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Abstract Test cases generation based on Finite State Machines (FSMs) has
been addressed for quite some time. Model-Based Testing (MBT) has drawn
attention from researchers and practitioners as one of the approaches to sup-
port software Verification and Validation. Several test criteria have been pro-
posed in the literature to generate test cases based on formal methods, such as
FSM. However, there is still a lot to be done on this aspect in order to clearly
direct a test designer to choose a test criterion most suitable to generate test
cases for a certain application domain. This work presents a new test criterion
for model-based test case generation based on FSM, H-Switch Cover. H-Switch
Cover relies on the traditional Switch Cover test criterion, but H-Switch Cover
uses new heuristics to improve its performance, for example, adoption of rules
to optimize graph balancing and traverse the graph for test cases generation.
We conducted an investigation of cost and efficiency of this new test crite-
rion by comparing it with Unique Input/Output (UIO) and Distinguishing
Sequence (DS). We used two embedded software products (space application
software products) and mutation analysis for assessing efficiency. In general,
for the case studies proposed in this paper in terms of cost (amount of events)
and efficiency (mutation score), H-Switch Cover test criterion presented an
average and a standard deviation better than the other two test criteria.
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1 Introduction

The lack of use of mechanisms for assuring software quality, mainly in critical
software, can cause significant losses. Classic examples in which defects in soft-
ware were the main causes of failure are: a bug in the Intel P5 Pentium floating
point unit (FPU), known as “Pentium FDIV bug” in that certain floating point
division operations performed with these processors produced incorrect results
[49]; self-destruction of the rocket Ariane 5, due to a defect in the control soft-
ware [9]; Therac-25 medical electron accelerator (1985-1987)[39], which caused
several losses of human lives; and the Mars Climate Orbiter (1999) [44]. Ac-
cording to Andrade et al. (2013) [1], advances in technology and the emergence
of increasingly complex and critical applications require using of improved test
strategy, in order to achieve high quality software products.

Software testing is a process/method related to Verification and Validation
(V&V) [11,36,43]. Model-Based Testing (MBT) has drawn lot of attention in
both industrial and academic areas since it has proved effective by using models
to represent system behavior in order to guide the Generation/Selection of
Test Cases [20,57,60]. One of the main features of MBT is the automated
generation of black box test cases usually based on a formal representation, of
the software specification, such as Finite State Machines (FSM) [30,65], Petri
Nets [50], Z [34], Vienna Development Model (VDM) [27], and Statecharts [33].
Usually there is a software tool to support modeling as well as the automated
test case generation, allowing a test designer to generate complex and large
test suites in an automated way, and based on a mathematical formalism.

FSM is a formal modeling technique commonly used for testing due to
its rigor and simplicity. FSM has been adopted for modeling reactive systems
and protocol implementations for a long time [14,38,54,55]. Reactive systems
respond to internal or external stimuli, and it is very suitable to model such
systems by means of FSMs because one can basically express the input/output
behavior of these applications within the transition labels of an FSM [33].
Embedded software in space applications falls into the category of reactive
systems and they have been modeled by means of FSMs [6,14,38,54,55] and
Statecharts [60,62]. The published literature shows efforts of the scientific com-
munity in analyzing cost-efficiency of test criteria for several techniques like
FSMs [16,65] and Statecharts [2,13] aiming to find innovative methods to help
test designers to generate test cases in a more systematic manner. Several test
criteria1 are used to generate test cases based on FSM. Some of these are:
Switch Cover [53], Transition Tour (TT) [45], Distinguishing Sequence (DS)
[31], Unique Input/Output (UIO) [58], Wp [26], State Counting [51] and, re-
cently, H [18], SPY [68], P [67], and Diagnosable Input/Output (DIO) [80].

Switch Cover is an old criterion and it has been investigated for a long time
by some research groups. Several versions of this criterion [4,42,53,76] were
implemented. According to Arantes et al. (2014) [5], Switch Cover algorithm
performs a more refined test coverage where a switch is basically a branch-

1 In the academic community, a test criterion is also known as a method.
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to-branch pair, and test cases consist of every branch-to-branch pair from the
graph.

Previous implementations of Switch Cover criterion presented some prob-
lems observed over the years: (i) inconsistency between the set of test cases
generated and the FSM since we noticed that the test cases did not correspond
faithfully to the FSM model; (ii) some implementations of Switch Cover could
not properly handle complex FSMs [62]; and (iii) two of the main steps of the
Switch Cover criterion are: to obtain a balanced graph and generate a test case
based on the Eulerian Graph [12] (explained in Section 3). The original Switch
Cover [53] criterion does not provide heuristics2 for graph balancing and test
case generation. This is entirely left to the developers. So, a proper attention
must be given to take some decisions regarding these two steps. Usually this
has been done in an ad hoc manner without a set of well-defined heuristics.
Therefore, the adoption of rules to balancing the graph or traversing the graph
without any appropriate heuristics can result in loss of performance due to the
computational effort.

According to Endo and Simao (2013) [25], there is a great effort spent in
developing new test criteria. These criteria should be able to generate more
effective test suites and also reveal as many faults as possible in a particular
domain. However, it is common that the proposed new test criteria leads to the
necessity to be compared with other traditional criteria. This work presents a
new test criterion for FSM, H-Switch Cover, which was derived from Switch
Cover. We present our new test criterion and show a cost and efficiency eval-
uation comparing H-Switch Cover with the traditional criteria, DS and UIO.
Results show that H-Switch Cover is more efficient than DS and UIO when
some rules are applied so that the algorithm does not generate wrong test
cases. Moreover, such rules improve the performance of the criterion and it is
now possible to deal with more complex FSMs with several states and tran-
sitions. Regarding cost, H-Switch had again a better performance due to the
smaller amount of test steps created within the entire test suite.

In order to analyze the test cases efficiency generated by UIO, DS and
H-Switch Cover criteria, mutation analysis was adopted. Mutation analysis is
used to measure the effectiveness of a test set in terms of its ability to detect
faults [37]. Based on mutant analysis, the three criteria analyzed presented
good efficiency, but the H-Switch Cover criterion performed slightly better.
With respect to cost, we considered the size of the set of test cases generated
(number of events). H-Switch Cover presented a better cost, because it gene-
rated a smaller amount of test cases. H-Switch Cover criterion also presented,
in terms of cost and efficiency, a better average and standard deviation.

This paper is organized as follows. Section 2 presents related work. Sec-
tion 3 presents in detail the Switch Cover test criterion while Section 4 presents
our new test criterion, H-Switch Cover. The study design considering two em-
bedded software products (space application software products) and cost and

2 We consider that a heuristic is a set of rules that lead to improvement or resolution of
problems.
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efficiency analysis are shown in Section 5. Analysis of the Results are presented
in Section 6. Section 7 presents a general discussion to highlight some points
of our research. Finally, Section 8 presents conclusions and future directions
for this research.

2 Related Work

FSMs can model a wide variety of systems, such as communication protocols
and web applications. Test case generation based on FSMs has been addressed
for so long. Several test criteria or test method have been proposed in the
literature [74]. This section presents some test criteria for test case generation
based on FSM and some areas where they have been investigated.

W test criterion [16] is considered one of the most classic test criteria for
test case generation based on FSM. This criterion would be the most efficient
to detect the following classes of defects: operation defects, transfer defects,
extra state defects and absent state defects. Over the years, several other
criteria have emerged, most of them improving this criterion.

The Transition Tour (TT) criterion covers the machine visiting every state
and every transition at least once and returns to the initial state [45]. However,
the TT criterion obtains only a coverage of transitions. Thus, the criterion does
not ensure the detection of transfer defects.

A test criterion proposed by Gonnenc (1970) [31], uses Distinguishing Se-
quence (DS) to generate test cases. DS is a sequence of input symbols that,
when applied to the states of FSM, produces different outputs for each of the
states so that it is possible to determine in which state the FSM was origi-
nally. However, such a sequence may not exist [30]. It is important to select
the smallest DS sequence in order to obtain a smaller set of test cases. Accord-
ing to Gonnenc (1970) [31], the Distinguishing Sequence criterion can only be
applied to deterministic, complete, minimal and strongly connected FSM.

