software system's
security. The achievement takes place through a set of
engineering and management activities in the safety-
critical systems and software engineering domains to
identify, analyze, design and track software mitigation
and control of hazards and hazardous functions [14].

Martins and Gorschek [43] conducted an SLR in
requirements engineering for safety-critical systems where
they investigated which approaches have been proposed to
elucidate, model, specify and validate safety requirements
in the SCS context, selecting 151 articles published
between 1983 and 2014. They also used the Kitchenham
and Biolchini [35] guidelines. They aimed to encourage
further research into the design of studies to improve the
engineering requirements for SCS and suggested a
research agenda for the community of researchers and
advice for SCS professionals.

Vilela et al. [62] presents an SLR in integration
between requirements engineering and safety analysis,
speaking about the requirement of the most sophisticated
requirements engineering (RE)approaches, where they
report that many accidents and catastrophes are related to
safety because, unmet, incomplete or incomprehensible
requirements are the leading causes of this fact. They
aimed to investigate the proposed approaches to improve
communication or integration between RE and safety
engineering in the development of SCS. Their work
proposed four taxonomies of hazard analysis, safety,
safety-related information, and hazard information.

Gurbuz and Tekinerdogan [22] presents a systematic
mapping study in base tests of models for software safety.
They aim to investigate the application domains on which
the model-based safety test, identify the current challenges
and directions of the research, and identify possible
solutions in that context.

They examine the current model-based testing
approaches to software safety to conclude that the model-
based test for safety is extensive and applied across
multiple application domains. They show that model-based
testing can provide significant benefits for software safety
testing. Several solution directions identified, but
additional research is critical to a reliable model-based
testing approach to safety.

Haser et al. [26] performed an SLR according to
Kitchenham [35] guidelines and retrieved 83 relevant
studies that identified three evaluation criteria to guide the
testing process, static metrics, dynamic and stochastic and
random metrics to find and synthesize relevant primary
studies to gain a comprehensive understanding of the
current state of model-based integration testing. Their
results show that there is an accumulated need for
approaches in the model-based testing field that support
non-functional requirements as they are gaining
importance and the means to guide the integration testing
process especially in conjunction with automation.

Unterkalmsteiner [61] in his study, he portrays the
difficulty of a project succeeding when engineering is
weak. He investigates the practice of using test cases as

requirements in three companies to understand how test
cases can help. Its results include many of benefits and
challenges in using test cases to identify, validate, verify,
track, and manage requirements. The findings provide
insight into how the role of requirements can meet
development, including challenges to consider.

Fig. 1 - Steps of a Systematic Literature Review

3. Research Methodology

This section will be composed of the empirical research
model and the execution of the SLR. For the execution
of the research methodology, the guideline proposed by
Kitchenham and Charters [35] was used as the research
methodology. Figure 1 shows a representation of the
process proposed by Kitchenham for the SLR processes.

The need to execute this SLR (Fig. 1 - Step 1) was
due to the interest of knowing the main approaches of
analysis and testing of software requirements, as well as
its application in academia and industry. We also tried to
identify which approaches the teams testing and
engineering requirements and what are the pros and cons
reported in the literature.

3.1 Research Questions

The main focus of this systematic review of the literature
is to raise the approaches related to requirements testing
and SCS, according to the main approaches to describe
the integration of these techniques between academy and
industry and the relationship between engineers and
testers in the development. The creation of the research
questions it was made in Step 2 -Fig. 1 and are described
in Table 1.

Table 1

Research Questions

ID Research Question Motivation

RQ1 What are the main
approaches proposed
in the literature to
test requirements?

To get the state of the art
requirements testing.

RQ1.1 How do the
approaches to
requirements testing
are applied in safety-
critical
requirements?

To verify how these
approaches are addressing
the issues in testing safety
requirements.

RQ1.2 What are the pros
and cons of these
approaches to test
safety requirements?

To identify the benefits and
gaps in using such
approaches. To suggest and
implement improvements.

RQ1.3 How much are these
approaches used for
the industry
practitioners?

To verify the validity of
these approaches in the
industry setting.

RQ1.4 Is there evidence of
integration between
requirement
engineers and testers
in the approach?

To understand what extent
these approaches improve
the communication
between requirements
engineers and testers.

Future discussions it will be based on data from each
primary study. These RQs were elaborated to obtain state
of the art at requirements testing, that since 1990 with the
software engineering has been gaining prominence.

3.2 Search Strategy

The search strategy was automated in digital libraries by
using search strings, which will be formed for each one
based on the advanced search options. The strings will be
adjusted, so they return the most relevant results for this
work. The SLR protocol (Fig. 1 - Step 3) follows the
PICOC criteria suggested by Kitchenham and Charters
[35]:

 Population: Published papers related to software
requirement testing or safety-critical systems testing or
requirements analysis, specification and assessment;
 Intentions: Collect existing approaches or new
approaches in requirements testing and verify the
methodology used for testing in academy or industry and
how this interferes in the relationship between the engineer
and the tester;
 Comparison: Collect and list significant
requirements for testing and safety-critical systems;
 Outcomes: Identification of the most used
approaches and their areas of application, relevance in the

industry, adequacy of professionals, requirements
engineering, impacts on critical systems, key points of
each method, impacts on industry and more used
approaches and more suitable;
 Context: The context of the research involves
articles related to the testing of software requirements
and safety-critical systems.

Consequently, the searches were carried out in the digital
databases of IEEE Explore1, ACM Digital Library2,
Springer Link3, and Science Direct4, with the base search
string:

requirement AND (software OR system) AND (test OR
verif OR valid OR inspec).

Thus, filters added in the search aim for greater
relevance in the results obtained, these comprise section
3.3. To manage the papers, we use Mendeley5 Software.
Table 2 shows the search strings used in each database

Table 2

Search Strings

Source String

IEEE Xplore and
Springer Link

(requirement*) AND (software OR
system) AND (test* OR verif* OR
valid* OR inspec*)

ACM DL and
Science Direct

(requirement) AND (software OR
system) AND (test OR verif OR valid
OR inspec)

3.3 Inclusion and Exclusion Criteria

Table 3 is composed of inclusion and exclusion criteria.
These criteria were applied so that all papers selected are
within the context of our research questions. We chose
papers from 1990 onwards, with more than three pages
and in English to apply these criteria.

Table 3

Inclusion and Exclusion Criteria

Inclusion criteria

1 Primary Studies

1https://ieeexplore.ieee.org

2https://dl.acm.org

3https://link.springer.com

4https://www.sciencedirect.com

5https://mendeley.com

2 Surveys and papers from conferences and journals

3 Studies from 1990 onwards

4 Studies that report approaches of testing requirements

5
Studies that report approaches of testing safety
requirements

Exclusion criteria

1 Papers with less than three pages

2 Papers not in English

3 Secondary studies

4
Duplicated studies (only one copy of each study must
be included)

5 Redundant paper of the same authorship

6 Studies whose focus not on testing safety requirements

7
Studies irrelevant to the research, taking into account
the research questions

From the definition of these criteria, the search in the
bases mentioned above was carried out and a total of 1316
papers were obtained. These papers were inserted into the
Mendeley for further analysis. In Table 4, we show the
totals for each of the four analysis phases of the primary
studies are presented.

Table 4

Selection phases and selected article numbers

Digital Library Phase 1 Phase 2 Phase 3 Phase 4

ACM DL 817 31 31 7

IEEE Xplore 117 88 45 40

Science Direct 80 10 10 4

Springer Link 302 35 4 2

Total 1316 164 90 53

The first phase of selection is the search of the primary
studies in the databases with the use of the string, where
each base the search was carried out and the selected filters
were applied, resulting in a total of 1316 papers.

In the second selection phase, duplicate articles were
removed, those containing less than three pages and those
not written in English, as well as the application of other
filters available in the databases. This phase resulted in a
total of 164 papers.

In the third selection phase, the titles, abstracts, and
results of the studies were read, applying the inclusion and

exclusion criteria to eliminate those works that do not
focus on the research objective. The total of 90 papers of
this phase was inserted in the Mendeley software.

In the fourth selection phase a superficial reading of
the papers is performed, observing the inclusion and
exclusion criteria in other sections of the paper, in this
phase it is possible to exclude some papers that have
gone through the previous selection phase and did not
contain the RQs. Thus, the process of selecting the
primary studies with 53 papers enabled for data
extraction is concluded. The articles selected from each
database can be seen in Table 5.

Table 5

Selected Pimary Studies

Digital Library Studies

ACM DL [1, 9, 10, 13, 18, 28, 51]

IEEE Xplore

[2, 3, 5, 6, 7, 8, 11, 15, 17, 19, 20, 21, 24,
25, 27, 29, 30, 31, 32, 36, 38, 39, 41, 42,
44, 45, 47, 48, 50, 53, 54, 58, 59, 60, 64,
63, 65, 66, 67, 68]

Science Direct [4, 23, 46, 57]

Springer Link [16, 33]

3.4 Data Extraction and Synthesis

To perform the data extraction of the studies enabled in
this phase a spreadsheet was used to fill some attributes
of the articles. Table 6 shows the properties of data
extraction.

