
Software Qual J manuscript No.
(will be inserted by the editor)

Generating Model-Based Test Cases from Natural Language

Requirements for Space Application Software

Valdivino Alexandre de Santiago Júnior ⋅

Nandamudi Lankalapalli Vijaykumar

Received: date / Accepted: date

Abstract Natural Language (NL) deliverables suffer from ambiguity, poor understandability,
incompleteness, and inconsistency. Howewer, NL is straightforward and stakeholders are familiar with
it to produce their software requirements documents. This paper presents a methodology, SOLIMVA,
which aims at model-based test case generation considering NL requirements deliverables. The
methodology is supported by a tool that makes it possible to automatically translate NL requirements
into Statecharts models. Once the Statecharts are derived, another tool, GTSC, is used to generate
the test cases. SOLIMVA uses combinatorial designs to identify scenarios for system and acceptance
testing, and it requires that a test designer defines the application domain by means of a dictionary.
Within the dictionary there is a Semantic Translation Model in which, among other features, a word
sense disambiguation method helps in the translation process. Using as case study a space application
software product, we compared SOLIMVA with a previous manual approach developed by an expert
under two aspects: test objectives coverage and characteristics of the Executable Test Cases. In
the first aspect, the SOLIMVA methodology not only covered the test objectives associated to the
expert’s scenarios but also proposed a better strategy with test objectives clearly separated according
to the directives of combinatorial designs. The Executable Test Cases derived in accordance with the
SOLIMVA methodology not only possessed similar characteristics with the expert’s Executable Test
Cases but also predicted behaviors that did not exist in the expert’s strategy. The key benefits
from applying the SOLIMVA methodology/tool within a Verification and Validation process are the
easiness of use and, at the same time, the support of a formal method consequently leading to a
potential acceptance of the methodology in complex software projects.

Valdivino Alexandre de Santiago Júnior
Instituto Nacional de Pesquisas Espaciais (INPE)
Av. dos Astronautas, 1758 – 12227-010
São José dos Campos – SP – Brazil
Tel.: +55-12-3208-7166
Fax: +55-12-3208-1875
E-mail: valdivino@das.inpe.br

Nandamudi Lankalapalli Vijaykumar
Instituto Nacional de Pesquisas Espaciais (INPE)
Av. dos Astronautas, 1758 – 12227-010
São José dos Campos – SP – Brazil



2 Software Qual J

Keywords Model-Based Testing ⋅ Natural Language Requirements ⋅ Semantic Translation Model ⋅
Word Sense Disambiguation ⋅ Statecharts

1 Introduction

Verification and Validation (IEEE, 1990) encompass a wide array of Sofware Quality Assurance
activities including formal technical reviews, quality and configuration audits, documentation review,
feasibility study, and all sorts of testing (Pressman, 2001). Thus, testing a software product is only
a facet to get quality. However, the role of testing is undoubtedly important and it has received
attention from both industry and academia.

In system and acceptance testing, test cases/sequences are derived considering the entire software
product. In this case, black box testing techniques (Mathur, 2008) are usually adopted. Besides, a
scenario-based approach is also recommended for system and acceptance test case generation where
distinct interactions with the system are addressed.

A black box testing technique, which is state of the art, is exactly Model-Based Testing.
According to some authors, the testing community considers Model-Based Testing as deriving
tests from software behavioral models (El-Far and Whittaker, 2001). Such consideration includes
formal model/language specifications and other non-formal notations, like Unified Modeling Language
(UML) models (OMG, 2007). Among the formal methods used for system and acceptance model-
based test case generation are Statecharts (Harel, 1987; Santiago et al, 2008b), Finite State Machines
(FSMs) (Sidhu and Leung, 1989), and Z (Spivey, 1989; Cristiá et al, 2010).

In model-based system and acceptance test case generation, a test designer usually breaks down
the entire system based on functionalities it must provide (or interactions with the system in case of
scenario-based approaches), and then models are derived to address each functionality. Based on such
models, test cases can be obtained. However, identification of scenarios that consequently leads to test
case generation is not an easy task and it is time consuming. Test designers try to identify scenarios
based on the very first deliverables (artifacts) created within the software development lifecycle, such
as software requirements specifications. Even though a development team might produce software
requirements specifications using scenario-based methods, like use case models (OMG, 2007), a test
designer must not rely only on the “perspective” of the developers because, in doing so, he/she will
not have the independent point of view that is crucial in test case generation.

Software requirements specifications can be developed according to various approaches.
Requirements may be elicited and modeled in accordance with scenario-based methods, such as
use case models, and goal-oriented methods, such as Tropos (Bresciani et al, 2004). Formal methods
(models, languages) may be used to represent behavior, but they require high expertise for that
and they are difficult to integrate with the ordinary software develpment process adopted in industry.
Thus, managers in industry usually avoid the inclusion of formal methods in their established processes
(Abrial, 2006).