The Unique Input/Output test criterion, proposed by Sabnani and Dah-
bura (1988) [58], produces a state identification sequence called Unique se-
quence of Input and Output (UIO). UIO is used to verify that whether a
given FSM is in a particular state. Thus, for each state of the FSM a distinct
UIO sequence must exist, considering the inputs and outputs. Just as in the
case with DS, UIO can only be applied to deterministic, complete, minimal
and strongly connected FSM. In addition, some improvements to the UIO
criterion, Rural Chinese Postman (RCP) [7], MUIO criterion [71], MUIO cri-
terion with overlapping [83], Backward UIO (B-UIO) [70] and circular UIO
(C-UIO) [69], were proposed.

The H test criterion is a variation of W where the difference is that it can
be applied to partial FSM [41]. It generates a complete test suite and is always
applicable for any complete reduced specification.

The Round-Trip Path criterion was proposed by Binder (2005) [11] which
also includes an adaptation of W. It uses a strategy that consists of traversing
the graph corresponding to the FSM and then generates a tree correspon-
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ding to that route. Test cases are derived from sequences of transitions of the
generated tree.

The State Counting criterion (SC) [51] reaches the same efficiency to detect
defects as W, but it can be applied to FSMs that are partial and not minimal.
Most of the criteria require that all states of the FSM are distinguishable.
Unlike those methods based on identification of states, the SC method can be
applied to deterministic FSM even if their states are not distinguishable.

Several other test criteria can be found in the literature. Table 1 summa-
rizes the main criteria found for FSM.

Table 1: Test Criteria for FSM

Criteria Year Description
Switch Cover 1976 All pairs of transitions must be executed [53].
W 1978 It is considered as one of the most classic test

criteria for test case generation based on FSM
and it is used to distinguish the different states
of the specification [16].

TT 1981 The test case starts at the initial state, traverses
all transitions at least once and returns to the
initial state [45].

DS 1970 Defines a Distinguishing Sequence (DS) that
when applied to the states within a FSM pro-
duces different outputs for each state and deter-
mines at which state the FSM was originally [31].

UIO 1988 Unique input/output sequence for each state of
FSM. This enables distinguishing a state from
any other [58].

RCP 1988 A Rural Chinese Postman (RCP) tour is used
to determine a minimum-cost tour of the tran-
sition graph of a finite-state machine. According
to Aho et al. (1988) [7], when used in combina-
tion with UIO, the technique yields an efficient
method for computing a test sequence for proto-
col conformance testing.

MUIO 1989 Shen et al’s method [71] (called MUIO) further
improved Aho et al’s method for the same class
of FSMs by using multiple minimum-length UIO
sequences for each state.

MUIO cri-
terion with
overlapping

1990 Yang and Ural (1990) [83] describes an optimiza-
tion method for reducing the length of protocol
conformance test sequences by overlapping test
subsequences obtained using UIO sequences.
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Wp 1991 The Wp method uses the W during the state
identification phase while only an appropriate
subset is used when checking the ending state
of a transition [26].

B-UIO 1991 A Backward UIO (B-UIO) sequence for a state is
an input/output behavior which can be observed
only if the corresponding state transitions end up
at this state. The main idea of this method is to
modify the definition of the compound edges in
the RCP.

C-UIO 1992 A Circular UIO (C-UIO) sequence for a state is
an UIO sequence for this state followed by a B-
UIO sequence for the same state. Because the
starting and the ending state are the same for
a C-UIO sequence, it will go back to the same
state after an application to this state.

HSI 1994 In the HSI a family of state identifiers is used
for state identification and for transition check-
ing [41].

Round-Trip
Path

2001 Traverses FSM’s corresponding graph and gene-
rates a tree that corresponds to this traverse [11].

State Coun-
ting

2005 It has the same efficacy in detecting errors as
W, but can be applied to both partial and non-
minimal FSM [51].

H 2005 Similar to HSI, H criterion also adopts separating
families and can be seen as an improved method.
However, H method doesn’t use a priori derived
state identifiers, but selects state identifiers on-
the-fly during the transition testing phase [18].

SPY 2009 SPY is for m-complete test suite generation. The
method distributes the sequences of the traver-
sal set over several tests in order to reduce test
branching and generates shorter test suites [68].

P 2010 The P method was developed to support incre-
mental testing. The method can be used to ge-
nerate n-complete test suites in the traditional
way. The P method iteratively checks sufficient
conditions and applies defined rules to derive the
test suite [67].
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DIO 2011 Xinchang et al. (2011) [80] proposed a Diagno-
sable Input/Output (DIO) sequence for identi-
fying a given specified state. Under the assump-
tion that an implementation has no fault or only
has IO-correct transfer faults, the DIO sequence
can differentiate the associated state from other
states.

As seen, several criteria are known for the development of a test suite based
on a specification. In the last years research has been focused by research
community on the application of these criteria to support different areas and
contexts since the use of formal models and specifications can make the testing
activity more effective. Some areas are Web Applications [73], generation of
improved test cases using Genetic Algorithm [72], Combinatorial Testing [47],
Web Services [22,23,82], and studies about the test case suite effectiveness
based on Mutation Testing [21]. In our research, we have been investigating
the test criteria in the context of embedded software in space applications that
fall into the category of reactive systems.

Another aspect investigated is the comparison and improvement of exis-
ting test criteria in the literature, context of this work. According to Endo and
Simao (2012) [24], the proposal of new criteria motivates the comparison with
traditional methods. Souza et al. (2008) [76] presented an empirical evalua-
tion of cost and efficiency among two test criteria of the Statechart Coverage
Criteria Family (FCCS) proposed by Souza (2000) [75] all-transitions and all-
simple-paths criteria, and the Switch Cover criterion for FSMs. In Simao et
al. (2009) [68] there is an approach for comparing criteria. They describe an
experimental comparison among different coverage criteria for FSMs, such as
state, transition, initialization fault, and transition fault coverage. Dorofeeva et
al. (2010) [19], presented an overview and an experimental evaluation of FSM
criteria: DS, W, Wp, HSI, UIO, and H. They analyzed the criteria on differ-
ent aspects, such as test suite length and derivation time. The experiments are
conducted on randomly generated specifications and on two realistic protocols.

Fraser and Gargantini (2009) [28] reported on investigations regarding the
structure of test suites. They presented a set of experiments performed on
the effects of the test case length in a scenario of specification based tes-
ting of reactive systems. More recently, Endo and Simao (2013) [25] presented
an experimental study that compared traditional and recent FSM-based test
generation methods. Endo and Simao compared the test suites generated au-
tomatically using the methods W, HSI, SPY, H, and P. They analyzed number
of test cases and their length, the total cost (i.e., the length) of each test suite,
the effectiveness of the methods using mutation testing for FSMs. In order to
conduct the study, FSMs were randomly generated varying numbers of states,
inputs, outputs, and transitions.

Considering the criteria as above, one of the most traditional criterion for
generating test cases considering FSM is the Switch Cover [53]. The Switch
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Cover criterion is based on the sequence “De Bruijn” [17] used in graph theory
where all pairs of adjacent edges must be covered [53]. As we pointed out in
Section 1, previous implementations of the Switch Cover criterion presented
some inconsistencies between the set of test cases generated and the FSM in
that test cases did not correspond faithfully to the FSM model. Another issue
was the impossibility to finish creating the test suite. The lack of information
and heuristics in the definition of the original Switch Cover for graph balancing
and test case generation were the primary reasons for these issues.