Table 6

Extracted properties from primary studies

ID Property RQ

P1 Description of approach RQ1

P2 Article motivation
Overview of the
studies

P3 Validation Context
Overview of the
studies

P4
Does the approach cover the
requirements test?

Overview of the
studies

P5
Is the approach appropriate for
safety testing?

RQ1.1

P6 Is it possible to adapt the approach RQ1.1

to testing safety requirements?

P7 The pros of the approach RQ1.2

P8 The cons of the approach RQ1.2

P9 How was the approach validated?
Overview of the
studies

P10
Does the approach bind
requirements to the test artifacts?

RQ1.4

P11 Rations to choose this approach
Overview of the
studies

P12
Techniques used to implement the
approach

Overview of the
studies

P13 Field of application
Overview of the
studies

P14 Automated support?
Overview of the
studies

P1 The description of the approach has been
extracted to help answer RQ1 and to elect all the
major approaches to testing requirements and
critical safety requirements found in the primary
studies. With these data it was possible to know
the approaches that would compose the SLR;

P2 The motivation of the authors to carry out the
studies that generated the work is essential
since it is necessary to analyze the
contextualization of the domain environment
and justify the insertion of this paper in this
SLR;

P3 The validation of the context of the works found is
critical to qualify the primary study within the
context of the research and to judge the need to
be included in SLR;

P4 To introduce a response to RQ1.1, the need to
know whether the approach covers requirements
testing is to identify by whom it uses. The
answer gave ”Yes,” ”No” or ”Partially” and
then explained;

P5 P6 The research question RQ1.1 corresponds to all
the primary studies collected. These are
categorized and separated from those that only
meet requirements and those that can meet
safety requirements. Answering these research
questions provided a focus for an approach that is

specific to safety or can be improved to meet new
needs;
P7 P8 RQ1.2 allows to give an opinion about the

studies found and to list all the advantages and
disadvantages of each study;

P9 In order to add value to the SLR it was
investigated how each selected study was
validated to guarantee the consistency of this
research and the integrity of the selected papers;

P10 This question has a fixed answer value: ”yes” or
”no.” Yes: Represents that there is evidence
about connections between requirements and test
artifacts and is therefore justified. No: represents
that there is no link between requirements with
artifact testing;

P11 Knowing why the author chose a specific
approach to the work, allows us to understand if
the search is following the same search line and
how relevant the search is;

P12 The techniques used by the authors give a basic
knowledge of the operation of each one of them.
The advantages and disadvantages that each
author found when working with them makes us
realize where improvements can be sought;

P13 P14 The scope of application of each work shows
the diversity of areas in which we can apply
approaches to testing software requirements,
testing the requirement of safety-critical systems
and existing tools available for support as well
as ideas for new approaches.

3.5 Study Quality Assessment

The qualification of the primary studies is a process of
complementation of the inclusion and exclusion criteria,
where weights 0, 0.5 and one, respectively, representing
in this order "no," "partially" and "yes" are assigned.
This score is intended to investigate whether there are
different explanations for the results of the primary
studies and a form of individual weighting during the
synthesis of results. However, guiding recommendations
for future research, as described in the guide proposed by
Kitchenham and Charters [35], the quantitative values of
the Quality Assessment (QA) were made as follows:

QA1 Are the aims clearly defined?
QA2 Do they answer our research questions?
QA3 Are the approaches clearly defined?
QA4 Were the results compared to others? (If yes,
were they obtained under similar circumstances?)
QA5 Are cons or bad results presented/discussed?
QA6 Is the environment clearly defined?
QA7 Is the approach useful to test safety
requirements? (if yes, why?)
QA8 Did the approach involve requirements
engineers and testers? (if yes, how?)
QA9 Is there evidence of use by industry
practitioners? (if yes, how?)

The results for each question are presented in Table 7.

Table 7

Quality Assessment

ID Yes No Partially

QA1 53 (100%) 0 (0%) 0 (0%)

QA2 31 (58.49%) 0 (0%) 22 (41.50%)

QA3 49 (92.45%) 4 (7.55%) 0 (0%)

QA4 6 (11.32%) 47 (88.68%) 0 (0%)

QA5 1 (1.89%) 52 (98.11%) 0 (0%)

QA6 53 (100%) 0 (0%) 0 (0%)

QA7 44 (83.02%) 9 (16.98%) 0 (0%)

QA8 6 (11.32%) 47 (88.68%) 0 (0%)

QA9 15 (28.30%) 38 (71.70%) 0 (0%)

QA1 was proposed to verify if the study has the
potential to be inserted in this SLR, those marked with
”yes” will be analyzed and those that get a ”no” answer
will be excluded. The amount of ”yes” was 100%. QA2
obtained a total of 31 ”yes” and 22 ”partial” answers,
considering that papers that answered ”yes” will have a
greater emphasis on the analysis of results because they
present requirements test approaches, those that have been
”partially” analyzed less stringent. The QA3 points out the
papers that presented in detail the approaches used, being
92.45% ”yes” and 7.55% ”no,” shows that several works
do not present in an obvious clear way what was used or
proposed. QAs 4 and 5 shows that most authors do not
discuss in the paper the results not considered suitable or
the disadvantages found in the processes. The QA6 was
introduced in the form to guarantee the understanding of
the application of the approaches in the environment
proposed by each author. QA7 is specific in testing critical
requirements and creates a group within the primary
studies obtained for further analysis. QA8 was proposed to
visualize the situation of integration of test teams with
requirements engineers, and finally, QA9 demonstrates the
usefulness of approaches within the industry.

4. Result and Analysis

Data were synthesized based on the data extracted from the
primary studies and transferred to a spreadsheet. The
analysis of the data was the process of verification of the
information collected, through which they have discovered

the types of requirements test approaches used by the
authors, processes, and methodologies commonly used
by the industry as well as their fields of application.

The evaluation of the quality of the primary studies
collaborated to increase the credibility of the conclusions
and for the synthesis to be coherent. The process of
synthesis and analysis of the data is used to answer the
research questions according to the information extracted
from the articles in the extraction process.

The 53 articles selected (see Appendix A) that met the
inclusion criteria presented approaches for verification,
validation, inspection, and testing of software system
requirements. The search for primary studies comprises
the period from 1990 to March 2018, where the number
of articles published per year can be seen in Figure 2.

It is possible to notice that between the period of
1990 and 2006, the oscillation of the publications in the
leading conferences and periodicals was of up to 3
articles per year. After 2006 the maximum amount of
published articles doubles in 2009, it is common to see
them continue to grow in the coming years. It is
expected to continue to grow in the coming years, as
technological advances increasingly demand software
systems.

The primary studies come from several countries,
such as: Belgium (1), Brazil (1), Canada (3), China (8),
Denmark (1), France (3), Germany (3), Italy (1), Korea
(2), Malaysia (1), Morocco (1), Norway (2), Pakistan
(1), Poland (1), Romania (1), Saudi Arabia (1), Spain (1),
Sweden (1), Taiwan (1) United Kingdom (3) and United
States of America (16).

Fig 2 - Amount of papers published per year

As stated in the presented data it was possible to
categorize the primary studies according to the research
method as shown in Figure 3.

Figure 3 shows the total number of primary studies
found by search category and indicates the number of new
approaches in that medium. The case studies amount to
88.67% of the total, within that indicative new approaches
correspond to 44.68%. Experiments are 11.33% of the
primary studies, with 66.67% proposing new approaches.

The primary studies report the application of software
requirements testing in several application domains as
presented in Figure 4.

Most of the selected studies refer to general-purpose
software, i.e. the authors describe the approach with a
focus on methodologies and tools used, presenting case
studies and experiments directly on sets of requirements
[2, 3, 5, 7, 11, 15, 16, 17, 23, 24, 30, 31, 32, 36, 42, 45, 46,
47, 49, 50, 51, 58, 65, 67, 68]. Studies on railway control
systems include software such as the European rail traffic
management system [9, 21], railroad locking systems [25]
and Chinese train control [64]. Aviation systems are
concerned with specifying requirements following the
guidance of development standards [59] and onboard air
systems [28, 33, 44]. Automotive Systems has studies on
the integrity of software [34], a software of road vehicles
[53] and automotive embedded software [38]. For
distributed systems, telephone systems [6, 66] and
computer supported cooperative work system [1] are topics
found. In space systems studies such as space shuttle [10]
and nanosatellite [57]. In real time systems whose
functions are constrained by response time limits, such as a
gas burner system [48] and a temporal logic language for
real-time executable system specification (TRIO) [18]. In

cyber-physical systems, there is a verification of
requirements violation using formal methods. [8, 13, 20].
In medical systems, one has an insulin infusion pump
software [63] and medical devices from Siemens [27]. In
Embedded Systems, a requirements test was found on a
temperature module in control software for a launch pad
[39]. We also saw, software requirements testing [19],
B2B software [29], and autonomous systems that are
software sensitive to changes in their environment, such
as intelligent residences or adaptive systems and the
product line of software [29].

In the following subsections, the results of each
research question derive from descriptions and
discussions.

4.1 RQ1 - What are the main approaches proposed in the
literature to test requirements?

The motivation for this research question was to raise the
state of the art requirements test. This research question
was divided into four subquestions that are presented
from subsection 4.2 to subsection 4.5 analyzing several
aspects of this topic. The studies selected for this SRL
can be seen in Appendix A.