The conclusion is that Natural Language (NL) is still the most used to produce software
requirements specifications (Mich et al, 2004; Abrial, 2006) as it is the simplest way for stakeholders.
Moreover, NL may be associated to requirements modeling methods, like use case models where
a textual description exists in order to narrate the behavior through a sequence of actor-system
interactions. Thus, NL plays a significant role in use case requirements specifications because actors,
actions, scenarios, etc. are described in NL (Fantechi et al, 2003).



Software Qual J 3

Due to what was previously mentioned and in particular taking into account NL requirements
documents, identification of scenarios, their respective models and test case generation are arduous
and time-consuming tasks, especially for real complex applications such as software embedded in on-
board computers of satellites. Therefore, this paper presents a methodology, SOLIMVA, which aims
at model-based test case generation considering NL requirements deliverables. The methodology
is supported by a tool that makes it possible to automatically translate NL requirements into
Statecharts models. Once the Statecharts are derived, another tool, the Geração Automática de Casos
de Teste Baseada em Statecharts (GTSC - Automated Test Case Generation based on Statecharts)
environment (Santiago et al, 2008b), is used to generate the test cases. The SOLIMVA methodology
relies on combinatorial designs (Mathur, 2008) to identify scenarios for system and acceptance testing.
The tool that supports SOLIMVA uses computational linguistics techniques in order to reason about
some semantic aspects of the model to be generated. Using as case study a space application software
product, we compared SOLIMVA with a previous manual approach developed by an expert under
two aspects: test objectives coverage and characteristics of the Executable Test Cases. In the first
aspect, the SOLIMVA methodology not only covered the test objectives associated to the expert’s
scenarios but also proposed a better strategy with test objectives clearly separated according to
the directives of combinatorial designs. The Executable Test Cases derived in accordance with the
SOLIMVA methodology not only possessed similar characteristics with the expert’s Executable Test
Cases but also predicted behaviors that did not exist in the expert’s strategy. The key benefits
from applying the SOLIMVA methodology/tool within a Verification and Validation process are the
easiness of use and, at the same time, the support of a formal method consequently leading to a
potential acceptance of the methodology in complex software projects.

This paper is organized as follows. Section 2 presents the case study, a space application
software product, in which the SOLIMVA methodology and its tool were applied. Section 3 presents
the SOLIMVA methodology. Section 4 details the activity within the methodology that requires
significant computational effort to be executed. Section 5 shows the application of the SOLIMVA
methodology/tool to the case study described in Section 2. Section 6 presents general remarks about
this research. Other proposals in the literature as well as a comparison among such proposals and the
SOLIMVA methodology are presented in Section 7. Conclusions and future directions are in Section 8.

2 Case study: software embedded in satellite payload

In order to improve understandability, we are first going to describe the case study in which the
SOLIMVA methodology and its supporting tool were applied. This case study is a space application
software product, Software for the Payload Data Handling Computer (SWPDC), developed in the
context of the Qualidade do Software Embarcado em Aplicações Espaciais (QSEE - Quality of Space
Application Embedded Software) research project (Santiago et al, 2007). QSEE was an experience
in outsourcing the development of software embedded in satellite payload. The Instituto Nacional de
Pesquisas Espaciais (INPE - National Institute for Space Research) was the customer and there were
two SWPDC’s suppliers: INPE itself and a Brazilian software company. The QSEE research project
used the European Cooperation for Space Standardization (ECSS) standards (ECSS, 2008) in order
to guide the relationship between customer and supplier.

Fig. 1 shows the Computing Subsystem Functional Architecture defined for QSEE project. Note
the following computing units in the architecture: On-Board Data Handling (OBDH) Computer,
Payload Data Handling Computer (PDC), Event Pre-Processors (EPPs; EPP H1 and EPP H2),



4 Software Qual J

Fig. 1 Computing Subsystem Functional Architecture defined for QSEE project. Caption: ADC = Analog-to-Digital
Converter; DAQ = Data Acquisition Board; RS-232 = Recommended Standard 232; USB = Universal Serial Bus.
Source: adapted from Santiago et al (2007)

and Ionospheric Plasma Experiments (IONEX) Computer. OBDH is the satellite platform computer
in charge of processing platform and payload information and formatting/generating data to be
transmitted to Ground Stations. The payload is composed of two scientific instruments (note the
dashed rectangles). However, for the purpose of this case study, the main instrument is the one in
which PDC exists, because SWPDC is embedded into PDC. The main goal of PDC is to obtain
scientific data from EPPs and to transmit them to the OBDH. EPPs are front-end processors in
charge of fast data processing of X-ray camera signals.