According to Burguillo et al. (2002) [15], test case generation at random
is not a good strategy. The number of test cases to guarantee an exhaustive
coverage may be too large, even infinite. An appropriate strategy should be
applied to obtain an efficient test case collection [15]. The main references on
Switch Cover presented the algorithm steps, but not its details, e.g., there is no
optimization of the algorithm that requires more computational effort in order
to improve performance. The previous versions were based on personal criteria
constraints, i.e. each author that implemented the Switch Cover criterion,
defined his/her own rules to traverse the FSM in order to agree with Switch
Cover principles. However, we think that it is necessary to follow a heuristics to
guide the implementation of such a criterion, i.e., as highlighted by Burguillo
et al. [15], it is necessary to apply an appropriate strategy. Furthermore, we
noted that Switch Cover performance could also be improved. This allows
reducing the test suite, as well as dealing with complex FSM. Therefore, a
new test criterion, H-Switch Cover, has been developed and compared with
two traditional criteria, DS and UIO. The development and analysis of the
H-Switch Cover criterion are explored in more details in the next sections.

3 The Switch Cover Test Criterion

Before explaining the new test criterion, H-Switch Cover, it is necessary to
understand the Switch Cover criterion. Switch Cover is known as “all combi-
nations”, i.e. all pairs of transitions of an FSM must be covered [53]. The basis
for Switch Cover is the “De Bruijn” sequence [17]. One of the main character-
istics of this criterion is to generate a balanced graph from an FSM. Concepts
and algorithms of graph theory can be applied in order to generate test cases,
since state-transition diagrams are directed graphs that can be traversed [5].
A graph is an ordered pair G = (V,E) consisting of a set V of vertices (or
nodes) and a set E of edges connecting the nodes [12]. From a balanced graph
it is possible to generate test cases using a depth-first search approach. All
combinations of the balanced graph should be traversed at least once.

Using the FSM shown in Figure 1(a), test cases are generated by Switch
Cover as described below:
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(a) Original FSM (b) Constructing the

graph

(c) Edges creation from origi-

nal FSM

(d) New edges and

vertices

(e) Balanced graph

Fig. 1 Creation of balanced graph from the original FSM. Source: Adapted from [8].

1. Create vertices from the original FSM. The transitions of the FSM
must be converted into vertices (or nodes) (Figure 1(b)), in which W is the
initial state. So, in this new graph the new vertices “a” and “c” become the
initial vertices for the algorithm, because they were the transitions leaving
state W.

2. Add vertices. Based on the transitions of the original FSM, the graph
vertices must be created. For example, in the original FSM, there is a tran-
sition a from state W to state P (Figure 1(c)), and there is a transition
b leaving state P. Therefore, in the new graph that is being created, an
edge is added connecting the new vertices a and b (Figure 1(d)). The same
procedure is applied to all other pairs of transitions of the original FSM.
Figure 1(d) shows the complete graph. After this process a directed graph
is obtained.

3. Graph balancing. Now that the graph was constructed, the polarities
of the vertices must be balanced by constructing an Eulerian graph (Fig-
ure 1(d)). In a Eulerian Graph there is a path where each edge is visited
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only once and a graph is Eulerian if there exists a closed trail (Eulerian
Tour) containing all edges of E [12]. Balancing is obtained by duplicating
the edges in such a way that the number of edges arriving is equal to the
number of edges leaving the vertex (i.e. the degree of the vertex is zero).
After the graph is balanced, it becomes a multigraph. A multigraph or
pseudograph is a graph which is permitted to have multiple directed edges
between the same pair of end nodes [10].

4. Generate Test Cases. The graph is then traversed generating the test
cases always starting at an initial vertex and returning to it. In that exam-
ple, in the original FSM, the initial state was W : then, in the graph created,
when the transitions a and c are transformed into vertices, these become
initial vertices in the new graph. The following test cases are generated:
abf, abrbf, cf, crbf.

We realized that some versions of the algorithm presented in the literature
can not support complex FSM and other versions generate test cases that
did not reflect exactly the FSM. Not all the transitions of the Eulerian graph
are visited, which may generate a test case in which the sequence of test
input data/expected results is not consistent with the model. Let us consider
the FSM shown in Figure 2. This simple FSM represents a partial model
for a simple process scheduler presented in [64]. The model for the process
scheduler was developed, in fact, in Statecharts. By using the traditional black
box testing technique Equivalence Partitioning [43], where values are assigned
to variables and equivalence classes are created, a flat FSM for each proposed
equivalence class was created. Thus, Figure 2 shows a machine for one of the
equivalence classes.

Fig. 2 An FSM for a simple process scheduler. Source: Adapted from [64]
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The test suite based on the Switch Cover test criterion implemented in the
WEB-PerformCharts environment [4–6] is shown below:

1. new3/pid introduce, del2/pid deleted ;

2. new3/pid introduce, ready4/go ready pidactive, del1/busy ready,
del1/busy ready, ready1/busy ready, del1/busy act, ready1/busy act,
swap3/null, del2/pid deleted.

Note that the swap2/null input is not present in the second test case. This
implies that this test case is not consistent with the model and therefore it
can not be executed. In the FSM, the sequence of states of a process is waiting
(state WaitingBeginSwap), ready (state ReadyBeginSwap) to be scaled, and
active (state ActiveEndSwap). For a process x to change from ready to active,
it is necessary that there is a swapping of the current active process, say y,
so that x can be the new active process. This swapping is indicated by the
swap2/null input. After this, another swapping (swap3/null input) changes x
from active to waiting so that another process, say z, can become active. This
is then the problem of this test suite.

In other cases, when the FSM is complex, e.g. the FSM used as case study
in this work (Figure 7), not all algorithms from previous versions managed to
deal with this FSM. One reason this happens is the algorithm’s inability to
balance the graph. The graph balancing was unable to be finalized due to lack
of appropriate optimization, that is, when a vertex was balanced, other vertices
were unbalanced, generating a large amount of duplicated edges to balance
the vertex. Furthermore, the problem in the graph balancing, consequently,
interfered in the next step of the algorithm: the generation of test cases. Test
cases generated became redundant due to the number of generated edges in
the graph balancing making the algorithm losing its performance.

4 The H-Switch Cover Test Criterion

In order to solve the aforementioned problems, we developed a new test cri-
terion for FSM test case generation: H-Switch Cover. The fundamental char-
acteristic of H-Switch Cover is the use of the Hierholzer [40,46] algorithm
adapted to Switch Cover. Other heuristics were defined at specific points in
the algorithm to improve its performance and ability to deal with large FSM.

Considering the steps for the algorithm presented above (section 3), the
step for creating vertices and edges of the graph from the original FSM are the
same as in Switch Cover criterion. Figure 3 shows the algorithm (pseudo-code)
to create vertices and edges.

Considering the algorithm from Figure 3, in lines 2-4, in lines 2-4, all of
the FSM transitions (T ) are converted into a new vertex and included in the
graph (corresponding to step 1 of the Switch Cover algorithm - Figure 1(b)).
In lines 6-11 new edges are added in the graph (corresponding to step 2 of the
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input : an FSM with a set of states S and a set of transitions T
output: graph

1 begin

2 foreach ti ∈ T do
3 newV ertex ←− convertInVertex(ti);
4 put newV ertex in graph;

5 foreach si ∈ S do
6 outT ←− returnOutGoingTransitionsOf(si);
7 foreach ti ∈ outT do
8 sj ←− getTargetStateOf(ti);
9 foreach tj ∈ returnOutGoingTransitionsOf(sj) do

10 newEdge ←− createNewEdge (Label(ti), Label(tj));
11 put newEdge in graph;

12 return graph;

Fig. 3 Algorithm that converts transitions of original FSM into vertices and adds
new edges.

Switch Cover algorithm – Figure 1(c) and 1(d)). For this, first, the states of
the FSM are traversed and all outgoing transitions of each state are returned
(lines 5-6). The returned transitions are traversed to identify the target states
(lines 7-8). For each target state the outgoing transitions (line 9) are identified.
This process identifies all pairs of transitions of the original FSM. Finally,
considering the pair of transition identified, a new edge is created and added
to the graph (lines 10-11).”