Table 8 shows the types of requirements tests found
in the primary studies

Table 8

Approaches to requirements testing found in the literature

Approaches Amount

Fig. 3 - Number of categories according to the research method

Fig. 4 - Number of primary studies according to the application domain

Requirements-based testing on UML Models 23

Model-based requirements test ModelicaML 2

Requirements Testing Time Usage Models 2

Requirements based testing on Models UCM 2

Gray Box Based requirements testing 2

Requirements-based testing on Alpha-Beta
Cutting Procedure

1

Requirements Testing Behavior Trees 1

Domain Knowledge-based Requirements Test 1

Requirements-based testing on Product Test
Templates

1

Requirements Testing based on Test Specification
Language

1

Requirements Testing with the RADIX Tool 1

Requirements Testing with Bounded Model
Checking Tool

1

Requirements Testing with Role-Based Models 1

Linear Temporal Logic Requirements Test 1

Black Box Requirements Test 1

Aspect-Oriented Requirements Test 1

Requirements Testing Point of View 1

Requirements Test Driven by Ratings and
Algorithms

1

Validation of Requirements with Pseudo-Software 1

Algorithm-Oriented Requirements Validation 1

Requirements Verification with Info Tree 1

Requirements Verification with Formal Methods 1

Requirements Verification Oriented by Debug
Algorithm

1

Continued on next page

Continued from prev

Requirements Verification by Formal Methods 1

Requirements Verification via Formal Analysis 1

Verification and validation with a Bayesian Belief
Network

1

Verification and validation with jUnit framework 1

Total 53

In model-based requirements testing (43.39%) the
authors presented approaches that apply use case
diagrams [27, 30, 41], activity diagrams [3, 7, 16, 23,
41], diagrams and sequence [9, 30, 64], class diagrams
[21, 23, 46, 57, 41], finite state machines [29, 67] and
state graph [44, 51].

Representing 3.77% is the requirements test based on
the ModelicaML models, this graphical modeling
language belongs to an extended subset of the UML and
allows the generation of executable code derived from
requirements models [2,8]. There is also a test of
requirements based on Time Usage Model, this is
presented as a formal representation of the requirements
specification [38, 53, 55]; and finally, the requirements
test based on use-case maps, they are used to capture and
validate software requirements [6, 33]. The other
approaches found to represent only 1.88% of the primary
studies.

4.2 RQ1.1 – How do the approaches to requirements
testing are applied in safety-critical requirements?

The motivation for this research question was to see how
these approaches are dealing with problems in testing
safety requirements.

The analysis during the data extraction process of the
relationship between the approach and critical security
requirements occurred. In the data extraction worksheet
were marked with ”yes” approaches that are suitable for
testing critical safety requirements and ”no” for
approaches that have tested non-critical system
requirements.

Figure 5 shows the total number of primary studies of
the SLR separating them into two groups by test topic:
primary studies reporting requirements testing
approaches and primary studies reporting approaches to
testing safety-critical systems requirements.

Among the approaches to testing software requirements
(67.92%), some approaches can be adapted to the test of
safety-critical requirements, they are: [5, 6, 17, 29, 30, 31,
32, 47, 58, 66, 68].

The approach of Alves et al. [5] considered the dynamic
behavior of the system in formal representation as state
diagram assertions and validated using jUnit test scenarios.
A set of safety-critical requirements related to the sequence
of flight events is chosen to be formally specified,
validated and verified using the proposed formal approach.

Amyot et al. [6] present an approach based on the
combined use of two notations: UCMs for causal scenarios
that are used to capture and integrate critical security
requirements and integrate UCMs to help avoid excessive
interactions before generating prototypes; the formal
specification language LOTOS6. UCM scenarios translated
into high-level LOTOS specifications, which can be used
to formally validate safety-critical requirements, including
functional tests based on UCMs, they emphasize the most
relevant, exiting, and safety-critical functionalities of the
system.

Farhat et al. [17] conducted a feasibility study of the
use of aspects to test Non-Functional Requirements NFRs,
based on two categorizations of NFRs. The first
categorization divides NFRs into four types, that is,
functionally restrictive, restrictive, policy restrictive, and
architecturally restrictive additives and the second
categorization divides NFRs into two types: operational
and non-operational. These categorizations would serve as
a starting point for developing frameworks or
methodologies for testing safety-critical requirements with
aspects.

Introducing a family of similarity-based test case
selection techniques for sets of tests generated from state
machines in a monitoring component in a safety-critical
control system implemented in C++. Hemmati et al. [29]
have developed an approach to select a subset of the
generated test set so that it can be run and analyzed within

6 More informations at http://cadp.inria.fr/man/lotos.html

the constraints of time and resources while preserving to
the utmost the fault-finding power of the original test
suite.

Ibrahim et al. [30] developed an automatic generator
for programming codes, with the concept of introducing
an automatic tool for requirements testing, in which the
tool is used to generate the test cases automatically,
according to the system requirements. System
requirements are transformed using use-case diagrams,
event flow, and sequence diagrams. Event flow and
sequence diagrams are used to verify the consistency of
use cases as well as the validity of test cases. Hasling et
al. [27] approach use a similar method to safety-critical
systems.

A pseudo software developed by Jwo and Cheng [31]
as a conceptual framework for the development and
validation of iterative requirements, which facilitates the
broad participation of stakeholders, realizing the
tangibility of the software under construction in the
initial stage through simulation. The requirements
recorded in highly readable forms, including templates
for presentation and descriptions of free-form text for
computational logic. It can be used for development and
validation of safety-critical requirements in any method
of software development, for safety-critical software or
not.

Kelley [32] discusses a technique for automatically
generating test cases from system requirements models
(SpecTRM-RL models) - a methodology that can also
apply to safety-critical systems because of similarity to
other approaches that have achieved excellent results in
MBT. SpecTRM-RL is a requirement specification
language developed by Professor Nancy Leveson at
MIT7 . The goal was to develop algorithms to generate
test cases and examine the effectiveness of these
algorithms.

Raja [47] provides an overview of requirements
validation techniques, such as requirements inspections,
prototyping requirements, requirements testing, and
point-of-view requirements validation. It highlights the
pros and cons of these requirements validation
techniques. The empirical methodologies presented can
also be applied to safety-critical systems.

Straszak and Smialek [58] present the concept and
tool Requirements Driven Software Testing - ReDSeT,
which allows the automatic generation of integrated tests
based on different types of requirements. Tests expressed
in the newly introduced Test Specification Language
(TSL). The basis for the generation of functional tests is
detailed models of use cases. However, when combining

7 http://www.mit.edu

Fig. 5 - Number of approaches to requirements testing and safety-

critical requirements testing

different types of requirements, relationships between tests
are created.

Yau [66] presents an object-oriented requirements
specification (OORS) verification approach in software
development for safety-critical embedded systems. The
requirements specification generated by object-oriented
analysis is described using a formal specification language
transformed into an information tree. Thus, the
completeness and consistency of the requirements
specification expressed concerning the information tree
checked by comparing it with the original requirement
condition.

Yu [68] describes the implementation of an integrated
approach to software development review, inspection and
testing based on well-identified software requirements.
The safety-critical requirements traceability procedure
described in the document is a systematic method to help
scientists and engineers achieve the goal.

Authors such as Hasling et al. [27], Ibrahim et al. [30]
and Kelley [32] shows the use of support tools for testing
safety-critical requirements based on models, and the tools
generate test cases from use case models and activity
diagrams, sequence diagrams and finite state of the UML.
There is also the approach of Wendland et al. [63] which
presents an approach to how behavior trees can extended
as test activities, these models follow the IEEE830
standard, making the models based of safety-critical
requirements more complete and testable for the later
generation of test cases.

These approaches are applicable any application
domain, since respecting the limits of each approach, the
safety-critical requirements modeling allows the engineer
to extract and execute test cases before the software
implementation.

4.3 RQ1.2 - What are the pros and cons of these
approaches to test safety requirements?

The motivation for this research question is to identify the
advantages and disadvantages of using the selected
approaches and identify the type of application domain that
each applying best.

In every methodology there are advantages and
disadvantages to consider, there is no method that is good
for any requirements test, nor a test that guarantees total
confidence and safety for a safety-critical software system.

Requirements modeling helps better understands how
the system works. The advantages of TBM are related to
the application of tests in the early stages in the safety-
critical software development cycle; reduction in test time
and consequently cost reduction; reduction of ambiguities
present in the requirements; creation of test cases
automatically from requirements models; consumption of

scarce resources; besides collaborating in the detection
of problems with safety requirements during the
modeling [23, 27, 29, 30, 32].

The use cases can be represented by decision trees
[29, 32], domain ontologies [57], statecharts [44, 38], or
UML and sysML diagrams [7, 27, 29, 30, 32]. It is also
possible during the analysis phase to correct ambiguities
and incompleteness of safety requirements, and this is
one of the biggest reasons for failures in safety-critical
software projects. However, it requires a certain level of
skill of modeling testers, and it also requires an initial
effort to define which best model type to apply [27].

The test of safety requirements based on alpha-beta
cutting procedure guarantees to test the redundancy and
ambiguity of the safety requirement, particularly
emphasizing the inspection of the function deficiency
and verifying the testability of the safety requirement by
using of requirements trees [42]. The main disadvantage
is the need for specific knowledge to apply this
approach.