Essentially, this system employs a two-level primary/secondary communication model. In the first
level, OBDH is the primary, PDC and IONEX are the secondaries. In the second level, PDC is
the primary and EPPs (EPP H1 and EPP H2) are the secondaries. Communication protocols were
specified to make the interface among the several computing units within the architecture.

The main functions of the SWPDC software product are: (i) interaction with EPPs in order to
collect Scientific, Diagnosis and Test data; (ii) data formatting; (iii) memory management to store
data temporarily before transmission to the OBDH; (iv) implementation of flow control mechanisms;
(v) Housekeeping data generation; (vi) implementation of complex fault tolerance mechanisms; and
(vii) loading of new programs on the fly (Santiago et al, 2007).

Fig. 2 shows QSEE’s software development lifecycle processes (rectangles), formal technical
reviews (circles), and main deliverables (artifacts). It is worth mentioning that the Independent
Verification and Validation process was conducted by an independent team at INPE and started
since the beginning of the software development lifecycle. Formal technical reviews were the main
interaction points between customer and supplier. Each formal technical review had associated a set



Software Qual J 5

of deliverables which were assessed by reviewers before the meeetings, and discussed during formal
technical reviews meetings in order to improve their overall quality.

Fig. 2 QSEE project: software development lifecycle processes, reviews, and deliverables. Source: adapted from
Santiago et al (2007)

The most important deliverables evaluated within each formal technical review are below each
review’s circle in Fig. 2. For example, within the Preliminary Design Review (PDR), PDC-OBDH
Communication Protocol Specification (POCP), PDC-EPPs Communication Protocol Specification
(PECP), Software Development Plan (SwDevPlan), Software Requirements Specification (SRS),
and Independent Verification and Validation Plan (IVVPlan) were the main input and output



6 Software Qual J

deliverables within PDR. Suppliers provided the deliverables marked with an asterisk (*), e.g. Software
Requirements Specification, and the customer was in charge of the others with no asterisk, e.g. PDC-
OBDH Communication Protocol Specification. Furthermore, deliverables in boldface and underlined
mean that their output version within the review is considered their final version. Hence, Requirements
Baseline (RB) was developed by the customer, it was input and output of the System Requirements
Review (SRR), and RB’s output version within SRR was frozen. The IVVPlan was also developed by
the customer, and it was assessed within SRR, PDR, and Critical Design Review (CDR). IVVPlan’s
output version within CDR was frozen. SRS was responsibility of the suppliers and it was evaluated
within PDR and Detailed Design Review (DDR). SRS’s output version within DDR was frozen.

In the next two sections, we will describe the SOLIMVA methodology and its supporting tool
and, whenever necessary, SWPDC case study will be used to demonstrate the accomplishment of the
activities. In order to apply the SOLIMVA methodology, we consulted four deliverables: Requirements
Baseline, Software Requirements Specification, PDC-OBDH Communication Protocol Specification,
and PDC-EPPs Communication Protocol Specification.

3 The SOLIMVA methodology

The SOLIMVA methodology is illustrated in the activity diagram of Fig. 3. The first activity is the
definition of a Dictionary by a user/test designer. The Dictionary defines the application domain and
it is considered as a quintuple ⟨N,R, STM .C, STM .F, STM .Y ⟩, where:

∙ N is a set of Names defining mainly the names of states of the model;
∙ R : R.IE → R.OE . R is a function from R.IE (input event set) to R.OE (output event set) that
represents the Reactiveness of the system;
∙ STM is the Semantic Translation Model. STM is composed of two sets and a function. One set
characterizes specific control behaviors, STM .C. The other set characterizes the occurrence of self
transitions within the model, STM .F ; and STM .Y : Y.IP → Y.OP . STM .Y is a function from Y.IP
(input pattern set) to Y.OP (output pattern set) that is related to hierarchy (depth) in the
Statecharts model.

The set N , the functions R and STM .Y are defined by the user. The sets STM .C and STM .F are
already defined within the tool that supports the methodology, although the user can change if needed.
Users enter data via Graphical User Interfaces and using NL. User is not required any knowledge in
formal methods and their notations to define the application domain. It is worth mentioning that
the Reactiveness feature of the Dictionary comes into picture because reactive systems are the main
targets of SOLIMVA.