The first step of the algorithm has been implemented, it is now necessary
to balance the created graph. As highlighted earlier, during the balancing pro-
cess (step 3 of the original Switch Cover test criterion - Figure 1(e)), several
problems occur. For example, whenever a vertex is balanced some other vertex
ends up unbalanced. Or, in order to balance a vertex several edges are added,
making the generated test case very large or generating an error in the algo-
rithm output. Therefore, in our new test criterion H-Switch Cover, algorithm
is show in Figure 5, some rules were created that define the most appropriate
position to duplicate (add) a new edge, i.e., the proposed algorithm examines
each edge and vertex and returns which edges are more appropriate to be
duplicated. Furthermore, these rules improve the algorithm performance. If a
vertex is deemed unbalanced, the following rules are applied:

1. Find the most appropriate initial vertex. If the indegree of a vertex
v is less than its outdegree, a balancing is to be performed. So, a balancing
checking is performed with respect to those initial vertices of the directed
edges whose terminal vertex is v. This will enable selecting what edges are
to be duplicated. However, before performing this, those initial vertices
must also be verified with respect to their indegrees, because this may un-
balance a balanced vertex. So, a operation is performed in order to solve
this, until the best edge to be duplicated without the need to unbalance an
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already unbalanced vertex is reached. Figure 4(a) shows a simple example;

2. Find the most appropriate terminal vertex. The same procedure
described above is applied to the terminal vertex. This is shown in Figure
4(b);

(a) Example: indegree < outdegree (b) Example: indegree > outdegree

Fig. 4 Added Edge to be duplicated in the graph.

3. Analyze balancing process. If there are vertices that were balanced
more times than others, a priority will be given to the vertex that was
balanced less number of times;

4. Analyze edges. Each vertex also contains a counter with the number
of edges it has (indegree and outdegree). If it is necessary to balance a
vertex, a priority will be given to a vertex v that is unbalanced. In case all
the vertices v have already been balanced, then choose the one with the
smallest number of edges.

As previously mentioned, the creation of inappropriate edges may cause
inconsistencies in the generated test case, such as extensive sequences and loss
of performance. Balancing the graph without any appropriate approach may
not end this process when creating new edges. The increase in the number
of edges, therefore, will increase the length of test cases. The process to find
the most appropriate initial or terminal vertex will help avoiding unbalancing
a balanced vertex and it will prevent the creation of inappropriate edges. It
is important to make the verification presented above and create the smallest
possible number of edges. H-Switch Cover criterion emerged with this objective
and consequently reduces the size of test cases. In addition, by analyzing the
balancing process and the number of edges (indegree and outdegree), it is
possible to control graph balancing since unnecessary edges will not be added
without being checked.

The algorithm in Figure 5 shows the main points of the balancing mecha-
nism defined by the H-Switch Cover criterion. As long as there are unbalanced
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vertices, the procedure to balance is invoked adding new edges according to
the rules implemented and previously presented.

input : an graph with a set of vertex V
output: graph balanced

1 begin

2 /* A verification is carried out and while graph is unbalanced the balancing
method is invoked passing a vertex to be balancing */

3 while verifyBalancing(graph) == false do
4 foreach vi ∈ V do
5 if verifyBalancingV ertex(vi) == false then
6 vertexUnbalanced ←− vi;
7 balancingVetex(graph, vertexUnbalanced);

8 balancingVertex(graph, vertexUnbalanced) {
9 if numIndegree < numOutdegree then

10 newEdge←− returnAppropriateIncomingEdge();
11 createEdge(vertexUnbalanced, newEdge);
12 put newEdge in graph;

13 else
14 newEdge←− returnAppropriateOutgoingEdge();
15 createEdge(vertexUnbalanced, newEdge);
16 put newEdge in graph;

17 }
18 return graph;

Fig. 5 Algorithm for balancing the new graph.

The algorithm from Figure 5 presents (lines 3-7) a verification which is
carried out and while the graph is unbalanced the balancingVertex method is
invoked passing a vertex to be balanced. In general, the objective balancingVer-
tex method is to examine each edge of the vertex and returns which edges are
more subject to be duplicated. First, in the balancingVertex method, it is ver-
ified if the indegree of a vertex is less than its outdegree (lines 9-12). If yes,
a balancing is to be performed. The returnAppropriateIncomingEdge method
(line 10) traverses the edges of the adjacent vertices that need to be balanced
and applies the rules to find the more appropriate edges to duplicate and thus
balance the vertex (Figure 4(a)). In this method, it is verified if there are ver-
tices that were balanced more times than others; in this case, a priority will
be given to the vertex that was balanced less number of times. A counter in
the vertex controls the number of times it has been balanced. Each vertex also
contains a counter with the number of edges it has (indegree and outdegree).
If it is necessary to balance a vertex, a priority will be given to duplicate an
edge (coming or outgoing) of a vertex that already is unbalanced. In case all
the vertices are balanced, then choose the one with the smallest number of
edges. These last two steps allow reducing the creation of many unnecessary
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edges. Once the edge to be duplicated is identified, the edgeCreate method
creates the new edge (line 11) and it is added to the graph (line 12). How-
ever, in line 10, if outdegree of a vertex is less than indegree (Figure 4(b)),
the returnAppropriateOutgoingEdge method is invoked and the same process
is conducted, but to the ougoing edge.

The purpose of this graph balancing step is the same as the original al-
gorithm. However, with the implementation of the new approach (rules) to
balance the vertices, there was an improvement of the quality of test cases in
terms of size, since it optimizes the balancing. As mentioned at the end of Sec-
tion 2, the main references on Switch Cover presented the algorithm steps, but
not their details in its entirety. When there is a complex FSM, it is necessary
to follow a common approach to guide the implementation and performance
of the criterion.

After the graph balancing, the last step refers to the generation of test
case based on the balanced graph (directed multigraph). This step of our
algorithm reflects the improvement of the quality of test cases in terms of
coverage. H-Switch Cover uses Hierholzer heuristic to guarantee that all the
edges are visited exactly once (Eulerian path). Hierholzer algorithm constructs
an Eulerian path suggested from Euler’s theorem proof. Euler’s theorem says
that a connected graph is Eulerian if and only if each vertex (transition arc) has
the same degree [40,46,12]. Once a graph is balanced, one can apply Hierholzer
algorithm and generate an Eulerian path. The main steps for implementing
the algorithm are:

1. Start with any edge of the initial vertex and select edges not yet visited
until a cycle is closed;

2. If there are still any unvisited edges, start with an edge that is a part of
an already existing cycle and create a new cycle as in the first step; and

3. If there are no more edges to be visited, an Eulerian cycle must be con-
structed from the existing cycles, joining them from a common edge.

Using the previous example (Figure 2), the following test case is created
from our approach:

Eulerian cycle: new3/pid introduced, del2/pid deleted, new3/pid introduced,
ready4/go ready pidactive, del1/busy ready, ready1/busy ready, del1/busy ready,
swap2/null, del1/busy act, ready1/busy act, del1/busy act, swap3/null,
del2/pid deleted

Note that the swap2 input is present in the test case now, and this implies
that this test case is consistent. The algorithm we designed and implemented
to traverse the balanced graph and to generate test cases is shown in Figure
6.