The advantages of the approaches in the studies of
Hammani [24] and Sarwar [50] refer to verification of
the inadequate modeling of nonfunctional requirements
and how these safety requirements are neglected in the
system usability assessment process and requirements
testing. Aiello et al. [2] and Farhat et al. [17] describe a
formal requirements specification, ambiguity reduction,
and Sutcliffe e Gregoriades [60], which show a new
view on model checking on system requirements based
on non-functional requirements, enabling verification
solutions based on simulation and improving work
efficiency as the advantages found in their work.

The unit test is advantageous by allowing greater test
coverage, preventing regression, encouraging
refactoring, and avoiding long debugging sessions on
safety requirements[15].

With white box techniques it is possible to execute
essential parts of the program and be able to find useful
values for the inputs, on the other hand, the paths to be
executed can be infinite, one can also stop to execute
some ways as the automation is difficult [6, 15, 50, 36].

Dudila and Letia [15], Kwang Ik Seo and Eun Man
Choi [36] state that the black box test can be used in any
test phase and applies to every programming paradigm
and effective in detecting errors. As with other methods,
it has disadvantages because it depends on a good
specification of requirements and does not guarantee the
execution of essential parts of the system.

The main advantages and disadvantages found in
primary studies, it is available in Appendix B.

4.4 RQ1.3 - How much are these approaches used for the
industry practitioners?

The motivation for this research question is to verify the
validation of these approaches in the industry scenario. To
classify the primary studies, we identified the studies that
report the application of approaches within the industrial
sector for studies that did not leave specific the sector of
application, aiming to evidence the application of the
approach used in the industrial or academic area.

Table 9 describes a representation of the number of
articles found for each sector, and this definition according
to the opinion provided by the authors or according to the
application sector, academic or industrial.

Table 9

Approaches that present evidence of importance to the
industry

Study
The criterion of importance to the
industry

Ali, 2010

The approach can be useful in developing
better contextual goal models, identifying
additional inconsistencies and conflicts that
are difficult to detect through an entirely
based manual approach only in the skills of
the professionals.

Ali, 2013

The technique applies in two case studies
with spatial systems. Besides, the authors
make references to government systems and
systems that have a high cost for
development.

Bouskela,
2015

Applies a language primarily used in avionics
and aerospace that is especially effective for
model-based analysis and specification of
complex embedded real-time systems.

Cimatti,
2012

The approach was the basis of industrial
design to validate the specification of
requirements of the European Trains Control
System (ETCS).

Dudila, 2013

The technique used by the authors can
replicate in other projects developed by
industries because they have a great scope in
application domains.

Han, 2016
The authors developed and applied the
approach within the industry.

Hemmati,
2013

The results based on two industrial case
studies in embedded systems show benefits
and an improvement in test performance
when using a similarity-based approach.

Ibrahim,
2007

The automatic test case generator develops
with the aim of reducing the generation of
test cases from the system requirements and
cost reduction in the testing process, so it is
essential for the industry to apply in different
fields of application.

Jwo, 2007

Paper presents pseudo software, a conceptual
framework for the development and
validation of iterative requirements, which
facilitates the full participation of
stakeholders, realizing the tangibility of the
software under construction in stage through
simulation. This approach will help reduce
software costs by replicating better
development requirements.

Kesserwan,
2017

The validation of the methodology
conducted by studying the effectiveness of
the test cases generated in the industrial case
study regarding path coverage.

Gao, 2007
This approach proposes a modeling method
that is suitable to establish the requirements
model for software-intensive avionics.

Mirarab,
2008

The authors refine a method already used by
the industry and improve it within the
proposed framework.

Siegl, 2010
An approach to testing model-based
requirements for automotive systems.

Siegl, 2011
An automated approach to requirements
testing in automotive systems.

Straszak,
2014

The approach is essential for the industry
because it is automatic, for the industry it is
advantageous and less expensive

Yu, 2009
An approach to testing the requirements of
safety-critical systems that model-based
testing in the railway operations system.

From 53 primary studies of SLR, 16 studies apply
approaches for the industrial scope in the testing of
software requirements, and these studies are applied in
industry as described by the authors. There are also 37
studies that do not present evidence of use in the
industry, therefore, considered not relevant for the
industry by the authors.

Observing the researchers participating in the primary
studies collected 50% of the work was carried out by
academic researchers who contributed to industrial
approaches. [3, 5, 8, 25, 29, 45, 53, 55]. Studies by

academics and industry professionals that demonstrate
evidence of relevance for the industrial sector add up to
43.75% [15, 30, 31, 33, 44, 58, 67], finally, one study
(6.25%) contains an approach developed only by industry
professionals.

When comparing the sector of application of the
primary studies, it is possible to see in Figure 6 that the
publications in the industrial sector started in the year 2007
through the studies of Ibrahim et al. [30], Jwo and Cheng
[31] and Meng Gao et al. [44], at least on the bases that
were used in SLR (see Table 4). On the other hand, it is
seen that the publications in the academic branch began in
the year 1993 with the study of Ravn et al. [48].

Ibrahim et al. [30] contributed to the industry with the
development of a programming code generator that
performs requirements testing based on the test cases
generated from the software requirements. To validate their
work Ibrahim et al. [30] tested it in a beverage vending
machine system, he pointed out that by applying the
approach it was possible to reduce the cost of the testing
phase and reduce the software production time. Dudila and
Letia [15] and Kesserwan et al. [33] argue that
requirements testing has become a strenuous activity as
systems become more complex to meet growing needs.

Considering the test of software requirements to control
trains and lines, Han et al. [25] and Yu et al. [67] present
approaches for testing safety-critical systems requirements
by describing requirements in formal specifications and
model-based testing, respectively.

In the automotive field, Siegl et al. [53] describes
requirements through models, analyzes and validates them
for the derivation of test cases. The execution of the tests
guarantees the system reduction of failures and generates a
basis of acceptance criteria for validation of the system. In
Siegl et al. [55] the approach developed by Siegl et al. [53]
is applied in a German automotive system but with the

development of a framework that assists it. The author
explains that the approach can collaborate with projects
in the aviation domain according to the degree of
complexity of both.

Meng Gao et al. [44] proposes a modeling method to
establish the requirements model for software-intensive
avionics8. The proposed method makes an abstraction for
common avionic system characters, including data,
receiving, sending, scenes, events, conditions, and
period. Using the requirement model generated by the
method and in combination with a particular test case
generation strategy, the test cases and the adjacent
environment simulation models of the system under test
create automatically.

Although 30.18% of the primary studies have found
evidence of contribution to the industry with approaches
developed within the industry or with case studies on
industrial software, it is observable that interest in testing
software requirements has been growing and
consequently yielding good results. Meanwhile, several
approaches are expected to emerge and the number of
publications to increase.

4.5 RQ1.4 - Are there evidence of integration between
requirement engineers and testers in the approach?

The motivation for this research question is to
understand to what extent these approaches improve
communication between engineers and testers. With SLR
we note how little is there in integration between
requirements engineers and system testers when it comes
to testing software requirements and safety-critical
requirements.

The approaches that report or evidence the interaction
between engineers and testers correspond to 11.32% of
the primary studies [44, 45, 36, 53, 65, 67]. Figure 7
shows the graphical representation of this quantity in the
total number of SLR studies.

8 The term avionics comes from AVIation electrONICS. By avionics are designated

aircraft navigation and communication systems, autopilot and flight control systems, also

include non-pilot on-board electrotechnical systems such as passenger video systems.

Fig. 6 - Index of publications of papers in the industrial and academic

sectors.

The approaches of Meng Gao et al. [44], Kwang Ik Seo
and Eun Man Choi [36] and Siegl et al. [53] perform the
requirements modeling and then perform the test
performed by the team of testers. Although the integration
may seem simple or visible to the requirements testing
context, it does not occur in other works such as Hasling et
al. [27], Straszak and Smialek [58] and Wendland et al.
[63].

In the approach of Meng Gao et al. [44], engineers
model software requirements in the tool proposed by the
approach and the testers perform the tests. In Yu et al. [67]
integration is implicit, but existence is noted for
resembling other approaches such as Meng Gao et al. [44],
Kwang Ik Seo and Eun Man Choi [36].

The authors of the primary studies found in the SLR do
not provide details of the interaction process between
requirements engineers and software testers, but it is
possible to see that although this integration is not detailed.
The other primary studies do not mention the integration of
testers and engineers, and in addition to having no
evidence of the presence of the tester, it is possible to note
that this is a gap to be filled.

Perhaps because test teams are often outside the
company for which the software product is developed, or
even because managers do not unify test groups with
development because testing can be biased. Methodologies
that offer the possibility of integration of engineers and
requirements testers throughout the development process
and provide improvements for the final product and the
company that develops it.

5. Threats to Validity

The main characteristic of an SLR is the rigor to the
protocol of its execution. With this in mind, some aspects
raised that could pose risks to the results obtained and
compromise the conclusions made.

Digital collections where searches are the first threat
to validity since other collections contain studies related
to the subject. Digital libraries integrate the research
chosen for the importance they represent in the
computational environment and are pointed out as the
main ones in the academic environment.

Due to a large number of articles found it would not
be possible to insert more papers due to the deadline and
number of review participants. Search strings are also
threats to validity because some term that may not be
involved or well defined with the theme or the lack of
any that would make the result different from the search
performed, although the results presented have the
content appropriate.

The selection of studies is another point indicated as a
threat to validity. Inclusion and exclusion criteria may
have excluded some studies that contained interesting
information for RQS. The criteria involved other aspects
such as the authors' level of knowledge during the
search, the writing may be ambiguous, and some critical
information does not seem to fit the criteria.

The way the results presented in each selected
primary study may influence the results of the SLR, an
article with confusing or disoriented results influence the
extraction of the data, which in turn can ignore during
the evaluation process. The evaluation of the quality of
the articles can also be identified as a threat because the
issues formulated according to the degree of knowledge
of the SLR authors.

7. Research Agenda

Motivated by the results of this SLR, we suggest a
research agenda where some issues raised during the
SLR can investigate in the future:

1 - Which are the main approaches that are
appropriate to deal with the testability of safety
requirements and which can also deal with other types of
requirements (functional, performance)?

2 - How can the use of Artificial Intelligence support
the testability of safety requirements?

3 - How to promote greater integration between test
and requirements engineering teams? Is there any
notation/method that facilitates this integration?

Concerning systems of systems (SoS), the approach
found that the traditional approaches of independent
validation and verification, focus on ensuring the
satisfaction of the requirements by the software
delivered and reason about the security of the software

Fig. 7 - Number of approaches that promote integration between

requirements engineers and testers

within the context of the system in which the software is
running. Points out to the need to know the approaches that
deal with the system stability of system requirements and
to address existing gaps in this domain of application.

The results of the SLR are expected to encourage
researchers to seek improvements to these approaches or to
create new approaches that integrate benefits in
requirements testing and testing of critical safety
requirements.

8. Conclusion

We presented an SLR with thematic in the test of critical
safety requirements and test of non-critical software
requirements. Several approaches that relate test
requirements, verification and validation, were found in
the literature and went through some phases of analysis
and classification to answer the research questions
proposed for SLR. Relevant finds identified along this
review is highlighted as following:

Approaches to testing safety requirements - RSL has
selected several approaches that have highlighted the use
of techniques for testing SSC requirements, these
approaches show techniques that mainly involve the use of
templates for the creation and execution of test cases.
Covering most of the selected approaches Model-Based
Testing was the primary method used by the authors and
using the UML as the main applied modeling language.
Another interesting finding was the different types of
application domains for the modeling of requirements for
the derivation of test cases, from rail control software to
space system software. The diversity of approaches found
shows that the interest of researchers in the area of
requirements testing is growing, regardless of whether it is
critical or not, the results presented by the authors and
described in the subsections of the research questions are
essential for the academic and industrial segments.

Use of approaches in the industry - Due to the few
primary studies that have presented evidence of relevance
to the industrial sector, it is possible to note that more work
involving the industry still needs to be developed. The case
studies and experiments developed in partnership with the
sector presented good results and gave good suggestions
for future work. The data analyzed show that it is not very
common to find studies published only by professionals of
the industrial sector, the reason for this occurrence is
subject to approach in future works.

Advantages and disadvantages of approaches -
Concerning the advantages and disadvantages belonging to
the approaches, the authors showed the advantages through
their results and conclusions but did not point out bad
results or disadvantages that they obtained in their
research. The disadvantages, since they highlighted in the

studies, would be valuable information both to analyze
the gaps in each methodology and to suggest
improvements.

Integration between requirements engineering and
testers - The literature found on this subject, most of the
approaches do not promote this integration between
teams, and few studies report some integration between
testers and requirements engineers. It is notable that
there is a great need to exert this practice more because
the authors of these reports show good results of this
integration, such as reduction of costs and time of
software development, higher quality in functional tests,
acceptance tests, interface tests and especially the
requirements test. The studies also point to the
participation of testers at the beginning of development
in parallel where testers establish test plans in
conjunction with requirements engineers, this
partnership between teams promotes greater safety and
quality in development as a whole.

However, defining which approach to use for
requirements testing requires knowledge and skill of the
requirements engineer and the tester. It turned out that
inserting the tester into the planning stage of the
software is a good practice to reduce development time
and cost. We found few approaches that are really
applied to the industry setting. However, requirements
testing can be applied throughout the development
lifecycle.

Appendix A

SCR – Score according to quality assessment.
CIT – Amount of citations of paper.

Table 10

List of selected primary studies

Author Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 SCR CIT

Ahmed e
Tripathi [1]

1 1 1 1 1 5 6

Aiello et al.
[2]

1 0.5 1 1 1 4.5 0

Ali e
Moawad [3]

1 1 1 1 4 1

Ali et al. [4] 1 1 1 1 1 1 1 7 28

Alves et al.
[5]

1 1 1 1 1 5 2

Amyot et al.
[6]

1 1 1 3 12

Andrade et
al. [7]

1 1 1 3 36

Bouskela et
al. [8]

1 1 1 1 4 2

Cimatti et
al. [9]

1 1 1 1 1 1 6 7

Crow e Di
Vito [10]

1 1 1 1 1 5 9

Dalal et al.
[11]

1 1 1 1 1 5 3

Dokhanchi
et al. [13]

1 1 1 1 1 5 0

Dudila e
Letia [15]

1 1 1 1 1 1 6 0

El-Attar e
Abdul-
Ghani [16]

1 0.5 1 1 1 1 5.5 2

Farhat et al.
[17]

1 0.5 1 1 1 4.5 3

Felder e
Morzenti
[18]

1 0.5 1 2.5 8

Foster e
Helm [19]

1 0.5 1 1 1 4.5 2

Fraser e
Ammann
[20]

1 0.5 1 1 1 4.5 2

Ghazel et
al. [21]

1 0.5 1 1 1 4.5 0

Gutiérrez et
al. [23]

1 1 1 1 1 5 4

Hammani
[24]

1 1 1 1 1 1 6 4

Han et al.
[25]

1 1 1 1 1 1 6 1

Hasling et
al. [27]

1 0.5 1 1 1 4.5 15

Heitmeyer
et al. [28]

1 1 1 1 1 5 173

Hemmati et
al. [29]

1 0.5 1 1 1 4.5 33

Ibrahim et
al. [30]

1 0.5 1 1 1 5.5 2

Jwo e
Cheng [31]

1 0.5 1 1 1 1 5.5 1

Kelley [32] 1 1 1 1 4 3

Kesserwan
et al. [33]

1 0.5 1 1 1 1 1 6.5 0

Kwang Seo
e Eun Man
Choi [36]

1 0.5 1 1 1 1 5.5 3

Lee et al.
[38]

1 1 1 1 4 0

Lei e Wang
[39]

1 0.5 1 1 1 4.5 0

Ling et al.
[41]

1 1 1 1 4 0

Liu et al.
[42]

1 0.5 1 1 1 4.5 0

Meng Gao
et al. [44]

1 0.5 1 1 1 1 1 6.5 1

Mirarab et
al. [45]

1 0.5 1 1 1 1 1 6.5 3

Ober et al.
[46]

1 1 1 1 1 5 23

Raja [47] 1 1 1 1 1 5 3

Ravn et al.
[48]

1 0.5 1 1 3.5 52

Sarwar et
al. [50]

1 0.5 1 1 1 4.5 1

Schneider et
al. [51]

1 0.5 1 1 1 4.5 34

Siegl et al.
[53]

1 1 1 1 1 1 1 7 8

Siegl et al.
[54]

1 0.5 1 1 1 4.5 1

Stachtiari et
al. [57]

1 0.5 1 1 1 4.5 0

Straszak e
Smiałek
[58]

1 1 1 1 1 1 6 0

Sun et al.
[59]

1 1 1 1 1 5 0

Sutcliffe e
Gregoriades
[60]

1 1 1 1 1 5 12

Wendland
et al. [63]

1 1 1 1 1 5 5

Wumei
Tang et al.
[64]

1 1 1 1 4 0

Yang et al.
[65]

1 1 1 1 1 1 6 0

Yau [66] 1 1 1 1 4 0

Yu [67] 1 1 1 1 4 7

Yu et al.
[68]

1 1 1 1 1 1 1 1 8 1

Appendix B

Table 11

Pros and Cons

Study Advantage Disadvantage

[1]

The author provides
the correctness and
consistency of a
project specification.
The approach is used
to ensure no violation
of confidential
security requirements
when policy
compliance roles
distributed to
participants.

Assigning property
privileges in design can
result in the violation of
some critical requirement.

[2]

Reduction of
ambiguity and
increase in accuracy,
due to the well-
defined syntax and
semantics of the
formal language
adopted; Improving
the efficiency of
collaborative work
between system
manufacturers and
vendors such as
property models
provides a shared
representation and
reference system
requirements that can
guide the testing and
early validation of
system and subsystem
interactions.

Requires knowledge in
FORM-L to better
understand the approach
code.

[3]

Establishes clear
steps to run the test
process in both
phases (domain
engineering phase
and application
engineering phase).

The article shows the new
approach but does not
present a use case where
the approach is applied.