In lines 3-13 the algorithm from Figure 6 starts with any edge of the initial
vertex and selects some edge not yet visited until a cycle is formed. This
cycle is stored in listCycle. If there are still any unvisited edges (lines 15-17),
the algorithm starts with an edge that is a part of an already existing cycle
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input : graph
output: testCases

1 begin
2 listInitialV ertices← returnInitialV ertices(graph);
3 foreach i ∈ listInitialV ertices do
4 traverseGraph(i);

5 traverseGraph(i) {
6 listEdges← returnListEdges(i);
7 for j ← 0 to listEdges do
8 vertexDestination← returnV ertexDestination(j);
9 if vertexDestination != initialV ertex then

10 edge← returnEdge(vertexDestination);
11 if edge is not visited then
12 pathV isited← pathV isited + edge;
13 traverseGraph(vertexDestination);

14 listCycle← pathV isited;
15 if edgesNotV isited == true then
16 newInitialV ertex← returnNewInitialV ertex(edgesNotV isited);
17 traverseGraph(newInitialV ertex);

18 }
19 testCases← createEulerianPath(listCycle);
20 return testCases;

Fig. 6 Algorithm for generation of test cases.

and creates a new cycle as in the first step. The algorithm will do this until
all vertices are visited. Finally, the procedure createEulerianPath(listCycle)
receives the list of cycles found, and an Eulerian cycle is constructed from the
existing cycles, joining them from a common edge.

An important aspect about the 3 criteria, DS, UIO and H-Switch Cover, is
with respect to complexity of the algorithms. According to Robinson-Mallett
& Liggesmeyer (2006) [56], the generation of a single UIO is of the same com-
plexity as the generation of a DS. Taking into account, that UIO is generated
for each state of a machine, time consumption is linear to the number of states.
However, the complexities of calculation of UIO increases exponentially O(n2)
with the increase of the number of states and transitions [78]. In the case of
Switch Cover or H-Switch Cover criteria, it is important to mention that an
Eulerian Cycle (or an Eulerian Path), if exists, the time complexity is linear
with respect to the number of edges in the graph (O(n)) and it can be solved
by the algorithm of Hierholzer [40,46].

5 Study Design

This section presents the empirical evaluation of cost and efficiency among the
three test criteria: UIO, DS and H-Switch Cover. The case studies are two soft-
ware products embedded into computers of space projects under development
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at the Instituto Nacional de Pesquisas Espaciais - INPE (National Institute
for Space Research).

Twenty one scenarios developed in Statecharts for the case studies were
evaluated. The first model refers to the first case study, and the other twenty
models refer to the second case study. The second case study considered is a
larger and more complex software. It required creating several use cases that
addressed the scenarios it contains.

INPE maintains two applications that generate test cases from FSM and
Statecharts, that are WEB-PerformCharts [4–6] and Geração Automática de
Casos de Teste Baseada em Statecharts (GTSC - Automated Test Case Gen-
eration based on Statecharts) [57,59]. Both WEB-PerformCharts and GTSC
have implemented the test criteria TT3, UIO, DS and H-Switch Cover. In
this work the test cases were generated by GTSC environment where the 3
test criteria are implemented. GTSC allows the generation of test cases au-
tomatically from both Statecharts and FSM modeling. When a specification
is represented in Statecharts, GTSC converts it into a flat FSM by resolv-
ing hierarchy and parallel components. In order to facilitate the interface for
the Statecharts specification an XML-based language, PerformCharts Markup
Language (PcML) [62] is used. Based on the flat FSM, the test criteria can be
selected in order to generate the test cases.

5.1 Case Study I: Alpha, Proton and Electron monitoring eXperiment in the
magnetosphere (APEX)

APEX is the software product embedded into an astrophysical experiment
computer of a Brazilian space project. The software behavioral model in Stat-
echarts is shown in Figure 7. The software was developed in Java/C/ C++ lan-
guages. A proprietary protocol was specified for the communication between
the experiment and the On-Board Data Handling (OBDH) computer. OBDH
is the satellite platform computer in charge of processing platform and payload
information and generating data to be transmitted to Ground Stations. The
communication is in primary-secondary mode, where the experiment is totally
controlled by OBDH [57].

OBDH and APEX communicate through an RS-232 or USB communica-
tion channel. By recognizing a command, the APEX processes and responds
to OBDH. The command format message defined in the protocol is composed
of 6 (six) fields: SYNC (EB9 synchronization value), EID (experiment iden-
tification), TYPE (specifies accepted commands), SIZE (amount of Bytes in
the DATA field), DATA and CKSUM (8-bit checksum). SIZE and DATA fields
are optional and depend on the type of command.

The model in Figure 7 refers to the main class of the software product
embedded into the computer of the scientific instrument: the command recog-

3 In GTSC, the criterion implemented is the all-transitions of the Statechart Coverage
Criteria Family (SCCF) proposed by Souza [75].
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Fig. 7 Statecharts modeling of the command recognition class of the communication pro-
tocol [57]

nition class. This class is very important because it is responsible for analyzing
the conformance of commands received from the OBDH.

5.2 Case Study II: Software for the Payload Data Handling Computer
(SWPDC)

The second case study is a software product, called SWPDC, which was devel-
oped in the context of the Qualidade do Software Embarcado em Aplicações
Espaciais (QSEE - Quality of Space Application Embedded Software) research
project [63]. This software has been currently adapted to one on-board com-
puter of a balloon-borne high energy astrophysics experiment under develop-
ment at INPE. The SWPDC software receives and executes commands from
the OBDH, generates housekeeping information, accomplishes data memory
management, implements fault tolerance mechanisms, and supports loading of
new programs on the fly (firmware update) [66].

As previously mentioned, for the SWPDC case study, 20 (twenty) scenar-
ios were developed for testing and hence 20(twenty) Statechart models were
created. For illustration purposes, only the scenario 03 is presented in Fig-
ure 8. This scenario refers to exchange of parameters and housekeeping data
transmission. Housekeeping data are composed of several types of data such
as temperature, error counters, event reports, among others. Given the large
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number of figures and for reasons of space, the other models used can be found
in [64].

Fig. 8 Statecharts model scenario 03 (three) SWPDC software [64].

We accomplished an analysis using measures of dispersion in the SWPDC
case study. Our first case study, APEX, was presented in only one Statecharts
diagram. On the other hand, in our second case study, SWPDC, given its com-
plexity, 20 (twenty) scenarios were developed for testing and hence 20 (twenty)
Statecharts diagrams were created. We analyzed each model separately. How-
ever, in order to get a better insight of the results, we presented an analysis
of the average and standard deviation of the 20 scenarios.
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5.3 Cost and efficiency analysis

Regarding the evaluation of test criteria, measuring the cost and the efficiency
of a test set is very challenging. Usually, the size of test suites has been adopted
as a measure. The cost is proportional to test suite size that can be measured
by counting the number of test cases in a test set [13]. For this work, cost is
defined as:

1. The size of test suite. We consider the number of events (steps) as the test
case size. In an FSM a transition is a change of state triggered by an input
event. An FSM has a state activated always in response to an input event,
and this event may cause a change of state, and may produce an output
action.

2. Time4: This refers to the timed needed by a test suite to kill a mutant. In a
real software development environment, test case execution can demand a
lot of time due to the size of test suite and the amount of regression testing
that can exist in the system testing phase. So, if one test suite can find
faults in software earlier than other this can save a significant time during
the test execution activity decreasing the cost. It is worth mentioning that
in this work, we are not considering the number of test cases in test suite,
but the total number of events of all test cases of the test suite.

Efficiency is related to the ability a test suite has to detect a defect. Muta-
tion Analysis can be used for this purpose since mutation analysis is a fault-
based testing technique and it can be used to measure the effectiveness of a
test set in terms of its ability to detect faults [37]. The mutation score defines
a measure of how efficient is of a certain test criterion [48]. It varies from 0
to 1. If a test suite A has a score greater than test suite B, so test suite A is
better with respect to efficiency. The mutation score is calculated according
to equation 1:

MS(P, T ) =
DM(P, T )

M(P ) − EM(P )
(1)

where:

MS(P, T ) = mutation score; DM(P, T ) = number of killed mutants;
M(P ) = total number of mutants; EM(P ) = number of equivalent mutants.

In equation 1, the equivalent mutants are those which present the same
results as the original program for any test input data. The main problem of
the mutation analysis is the huge number of mutants generated. Besides, the
computational effort for executing all these mutants becomes very high, as
well as the process to identify the equivalent mutants is really hard. Mutation

4 In the context of this work, the term “time” refers to the instant that a defect was found
in the code, that is, the amount of test cases necessary to identify the mutant.
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operators selection for this work was based on studies which show code loca-
tions where programmers commit greater number of defects. Moreover, it is
necessary to identify the features of the language to select operators that are
most suitable [48].