[4]

Provides a systematic
process that guides
the construction and
analysis of contextual
goal models; as a
result of the
evaluation presented
by the author, the
automated analysis
discovers
inconsistencies and
deadly conflicts that
are not recognizable
by requirements
engineers who
develop contextual
goal models.

The application of the
approach occurred in a
single case study. More
case studies are needed to
generalize the conclusions;
Authors approach has
proven to be well-scaled
with small and medium
models of goal models
while requiring additional
optimization to handle
large models.

[5]

The V&V process has
full support in
computer-aided
(StateRover)
hardware. The
effective use of
requirements
checking
accomplishes by
constructing correct
and complete
property assertions.

Testing a critical safety
system can be
exceptionally difficult with
traditional verification and
validation techniques.
However, the final
implementation test may
not be necessary to provide
requirements validation
because of the difficulty of
ensuring coverage of test
cases for all possible
scenarios of failure.

[6]

During integration,
some avoided
interactions ensure
separate and complete
preconditions,
composing plug-ins
into stubs according
to the intent of the
resources.

There is the talk of the
approach, but the
development is not
detailed.

[7]

Estimates embedded
software execution
time, power
consumption, and
verification of system
properties in the early
stages of the
development
lifecycle.

It requires a high-level
knowledge.

[8] Based on the central
idea that teams with
different specialties
should be able to
cooperate using
modeling and

Authors use a high-level
language.

simulation to build
complex, secure and
reliable systems.
There must be a clear
separation between
requirements, design
and modeling of the
physical system,
which traceability
must meet. The use of
formal models helps
remove ambiguities
and omissions, and
models should be
easily readable by
design and operation
engineers and backed
by efficient industrial
tools.

[9]

Simple enough to
allow use by non-
specialists at formal
methods.

It generates time effort for
language learning.

[10]

The most lasting
contribution of the
four case studies
described was the
development of
reusable strategies
and a clarification of
the usefulness of
formal methods
techniques across a
broad spectrum of
maturity levels.

An expert in the field of
application is required to
use the approach.

[11]

The four case studies
presented provide
details and results of
the application of
large-scale
combinatorial test
techniques to various
applications.

The authors could give
more details about the case
studies because there is
only one explanation of
how they occurred.

[12]

Enhances the
elicitation process by
providing feedback to
users on validity,
redundancy, and
voidness issues

The specification presented
is not integrated with the
tool if integration could
simplify development.

[15]

The minimization of
debugging effort at a
later time in software
development

The unit test can have
biased results according to
who performs it.

[16]

Allows to view
system requirements
differently and treat
them for problems
not yet seen.

If the user has no
experience with software
engineering, the results will
not be ideal.

[17]
Tests non-functional
requirements using
aspects.

There are two significant
weaknesses when using
aspects that are the
inability of the aspect code
to be woven at all points of
execution and the lack of
direct support for
interlacing aspects with
other aspects.

[18]

The TRIO
specification
correctly captures and
formalizes the
requirements for the
specified system,
which in the early
stages of the
development process
are based primarily
on subjective user
expectations or
simple descriptions in
natural language.

Authors use a high-level
language.

[19]

Can perform a
detailed evaluation
using less time and
resources between the
requirements
validation and system
verification phases.

Authors could have
deepened the system
requirements validation
issues and seek new
validations.

[20]

Know two essential
properties of test
cases when testing
against requirements:
Scope and
propagation of
property violations.

It requires knowledge of
linear temporal logic.

[21]

Establishes the basis
for a generic
approach to the
verification of
temporal
requirements of
complex systems and
develops software
tools to implement
the methodology.

As the author reports, they
could yield more fruitful
results in information.

[23] Automation of the Automatic generation of

generation of
functional test cases
from software
requirements,
reducing effort and
time in this process.

test cases is performed
based on use cases,
applying some assumptions
are imposed restrictions on
functional requirements,
format, and context. The
design requirements are as
a set of interactions
between the system under
test and a group of external
actors.

[25]

Extracts a set of
general safety
requirements from a
variety of sources and
sorts them by
different
characteristics. It
includes safety
requirements
extracted from the
existing relevant
functional safety
requirements to
describe the dynamic
aspect of the system.

The application executing
the approach is not fully
developed.

[27]

The approach aims to
ensure the testability
of software
requirements.

Testers need to be trained
to create tests using
models, rather than merely
defining test scenarios.

[28]

A formal analysis
technique for
automatic error
detection such as
non-deterministic
type errors, missing
cases and circular
definitions in
requirements
specifications.

Needs to be knowledgeable
about formal methods.

[29]

Leads to significant
savings concerning
many test cases that
do not need to
execute.

The approach does not test
safety requirements.

[30]
Generates the test
case automatically.

The approach does not
consider non-functional
requirements.

[31] Readability is the
most relevant context
that stakeholders can
manipulate the
pseudo-software as

Although some success
achieved in applying
pseudo-software, additional
work is needed to make it
more complete, for

the actual software
would do.

example, by adding
features to manage
requirements changes.

[32]

Automating the
generation of test
cases saves resources;
Generating test cases
is a time-consuming
task, and test cases
are generated before
any code implosion,
which will allow
developers to use test
cases as they develop
code. Reducing the
number of iterations
between development
and testing, saving
even more resources.

Generating test cases is a
time-consuming task.

[33]

The main advantage
is to be able to
generate tests from
models generated
with the requirements
of the system, and
this promotes to the
engineer gain of time,
ease and safety.

Cons are the result,
although it is relevant,
there would be more
examples in other areas of
application of the tests
performed by the authors.

[36]
Know the properties
of the five approaches
presented.

The author does not detail
the operation of each
approach, only briefly
explains and compares
them.

[38] The approach has
advantages against
the conventional
process of software
development,
especially for to error
correction,
verification, and
validation. The
model-driven
software development
process has driven by
shorter product
development cycles,
increased software
complexity, reduced
product quality
expectation, and
reduced cost.

The model-based approach
requires a suitable software
model as well as a
simulation tool or program
and also requires a lot of
additional cost and labor.

[39] Validates the Model-driven testing

implementation of the
software running on
the target machine
according to the
requirement, i.e., the
possibility of
obtaining full
coverage of the
requirement.

requires a specific skill of
the tester because
knowledge about the
technologies involved in
the testing process is
needed.

[41]

Helps developers find
errors sooner and
makes the
development process
more efficient and
economical.

Authors use a high-level
language.

[42]

Can avoid the
irregularity of the
requirement by
abstracting the
shortage, and ensure
the success of the
requirements test.

Require skills with
fractioning requirements
and matching algorithms.

[44]

The approach creates
test cases
automatically based
on state graphs.

It requires a high level of
specific knowledge.

[45]

Automates and
formalizes the
activities of the test
processes.

Unable to test critical
safety requirements.

[46]

Validate models UML
by model simulation
and verification,
based on a mapping
to an automaton-
based model
(communicating
timed extended
automata).

The authors say that
although they already have
UML 2.0 available they
have used version 1.4 but
intend to update the search
in the future.

[47] Ensures the
elimination of
unwanted
requirements and the
test cases produced
can be used in the
final test of the
system.

The disadvantage of
requirements testing is that
it involves costs. For small
businesses with a relatively
smaller number of people,
it may not be useful.
Likewise, requirements
testing requires
experienced testers and
requirements engineers.
Small businesses may not
have such requirements
concerning information
technology strength

experienced. Besides, small
businesses may not provide
professional training to
new people for
requirements testing.

[48]

It demonstrates how
mathematical
reasoning is used in
verifying that the
designs satisfy the
requirements and in
proving that a more
detailed distributed
design satisfies a
centralized abstract
design.

Authors use a high-level
mathematical language.

[50]

Tests usability in a
quantitative way,
making it easy for the
development
organization to assess
how much a
particular system is
usable, moreover,
potential system
failures can also be
detected quickly,
which serves as a
basis for improving
the system. Tests
usability in a
quantitative way,
making it easy for the
development
organization to assess
how much a
particular system is
usable, moreover,
potential system
failures can also be
detected quickly,
which serves as a
basis for improving
the system.

The approach is lacking in
clarity and detail.

[51]

The approach
identifies
requirements with
errors and
malfunctioning
components.

There are several
explanations not
understood at work due to a
high-level language.

[53] Deficiencies and
ambiguities in the
specification of
requirements can be

The approach is not clear
enough in the article to list
a disadvantage.

identified and
clarified during
modeling.

[57]

Early validation of
requirements aims to
reduce the need for
costly validation
testing and corrective
measures in late
stages of
development.

Requires the engineer to
have high knowledge in the
oriented derivation of
formal properties.

[58]

Can perform the
acceptance test based
on requirements
models.

The approach has a high
cost and does not allow
finding subjective defects
because it is looking for
expected errors.

[59] Reduct of test effort.
It was demonstrated only
for orientation DO-178.

[60]

Introduces a new
view on model
verification in system
requirements using a
Bayesian Belief
Network (BBN)
technology to
incorporate
theoretically
motivated predictions
of human error and
system reliability.

Require specific
knowledge of BBN.

[63]

The advantage
pointed out by the
author is the
elicitation of the test
requirements,
analyzing the tree of
integrated behavior
from a tester. In doing
so, the step to test the
specifications
becomes more
straightforward
because the
information relevant
to the specification of
the test cases is
present and does not
need the graduated
determination in any
way.