6 Analysis of the Results

This section presents the analysis of the results of cost and efficiency of the
UIO, DS and H-Switch Cover criteria, for two embedded software, APEX and
SWPDC, used as case study.

6.1 Case Study I: APEX

6.1.1 Efficiency analysis

To perform the evaluation in terms of efficiency in the first case study, 19
(nineteen) mutation operators for Java programming language at both method
and class-level were used. Based on these 19 (nineteen) mutation operators 202
(two hundred and two) mutants were generated. Table 2 presents operators
which were used and the amount of mutants generated for each operator.

Table 2: Mutation Operators applied to APEX software.

Operators Description Amount
ROR Relational Operator Replacement. Replace rela-

tional operators with other relational operators
38

AOIS Arithmetic Operator Insertion. Insert short-cut
arithmetic operators.

20

STRI Condition Trap of the command if 11
JTI this keyword insertion 8
ASRS Short-Cut Assignment Operator Replacement 3
COR Conditional Operator Replacement 11
JID Member variable initialization deletion 6
AMC Access Modifier Change 5
JSI Static modifier insertion 2
JSD Static modifier deletion 6
EOC Reference comparison and content comparison

replac.
4

AOIU Arithmetic Operator Insertion. Insert basic
unary arithmetic operators.

25

COI Conditional Operator Insertion 8
LOI Logical Operator Insertion 21
JTD this keyword deletion 4
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PRV Reference assignment with other comparable
variable

12

IOP Overriding method calling position change 3
SSDL Overriding method deletion 13
JDC Java-supported default constructor create 2

TOTAL 202

Each programming language has its own characteristics, which implies the
existence of specific faults [48]. Note that to the 202 mutants created from the
first case study developed in Java language, ROR, AOIU and AOIS operators
showed the larger amount of mutants with 38, 25 and 20 respectively. These
mutants are method-level operators and are related to Relational and Arith-
metic Operators. Faults that correspond to these types of mutation operators
often appear in the code referring to lines or blocks where programmers com-
mit greater number of defects. On the other hand, JDC and JSI operators
have had lower number of mutants created. These are mutation operators at
the class level and they deal with Java-specific features.

Table 3 shows the results with respect to efficiency of these three test
criteria. Mutation score varies from 0 to 1. Closer to 1, more efficient is the
test suite due to a certain test criterion. All criteria presented a good score
and, therefore, a good efficiency. Although very little, H-Switch Cover and
UIO criteria showed a better efficiency than DS. One explanation for this
result relies on the fact that if at least one test case of the entire test suite
kills a mutant, the entire test suite is said to detect the fault (defect). It does
not matter how many test cases can detect the fault as long as one of them is
successful.

Table 3: Results with respect to efficiency

Criterion Killed Alive Equivalents Mutation Score
DS 141 61 58 0,98
UIO 136 66 62 0,97
H-Switch Cover 152 50 45 0,98

Among those mutants that are still alive, some may be considered equiva-
lent (see Table 3), that is, although the mutants are syntactically different from
the original, if they can exhibit the same behavior, they become equivalent.
Evaluating each mutant that remained alive, we identified those considered
equivalent mutants. In the first case study, the mutants generated by AMC,
JSI, JDI, JSD and PRV operators remained alive. The analysis carried in
software code showed that, when using these mutation operators, the changes
implemented in the code were not perceived by suites of test cases, but could
be considered equivalent.
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The mutants that remained alive refer to AOIU and JTI operators. No
test case exercised in the code could kill these mutants. Thus, it is necessary
that in the specification model, new events that generate test case to kill such
mutants must be incorporated.

6.1.2 Cost evaluation

In terms of cost, taking into account the size of test suites, Table 4 shows the
total number of events (steps) of the test cases. Considering the number of
events associated with all test cases, both the UIO and DS criteria, offer a
smaller number of events than H-Switch Cover criterion, leaving it to the test
designer choose which situation best fits his/her project.

Table 4: Cost Evaluation - Amount of Events

Criterion Amount of Events
DS 183
UIO 203
H-Switch Cover 722

Another aspect used as measure of cost is the time needed for a test cri-
terion to find a mutant. A test case is considered adequate when at least one
test case of the entire test suite kills the mutant. However, to measure what
is the cost required to find the mutant, we observe which test case of the test
suite was necessary to detect the mutant. Graphics were created to show, by
mutation operator, time (or instant) the test suite generated took to find the
mutant.

Figures 9 and 10 present cost with respect to time with the Relational
Operator Replacement (ROR) operator and Arithmetic Operator Insertion
(AOIU) operator, and the instant when a test case finds the mutant in code.
Given the large number of mutants, several graphics (23 figures with analyses)
were created to show, by mutation operator, time (or instant) the test suite
generated to find the mutant. Due to space restrictions, we added only a few
of these graphics. The remaining can be found in [77].
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Fig. 9 Cost - mutation operator ROR

Fig. 10 Cost - mutation operator AOIU

Note that H-Switch Cover criterion was faster to find a defect in the code,
that is, H-Switch Cover detected a mutant immediately upon the execution
of the first test case. This is due to the fact that H-Switch Cover has smaller
test suites but its test cases are more complete. The DS and UIO criteria have
greater test suites but the test cases are shorter, which detect a mutant, but
may not always be at the beginning of the test suite. H-Switch Cover possesses
large test case increasing the chances of a defect to be found. We also analyzed
only the DS and UIO separately in each figure. Note that DS proved to be
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faster than UIO and identified the mutant in less time. Cost of DS is slightly
smaller than cost of UIO.

6.2 Case Study II: SWPDC

6.2.1 Efficiency analysis

To evaluate the efficiency of test case generated in the second case study, 09
(nine) mutation operators for C language were used. From these 09 mutation
operators, 57 (fifty-seven) mutants for each of the 20 (twenty) scenarios mo-
deled for the SWPDC software were generated. Table 5 presents the operators
and the amount of mutants generated for each of the operators.

Table 5: Mutation Operators for the SWPDC software.

Operators Description Amount
ORRN Change Relational operator 8
SBRC Break replacement by continue 6
Vsrr Scalar Variable Reference Replacement 9
SSDL Statement deletion 7
STRI Trap on if condition 7
OSSN Shift assignment mutation 5
SSOM Sequence Operator Mutation 4
OAAN Change Arithmetic operator 5
OCNG Logical context negation 6

Table 6 presents the results related to efficiency of the three test criteria,
according to each scenario. The score values of mutation show that all criteria
presented good efficiency. In some scenarios, for example, in scenarios 15 (fif-
teen), 18 (eighteen) and 19 (nineteen), DS and H-Switch Cover were slightly
better than UIO in terms of efficiency. And in scenarios 04 (four), 06 (six) and
08 (eight), H-Switch Cover showed better efficiency with respect to UIO and
DS. In general, H-Switch Cover criterion was more efficient.
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Table 6: Results with respect to efficiency.

Sce. DS UIO H-Switch Cover
01 Killed: 9 Killed: 9 Killed: 9

Live: 48 Live: 48 Live: 48
Equivalents: 48 Equivalents: 48 Equivalents: 48
Mutation Score: 1 Mutation Score: 1 Mutation Score: 1

02 Killed: 15 Killed: 15 Killed: 15
Live: 42 Live: 42 Live: 42
Equivalents: 42 Equivalents: 42 Equivalents: 42
Mutation Score: 1 Mutation Score: 1 Mutation Score: 1

03 Killed: 35 Killed: 35 Killed: 35
Live: 22 Live: 22 Live: 22
Equivalents: 20 Equivalents: 20 Equivalents: 20
Mutation Score: 0,95 Mutation Score: 0,95 Mutation Score: 0,95

04 Killed: 28 Killed: 28 Killed: 29
Live: 29 Live: 29 Live: 28
Equivalents: 28 Equivalents: 28 Equivalents: 28
Mutation Score: 0,97 Mutation Score: 0,97 Mutation Score: 1

05 Killed: 29 Killed: 29 Killed: 29
Live: 28 Live: 28 Live: 28
Equivalents: 26 Equivalents: 26 Equivalents: 26
Mutation Score: 0,94 Mutation Score: 0,94 Mutation Score: 0,94

06 Killed: 29 Killed: 29 Killed: 30
Live: 28 Live: 28 Live: 29
Equivalents: 25 Equivalents: 25 Equivalents: 27
Mutation Score: 0,91 Mutation Score: 0,91 Mutation Score: 1

07 Killed: 35 Killed: 35 Killed: 35
Live: 22 Live: 22 Live: 22
Equivalents: 19 Equivalents: 19 Equivalents: 19
Mutation Score: 0,92 Mutation Score: 0,92 Mutation Score: 0,92

08 Killed: 35 Killed: 35 Killed: 36
Live: 22 Live: 22 Live: 21
Equivalents: 20 Equivalents: 20 Equivalents: 20
Mutation Score: 0,95 Mutation Score: 0,95 Mutation Score: 0,97

09 Killed: 40 Killed: 40 Killed: 41
Live: 17 Live: 17 Live: 16
Equivalents: 14 Equivalents: 14 Equivalents: 13
Mutation Score: 0,93 Mutation Score: 0,93 Mutation Score: 0,93

10 Killed: 36 Killed: 36 Killed: 36
Live: 21 Live: 21 Live: 21
Equivalents: 17 Equivalents: 17 Equivalents: 17
Mutation Score: 0,90 Mutation Score: 0,90 Mutation Score: 0,90

11 Killed: 35 Killed: 35 Killed: 35
Live: 22 Live: 22 Live: 22
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Equivalents: 19 Equivalents: 19 Equivalents: 19
Mutation Score: 0,92 Mutation Score: 0,92 Mutation Score: 0,92

12 Killed: 38 Killed: 38 Killed: 38
Live: 19 Live: 19 Live: 19
Equivalents: 16 Equivalents: 16 Equivalents: 16
Mutation Score: 0,93 Mutation Score: 0,93 Mutation Score: 0,93

13 Killed: 39 Killed: 39 Killed: 39
Live: 18 Live: 18 Live: 18
Equivalents: 16 Equivalents: 16 Equivalents: 16
Mutation Score: 0,95 Mutation Score: 0,95 Mutation Score: 0,95

14 Killed: 40 Killed: 40 Killed: 40
Live: 17 Live: 17 Live: 17
Equivalents: 16 Equivalents: 16 Equivalents: 16
Mutation Score: 0,98 Mutation Score: 0,98 Mutation Score: 0,98

15 Killed: 37 Killed: 37 Killed: 37
Live: 20 Live: 20 Live: 20
Equivalents: 16 Equivalents: 16 Equivalents: 16
Mutation Score: 0,90 Mutation Score: 0,90 Mutation Score: 0,90

16 Killed: 36 Killed: 36 Killed: 36
Live: 21 Live: 21 Live: 21
Equivalents: 19 Equivalents: 19 Equivalents: 19
Mutation Score: 0,95 Mutation Score: 0,95 Mutation Score: 0,95

17 Killed: 37 Killed: 37 Killed: 37
Live: 20 Live: 20 Live: 20
Equivalents: 18 Equivalents: 18 Equivalents: 18
Mutation Score: 0,95 Mutation Score: 0,95 Mutation Score: 0,95

18 Killed: 38 Killed: 37 Killed: 38
Live: 19 Live: 20 Live: 19
Equivalents: 17 Equivalents: 16 Equivalents: 17
Mutation Score: 0,95 Mutation Score: 0,90 Mutation Score: 0,95

19 Killed: 39 Killed: 38 Killed: 39
Live: 18 Live: 19 Live: 18
Equivalents: 16 Equivalents: 14 Equivalents: 16
Mutation Score: 0,95 Mutation Score: 0,88 Mutation Score: 0,95

20 Killed: 37 Killed: 37 Killed: 37
Live: 20 Live: 20 Live: 20
Equivalents: 17 Equivalents: 17 Equivalents: 17
Mutation Score: 0,93 Mutation Score: 0,93 Mutation Score: 0,93

Just as in the first case study, each mutant that remained alive and those
that are considered equivalent were evaluated. In most cases, where the mutant
remained alive, the test case did not reach the place where the defect was. This
is due to the fact that the scenarios were modeled for specific use cases. So, it is
necessary that the specification modeled incorporate new events that generate
test cases to kill such mutants.
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As there are 20 scenarios, an analysis using measures of dispersion may
have a better insight into the results of each criterion for efficiency. Table 7
shows the values of average and standard deviation for the Mutation Score of
all scenarios.

Table 7: Average and standard deviation for the Mutation Score.

DS UIO H-Switch Cover
Average 0,9490 0,9425 0,9560
Standard Deviation 0,0271 0,0323 0,0296

We calculated the average of the mutation score for each of the three
test criteria. Note that although the score difference is little between the test
criteria, the average of mutation score shows that H-Switch Cover is closer to
1, with a score of 0.956, and it can be considered better than the other criteria
in terms of efficiency. Now, we want to know the measure of the dispersion
of a set of data values from its mean, and so, we use the standard deviation.
A high standard deviation indicates that the data points are spread out over
a wider range of values, while a low standard deviation (close to 0) indicates
that the data points tend to be very close to the mean and it is the expected
value of the set. In our analysis, a low standard deviation is better because it
means that the efficiency of the test criteria is reasonably uniform regardless of
the scenarios. Overall, the three criteria presented a low standard deviation.
The UIO criterion has a value greater than the other criteria. The DS and
H-Switch Cover criteria show similar dispersions.

6.2.2 Cost evaluation

To evaluate the cost regarding the number of events (steps) pertaining to all
generated test cases, in Table 8 the number of events of the test cases for each
scenario is shown.

Table 8: Cost Evaluation - Amount of events of the test cases for
each scenario.

Scenario Amount DS Amount UIO Amount H-Switch Cover
1 22 20 4
2 77 77 10
3 324 324 23
4 252 252 20
5 989 989 36
6 860 860 39
7 527 495 30
8 434 464 31
9 170 170 16
10 350 377 27
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11 434 434 27
12 350 350 27
13 350 350 27
14 350 350 27
15 350 350 27
16 15 15 27
17 434 434 27
18 350 350 27
19 350 350 27
20 350 350 27

Note in Table 8 that the amount of events for DS and UIO criteria is very
similar and is greater than H-Switch Cover criterion in all scenarios. This is
because DS and UIO criteria create a larger amount of test cases and adding
all events related to each test case, increases considerably the cost.

Table 9 shows the average and standard deviation for the amount of events
of the 20 scenarios.

Table 9: Average and standard deviation for the amount of events.

DS UIO H-Switch Cover
Average 366,900 368,150 25,30
Standard Deviation 235,330 234,825 7,935

The average amount of events of the H-Switch Cover is considered better
(lower than) in terms of coverage. With respect to the standard deviation, H-
Switch Cover shows a much lower dispersion than the other criteria compared
with the respective averages, that is, a better result.

Considering the time factor to measure the criteria cost, in each scenario,
those test cases that identified a defect first were evaluated. Figure 11 presents
the time graph for scenario 03 (three). Graphs generated for the remaining 19
(nineteen) scenarios are in [77]. Evaluating all the generated graphs demon-
strated that H-Switch Cover criterion has always presented a better cost in
relation to time.