There is little literature for
this approach.

[64] Can be fully
automated for testing.

It is not clear that this
approach is adaptable to
other case studies besides

that presented by the
author.

[65]
Covers all software
testing processes.

Demands specific
knowledge of the approach

[66]

Can transform the
object-oriented
requirements
specification into
natural language.

The author could have
applied in a real system for
testing.

[67]

The structure maps
each possible input
and output and test
criterion that is
related to the
functional safety of
the critical safety
system and can also
relate to a well-
defined set of system
failures.

The approach does not
provide details in the
article.

[68]
Reduct of cost for
troubleshooting
software and bugs.

The technology developed
is already outdated and
needs improvements in
processes and methods.

Acknowledgments

I would thank CAPES (Coordination of Improvement
of Higher Level Personnel) for having subsidized eleven
months of the pro-grad program in computer science at
UNIFESP.

References

[1] Ahmend, Tanvir and Tripathi, Anand R.
Specification andverification of safety
requirements in a programming model for
decentralized CSCW systems. ACM Trans-
actions on Information and System safety,
10(2):7–,2007.

[2] Aiello, Francesco , Alfredo, Garro, Yves Alfredo
Lemmens, and Dutre Stefan. Simulation-based
verification of system requirements: An
integrated solution.In2017 IEEE 14th

International Conference on Networking,
Sensing and Control (ICNSC), volume 1,

pages 726–731. IEEE,may 2017.[3] M.
Mohamed Ali and R. Moawad. An approach for
requirements based software product line
testing. Informatics and Systems (INFOS),
2010 The 7th International Conference on, 1,
march 2010.

[3] Ali, M. Mohamed and Moawad R.. An approach
for requirements based software product line
testing. Informatics and Systems (INFOS), 2010
The 7th nternational Conference on,1, march 2010.

[4] Ali, Raian, Dalpiaz, Fabiano and Giorgini
Paolo. Reasoning with contextual requirements:
Detecting inconsistency and conflicts. Information
and Software Technology, 55(1):35–57, 2013.

[5] Alves, Miriam C Bergue and Drusinsky, Doron
and Man-TakShing. A Practical Formal Approach
for Requirements Validationand Verification of
Dependable Systems. In 2011 Fifth Latin-
American Symposium on Dependable Computing
Workshops, pages 47– 51. IEEE, apr 2011.

[6] Amyot D., Logrippo L., Buhr R.J.a., and Gray. T.
Use case maps for the capture and validation of
distributed systems requirements. Proceedings
IEEE Inter-national Symposium on
Requirements Engineering (Cat.No.PR00188),
pages 44–53, 1999.

[7] Andrade Ermeson, Maciel, Paulo,Callou
Gustavo, and Nogueira Bruno. A Methodology
for Mapping SysMLActivity Diagram to Time
Petri Net for Requirement Validation of
Embedded Real-Time Systems with Energy
Constraints. In2009 Third International
Conference on Digital Society, pages 266–
271. IEEE, feb 2009.

[8] Bouskela Daniel, Nguyen, Thuy and Jardin
Audrey. Towards a rigorous approach for
verifying cyber-physical systems against
requirements. In2015 IEEE Electrical Power
and Energy Conference (EPEC), pages 250–
255.IEEE, oct 2015.

[9] Cimatti, Alessandro and Roveri, Marco and Susi,
Angeloi, and Stefano Tonetta. Validation of
requirements for hybrid systems. ACM
Transactions on Software Engineering and
Methodology, 21(4):1– 34, 2012.

[10] Crow Judith and Vito Ben Di. Formalizing
Space Shuttl eSoftware Requirements: Four
Case Studies. ACM Trans. Softw. Eng.
Methodol., 7(3):296–332, 1998.

[11] Dalal S.R., Jain A, Karunathi,N. and Leaton,
J.M. C.M. Patton Lott,G. C., and B. M.
Horowitz. Model Based Testing in Practice
at Microsoft. Electronic Notes in Theoretical
Computer cience, 111(June):5–12, jan 2005.

[12] Delamaro, Marcio and Jino, Mario, Maldonado
and José. Introdução ao teste de software,
volume 1.Elsevier Brasil, 2017.

[13] Dokhanchi, Adel and Hoxha, Bardh and
Fainekos Georgios. Formal Requirement
Debugging for Testing and Verification of
Cyber-Physical Systems. ACM Transactions on
Embedded Computing Systems, 17(2):1 –
26, dec 2017.

[14] Driskell, Stephen B., and Murphy, Judy and Bret
James Michael, and Man Tak Shing.
Independent validation of software safety
requirements for systems of systems.2010 5th

International Conference on System of Systems
Engineering, SoSE 2010, 2010.

[15] Dudila, Raluca and Letia, Ioan Alfred . Towards
combining functional requirements tests and
unit tests as a preventive practice against
software defects. In2013 IEEE9th International
Conference on Intelligent Computer
Communication and Processing (ICCP), pages
279–282.IEEE, sep 2013.

[16] El-Attar, Mohamed and Akram Abdul-Ghani
Hezam . Using safety robustness analysis for
early-stage validation of functional safety
requirements. Requirements Engineering,
21(1):1–27, mar 2016.

[17] Farhat, Salam and Simco, Greg and
Mitropoulos Frank J. Using aspects for testing
nonfunctional requirements in object-oriented
systems. In Proceedings of the IEEE
SoutheastCon 2010 (SoutheastCon), pages 356 –
359. IEEE, mar 2010.

[18] Felder, Miguel and Morzenti, Angelo.
Validating real-time systems by

history- checking TRIO specifications. In
Proceedings of the 14th international conference

on Software engineering - ICSE ’92, volume 3,
pages 199 – 211, New York, USA, 1992.
ACM Press.

[19] Foster, George J. and Helm, Annette L.. A
unified approach to requirements validation and
system verification. In2010 IEEE International
Systems Conference,pages 404–408. IEEE, apr
2010.

[20] Fraser, Gordon and Ammann, Paul. Reachability
and Propagation for LTL Requirements Testing.
In2008 The Eighth International Conference on
Quality Software,pages 189–198. IEEE, aug
2008.

[21] Ghazel, Mohamed, Masmoudi, Malek and
Toguyeni, Armand. Verification of temporal
requirements of complex systems using UML
patterns, application to a railway control example.
System of Systems Engineering, 2009.
SoSE2009. IEEE International Conference on
pages 1–6, 2009.

[22] Gurbuz, Havva Gulay and Tekinerdogan, Bedir.
Model-based testing for software safety: a
systematic mapping study. Software Quality
Journal, pages 1–46, sep 2017.

[23] Gutiérrez , J.J., Escalona, M.J., and Mejías M. A
Model-Driven approach for functional test case
generation. Journal of Systems and Software,
109:214–228, nov 2015.

[24] Hammani, Fatima Zahra. Survey of Non-
Functional Requirements modeling and
verification of Software Product Lines. 2014
IEEE Eighth International Conference on
Research Challenges in Information Science
(RCIS), pages 1–6, 2014.

[25] Han, Li and Liu Jing, Zhou Tingliang and Sun
Junfeng, and Chen Xiaohong. Safety
Requirements Specification and Verification
for Railway Interlocking Systems.
In2016IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC),
volume 1, pages 335 – 340. IEEE, jun 2016.

[26] Häser,Florian and Felderer, Michael and Breu
Ruth. Soft-ware paradigms, assessment types
and non-functional requirements in model-based
integration testing: A systematic literature
review. In Proceedings of the 18thInternational

Conference on Evaluation and Assessment in
Software Engineering, EASE’14, pages 29:1 –
29:10, New York, NY, USA, 2014. ACM.

[27] Hasling,Bill and Goetz, Helmut and Beetz,
Klaus. Model Based Testing of System
Requirements using UMLUse Case Models.
In2008 International Conference on Software
Testing, Verification, and Validation, pages
367–376. IEEE, apr 2008.

[28] Heitmeyer,Constance L. and Jeffords, Ralph D.
and Bruce G. Labaw. Automated consistency
checking of requirements specifications. ACM
Transactions on Software Engineering and
Methodology, 5(3):231–261, 1996.

[29] Hemmati, Hadi and Arcuri, Andrea and Briand,
Lionel. Achieving scalable model-based testing
through test case diversity. ACM Transactions
on Software Engineering and Methodology,
22(1):1–42, 2013.

[30] Ibrahim, Rosziati and Saringat, Mohd Zainura
Ibrahim, Noraini, and Ismail, Noraida. An
Automatic Tool for Generating Test Cases from
the System’s Requirements. In 7th IEEE
International Conference on Computer and
Information Technology (CIT 2007), pages
861 – 866. IEEE, oct 2007.

[31] Jwo, Jung-Sing and Cheng, Yu Chin. Pseudo
Software: a New Concept for Iterative
Requirement Development and Validation. In
14th Asia-Pacific Software Engineering
Conference (APSEC’07), pages 105–111. IEEE,
dec2007.

[32] Kelley, Kenneth. Automated test case generation
from correct and complete system requirements
models. In2009 IEEE Aerospace conference,
pages 1–10. IEEE,mar 2009.

[33] Kesserwan, Nader and Dssouli, Rachida and
Bentahar,Jamal and Stepien, Bernard and
Labrèche. Pierre From use case maps to
executable test procedures: a scenario-based
approach. Software & Systems Modeling, 2017.

[34] Khosrowjerdi, Hojat and Meinke, Karl and
Rasmusson Andreas. Virtualized-Fault Injection
Testing: A Machine Learning Approach. In2018
IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST),
pages 297–308. IEEE, apr 2018.

[35] Kitchenham Barbara and Charters, S. Guidelines
for performing Systematic Literature Reviews in
Software Engineering. Engineering, 2:1051,
2007.

[36] Kwang Ik Seo and Eun Man Choi. Comparison of
Five Black-box Testing Methods for Object-
Oriented Software. In Fourth International
Conference on Software Engineering Research,
Management and Applications (SERA’06),
pages 213–220. IEEE, 2006.

[37] Lau, Man F. and Yu, Yuen T.. An extended fault
class hierarchy for specification-based testing.
ACM Transactions on Software Engineering
and Methodology, 14(3):247–276, 2005.

[38] Lee, Kwan-Hyung, Min Pan-Gi, Cho Ju-Hyung,
and Lim Dong-Jin. Model-Driven Requirements
Validation for Automotive Embedded Software
using UML. 8th International Conference on
Computing Technology and Information
Management (ICCM), 1(Ddd):46 – 50, 2012.

[39] Lei Haishen and Wang Yichen. A model-driven
testing framework based on requirement for
embedded software.In2016 11th International
Conference on Reliability,Maintainability and
Safety (ICRMS), pages 1–6. IEEE,oct 2016.

[40] Leveson, Nancy G., Safeware: System Safety
and Computers. ACM, New York, NY, USA,
1995.

[41] Yin Ling, Liu Jing, and Li Xiaoshan. Validating
Requirements Model of a B2B System. In 2009
Eighth IEEE/ACIS International Conference on
Computer and Information Science, pages 1020–
1025. IEEE, 2009.

[42] Liu Gang, Huang, Shaobin and Piao Xiufeng.
Studyon Requirement Testing Method Based on
Alpha-BetaCut-Off Procedure. In 2008
International Conference on Internet Computing in
Science and Engineering, pages396–402.
IEEE, jan 2008.

[43] Martins, Luíz Eduardo G. and Gorschek, Tony.
Requirements engineering for safety-critical
systems: A systematic literature review.
Information and Software Technology, 75:71–
89, jul 2016.

[44] Meng Gao, Deming Zhong, Minyan Lu, and
Yongfeng Yin. Research on test requirement
modeling for software-intensive avionics and the
tool implementation. In2007IEEE/AIAA 26th
Digital Avionics Systems Conference,pages
6.D.2 1–6.D.2–10. IEEE, oct 2007.

[45] Mirarab, Siavash and Ganjali, Afshar and
Tahvildari Ladan, Shimin Li, Weining Liu, and
Mike Morrissey. A requirement-based software

testing framework: An industrial practice.2008
IEEE International Conference on Software
Maintenance, pages 452–455, 2008.

[46] Ober, Iulian and Graf, Susanne and Ober, Ileana.
Validating timed UML models by simulation and
verification. International Journal on Software
Tools for Technology Transfer, 8(2):128–145,
apr 2006.

[47] Raja, Uzair Akbar. Empirical studies of
requirements validation techniques. In2009 2nd
International Conference on Computer, Control
and Communication, pages1–9. IEEE, feb
2009.

[48] Ravn, A.P. and Rischel,Hans and Hansen, K.M.
Specifying and verifying requirements of real-
time systems. IEEE Transactions on
Software Engineering, 19(1):41–55, 1993.

[49] Saito, Shinobu and Takeuchi, Mutsuki and
Yamada, Setsuo and Aoyama, Mikio. RISDM: A
requirements inspection systems design
methodology: Perspective-based design of the
pragmatic quality model and question set to
SRS. In 2014 IEEE 22nd International
Requirements Engineering Conference (RE),
pages 223–232. IEEE, aug2014.

[50] Sarwar Tabinda, Habib, Wajiha and Arif, Fahim
Requirements based testing of software. In2013
Second International Conference on Informatics
& Applications(ICIA), pages 347–352. IEEE,
sep 2013.

[51] Schneider, F. and Easterbrook, S.M. Callahan,
J.R. and G.J. Holzmann.Validating requirements
for fault tolerant systems using model checking.
In Proceedings of IEEE Iternational
Symposium on Requirements Engineering:
RE’98, pages 4 –13. IEEE Comput. Soc, 1998.

[52] Sharma, Ashish and Singh Dharmender
Kushwaha. A metric suite for early
estimation of software testing effort using
requirement engineering document and its
validation. 2011 2nd International Conference
on Computer and Communication Technology,
ICCCT-2011, pages373–378, 2011.

[53] Siegl,Sebastian and Hielscher, Kai-Steffen and
German Reinhard. Model Based Requirements
Analysis and Testing of Automotive Systems
with Timed Usage Models.In2010 18th IEEE
International Requirements Engineering
Conference, pages 345–350. IEEE, sep 2010.

[54] Siegl, Sebastian and Kai-Steffen Hielscher,
German German Reinhard, and Berger, C.
Automated testing of embedded automotive
systems from requirement specification

models. LATW 2011 - 12th IEEE Latin-
American Test Workshop,2011.

[55] Siegl, Sebastian and Hielscher,Kai-Steffen
Reinhard German, and Christian Berger.
Automated testing of embedded automotive
systems from requirement specification
models. In 2011 12th Latin American Test
Workshop(LATW), pages 1–6. IEEE, mar 2011.

[56] Sommerville, Ian. Engenharia de software.
Tradução Ivan Bosnic e Kalinka G. de O.
Goncçalves; revisão técnica Kechi Hirama –.
São Paulo: Pearson Prentice Hall, 9 edition,
2011.

[57] Stachtiari, Emmanouela and Mavridou, Anastasia
Katsaros, Panagiotis and Bliudze, Simon and
Sifakis, Joseph. Early validation of system
requirements and design through
correctness-by-construction. Journal of Systems
and Software, 145(July):52–78, 2018.

[58] Straszak, Tomasz and Smialek Michal.
Automating Acceptance Testing with tool
support. In Automating Acceptance Testing with
tool support, volume 2, pages1569–1574, sep
2014.

[59] Sun, Youcheng, Brain, Martinand, Daniel
Kroening, Hawthorn, Andrew and Wilson
Thomasand Schanda, Florian and Jimenez,
Francisco Javier Guzman and Daniel, Simon and
Bryan, Chris and Broster, Ian. Functional
Requirements-Based Automated Testing for
Avionics. In 2017 22nd International Conference
on Engineering of Complex Computer Systems
(ICECCS), volume 1, pages 170–173. IEEE, nov
2017.

[60] Sutcliffe, Alistair and Gregoriades, Andreas.
Validating functional system requirements with
scenarios. In Proceedings IEEE Joint
International Conference on Requirements
Engineering, volume 2002 - Janua, pages181–
188. IEEE Comput. Soc, 2002.

[61] Unterkalmsteiner, Michael and Feldt, Robert and
Gorschek Tony. A Taxonomy for Requirements
Engineering and Software Test Alignment. ACM
Transactions on Software Engineering and
Methodology (TOSEM),23(2):16:1–16:38, 2014.

[62] Vilela, Jéssyka and Castro, Jaelson and Martins,
Luiz Eduardo G. and Gorschek, Tony. Integration
between requirements engineering and safety
analysis: A systematic literature review. Journal of
Systems and Software, 125:68–92,2017.

[63] Wendland, Marc-florian and Schieferdecker Ina.
and Vouffo-Feudjio, Alain. Requirements-Driven
Testing with Behavior Trees. In2011 IEEE

Fourth International Conference on Software
Testing,Verification and Validation Workshops,
pages 501 – 510. IEEE, mar 2011.

[64] Tang, Wumei and Ning and Xu, Bin Tianhua
and Zhao, Lin. Scenario-based modeling and
verification for CTCS-3 system requirement
specification. In 2010 2nd International
Conference on Computer Engineering and
Technology, volume 1, pages V1–400–V1 – 403.
IEEE, 2010.

[65] Yang, Chunhui and Hu,Xuan and Zhu, Yi and
Huang Maosheng. The domain knowledge-based
software test model researches. In 2014 10th
International Conference on Reliability,
Maintainability and Safety (ICRMS),
pages323–328. IEEE, aug 2014.

[66] Yau, S.S. An approach to object-oriented
requirements verification in software
development for distributed computing systems.
Proceedings Eighteenth Annual International
Computer Software and Applications
Conference (COMPSAC 94), pages 96–102,
1994.

[67] Yu, Gang, Xu, Zhong Wei and Du, Jun Wei. An
Approach for Automated Safety Testing of
Safety-Critical Software System Based on
Safety Requirements.In2009 International
Forum on Information Technology and
Applications, volume 3, pages 166–169. IEEE,
may2009.

[68] Yu, W. D. Verifying software requirements: a
requirement tracing methodology and its
software tool-RADIX. IEEE Journal on Selected
Areas in Communications,12(2):234–240, 1994.