7 Discussion

The application of formal models and specifications can make the testing ac-
tivity more effective [35]. Model-Based Testing (MBT) has drawn attention
from researchers and practitioners since it is an approach to derive test cases
from formal models designed to support the test process. Some of the main
benefits of MBT are [52,79,32]: (i) automatic generation of test cases; (ii) fault
detection effectiveness; (iii) reduced time and cost for testing when compared
with manual testing; and (iv) improvement of testing quality since a process
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Fig. 11 Cost for scenarios 03: Time factor.

based on MBT is more systematic and allows a rigorous, mathematical-based
test case generation.

One of the main features of MBT is the automated generation of test cases
usually based on a formal representation of the software specification, such as
an FSM which we used in this work. FSM has been adopted to generate test
cases for different kinds of application, such as Web applications and embedded
systems, specially reactive systems [14,3,23,81].

As previously described, Switch Cover is an old criterion and it has been
investigated for a long time by some research groups. However, the previous
implementations of Switch Cover criterion had some issues observed over the
years. Regarding the three issues we mentioned (see Section 1 - Introduction)
of previous implementations of the Switch Cover criterion, our new algorithm
solved them as follows:

(i)inconsistency between the set of test cases generated and the FSM. The
first step of the Switch Cover criterion is to create a graph converting the
transitions of FSM into vertices of a graph. After the graph is constructed,
it is then traversed generating the test cases always starting at an initial
vertex and returning to it. However, for some reason previous implementa-
tions did not visit all the vertices, generating inconsistency between the set
of test cases generated and the FSM since we noticed that the test cases
did not faithfully correspond to the modeled FSM. To prevent this problem
in this step, H-Switch Cover uses Hierholzer heuristic to guarantee that all
the edges are visited exactly once (Eulerian path).

(ii)handling complex FSMs. We realized that some versions of the algorithm
presented in the literature cannot support complex FSM and other versions
generate test cases that did not reflect exactly the FSM. To the best of our
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knowledge, when the previous switch cover versions were established, tests
were performed only on simple FSM and not on real world applications, as
is the case of space application software. According to Santiago et al. (2006)
[62], in a complex FSM, explosion of test cases frequently takes place and
many of the test cases may have sequence of test steps that do not occur
in the real implemented software. In this sense, we were careful with the
implementation of the new criteria and we prioritize testing with complex
models. H-Switch Cover has been in fact employed to validate some critical
space application software products developed in our Institute.

(iii) performance loss in two steps of the switch cover criterion. In previous
versions of Switch Cover we had problems with more complex FSMs, be-
cause the graph balancing step was unable to be finalized due to lack of
appropriate optimization, that is, when a vertex was balanced, other ver-
tices were unbalanced, generating a large amount of duplicated edges to
balance the vertex. The problem in the graph balancing, consequently, in-
terfered in the next step of the algorithm: the generation of test cases. Test
cases generated became redundant due to the number of generated edges in
the graph balancing making the algorithm losing its performance [29]. To
prevent this problem, in our new test criterion H-Switch Cover, some rules
were created to define the most appropriate position to duplicate (add) a
new edge, i.e, the proposed algorithm examines each edge and vertex and
returns which edges are more interesting to be duplicated. Furthermore,
our algorithm consequently reduces the size of test cases demanding, in
general, less time to execute the entire test suite.

We have adopted mutation to analyze the effectiveness of the test suites
generated by H-Switch Cover compared with two traditional criteria, DS and
UIO. We accomplished a cost comparison too where we considered cost as the
number of events (steps) of the entire test suite. H-Switch Cover criteria had a
good efficiency considering its ability to detect faults and a better performance
due to the smaller number of events in its test suite.

A limitation of this work is that we did not compare all existing criteria
in the literature. We chose the UIO and DS criteria since they are considered
traditional and known in the literature by using distinguishing sequences. In
addition, there are many criteria for FSM test case generation (see Section
2). Comparing all of them demands the access and/or implementation of such
criteria. Thus, it is a tough task to make such a complete comparison. We
understand that comparisons like we showed in this research, where complex
and real applications are assessed, are valuable towards the improvement of
the state of the art.

8 Conclusions

This work presented a new test criterion, called H-Switch Cover. The crite-
rion was integrated into two test environments at INPE (GTSC and WEB-
PerformCharts). An empirical investigation of cost and efficiency was per-
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formed where H-Switch Cover was compared with two other classical FSM-
based test case generation criteria: DS and UIO.

In general, for the case studies proposed in terms of efficiency, the three
criteria had good performances with respect to mutation scores related to the
two case studies. But DS and H-Switch Cover were slightly better than UIO
criterion.

In terms of cost, considering the amount of events, in the first case study
UIO and DS criteria were better, but in the second case study, in twenty
scenarios evaluated, H-Switch Cover criterion had fewer events, thus with a
lower (better) cost.

H-Switch Cover also performed better with respect to the average and
standard deviation of the mutation scores and the amount of events of the
generated test cases for the 20 scenarios used in the second case study.

With respect to cost (time to detect a defect), H-SwitchCover criterion was
faster than the other criteria examined, because it had fewer test cases.

Future directions include evaluation of cost and efficiency of the H-Switch
Cover in other application domains and with other test criteria, for instance,
test criteria from Statechart Coverage Criteria Family (SCCF). We also intend
to use genetic algorithms to improve the performance of some parts of H-Switch
Cover. In addition, an empirical study with other professionals shall be made
to analyze the impact of the introduction of H-Switch Cover in other settings,
in the context of a Model-Based Testing approach.
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7. Aho, A. V., Dahbura, A. T., Lee, D., Uyar, M. U. (1988). An optimization technique for
protocol conformance test generation based on UIO sequences and rural Chinese postman
tours. In 8th Symposium on Protocol Specification, Testing, andVerification, IFIP, 75-86.

8. Amaral, A. S. M. S. (2005). Geração de casos de testes para sistemas especificados em
Statecharts. Master (Master at Post Graduation Course in Applied Computing) - National
Institute for Space Research, São José dos Campos, Brazil.
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61. Santiago Júnior, V. A., Vijaykumar, N. L. (2011). Generating model-based test cases
from natural language requirements for space application software. Software Quality Jour-
nal, vol. 20, 77-143.

62. Santiago, V., Amaral, A. S. M., Vijaykumar, N. L., Matiello-Francisco, M. F., Martins,
E., Lopes, O. C. (2006). A practical approach for automated test case generation us-
ing Statecharts. In Annual International Computer Software & Applications Conference
(COMPSAC) - International Workshop on Testing and Quality Assurance for Component
- Based Systems (TQACBS), 30., Chicago, IL, USA, 183-188.

63. Santiago, V., Mattiello, F., Costa, R., Silva, W. P., Ambrósio, A. M. (2007). QSEE
project: an experience in outsourcing software development for space. In International
conference on software engineering and knowledge engineering (SEKE’07). Boston, USA,
183-188.
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36 Érica Ferreira de Souza et al.

72. Shirole, M., Suthar, A., Kumar, R. (2011). Generation of Improved Test Cases from
UML State Diagram Using Genetic Algorithm. In 4th India Software Engineering Confer-
ence (ISEC), Thiruvananthapuram, Kerala, India, 23-27.

73. Schur, M., Roth, A., Zeller, A. (2014). ProCrawl: Mining Test Models from Multi-user
Web Applications. In International Symposium on Software Testing and Analysis (ISSTA),
San Jose, CA, 413-416.

74. Soucha, M. (2014). Finite State Machine State Identification Sequences. Open Informat-
ics – Computer and Information Science. Faculty of Electrical Engineering. Department
of Cybernetics.

75. Souza, S. R. S. (2000). Validação de especificações de sistemas reativos: definição e
análise de critérios de teste. Thesis (PhD in Computational Physics) - Institute of Physics
of São Carlos (IFSC/USP).

76. Souza, E. F., Santiago, V., Guimaraes, D., Vijaykumar, N. L. (2008). Evaluation of test
criteria for space application software modeling in statecharts. In International conference
on inovation in software engineering (ISE 2008). IEEE Computer Society. Viena, Aústria,
157-162.

77. Souza, E. F. (2010). Geração de casos de teste para sistemas da área espacial usando
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