Let us consider the SWPDC case study described in Section 2. The Name (N) set of the
Dictionary will be composed mainly by relevant words or set of words that map to important
entities of the application domain. These include the first-level primary computing unit (OBDH), the
computer in which SWPDC will be embedded (PDC) and the operation modes of such computer,
SWPDC itself, and so on. Hence, N can be composed of:

N={PDC, SWPDC, OBDH, Initiation Operation Mode, Safety Operation Mode, ...}.

The Reactiveness (R) function is basically a mapping between the commands (the domain of
R, i.e. R.IE) and responses (the codomain of R, i.e. R.OE) of the PDC-OBDH and PDC-EPPs



Software Qual J 7

Fig. 3 The SOLIMVA methodology

Communication Protocol Specifications. For instance, VERIFY PDC’s OPERATION MODE (VER-
OP-MODE) is a command (an element of R.IE) that the OBDH sends to PDC in order to know
which is its current operation mode. The response that PDC sends back to the OBDH is precisely the
INFORMATION REGARDING THE PDC’s OPERATION MODE (INFO-OP-MODE), an element
of R.OE . The OBDH may CHANGE PDC’s OPERATION MODE TO NOMINAL (CH-OP-MODE-
NOMINAL) or CHANGE PDC’s OPERATION MODE TO SAFETY (CH-OP-MODE-SAFETY).
Assuming there is no problem during the transmission of the command to the PDC, in both cases
the PDC responds with a positive acknowledgement, i.e. COMMAND CORRECTLY RECEIVED
(CMD-REC). Hence, R.IE , R.OE , and R can be composed of:

R.IE = {VER-OP-MODE, CH-OP-MODE-NOMINAL, CH-OP-MODE-SAFETY, ...},
R.OE = {INFO-OP-MODE, CMD-REC, ...},
R = {(VER-OP-MODE, INFO-OP-MODE), (CH-OP-MODE-NOMINAL, CMD-REC),
(CH-OP-MODE-SAFETY, CMD-REC), ...}.

The Semantic Translation Model of the Dictionary will be detailed in subsequent
sections/subsections. After the definition of the Dictionary, scenarios are identified. Before continuing
with our discussion, we need to define the meaning of a scenario in the context of this work.

Definition 1 A scenario is defined as an interaction between a user and the Implementation Under
Test (IUT). Associated to each scenario there is a set of requirements which characterize such an
interaction.



8 Software Qual J

Fig. 4 details the Define Scenarios activity of the SOLIMVA methodology. The first task, which
is optional, serves to obtain the basic elements that enable interaction with the IUT. In terms of
embedded reactive systems, these basic elements can be protocol data units, commands, etc. that
characterize the interface between two or more computing systems. Hence, a set of very simple

scenarios are determined aiming at observing the correct implementation of these elements by the
IUT.

We say that the first task is optional as the test designer might simply rely on test cases applied
on previous phases of the software development lifecycle, e.g. unit testing, and consider that these
basic elements are correctly implemented. In the SWPDC case study, a simple scenario is to switch
the PDC on and send the VER-OP-MODE command to evaluate whether SWPDC has correctly
implemented the reception and processing of this command.

input : NL requirements deliverables
output: scenarios for model-based test case generation

1 if identification of simple scenarios is needed then

2 Identify simple scenarios based on the core elements that enable interaction with the IUT;
3 end

4 Identify factors and levels;
5 Define strengtℎ = #factors− 1;
6 Run the combinatorial designs algorithm, using the strengtℎ defined in the previous step;
7 Identify normal scenarios. Consider the interpretation of at least (factors − 1) out of factors levels of

each factor combination when identifying normal scenarios. Each factor combination will drive the
identification of a scenario;

8 foreach normal scenario do

9 if unfolding is needed then

10 Identify new factors and levels;
11 Define a priority factor;
12 Define strengtℎ = #factors− 1;
13 Run the combinatorial designs algorithm, using the strengtℎ defined in the previous step;
14 Identify scenarios obtained by unfolding the normal scenario. At least (factors − 1) out of factors

levels of each factor combination shall be accounted for when identifying unfolded scenarios. The
number of unfolded scenarios will be the number of levels of the priority factor;

15 end

16 end

Fig. 4 The Define Scenarios activity of the SOLIMVA methodology in detail

In SOLIMVA, combinatorial designs are used to help to identify scenarios. Combinatorial designs
are a set of techniques for test case generation which allow the selection of a small set of test cases
even when the input domain, and the number of subdomains in its partition, is large and complex
(Mathur, 2008). The basic idea is to define factors (input variables) and levels (values assignable to
a factor) and to use a combinatorial designs algorithm to determine the set of levels, one for each
factor, known as a factor combination or run.

Among the combinatorial designs techniques available, the SOLIMVA methodology adopted the
Mixed-Level Covering Array which allows factors to assume levels from different sets. The algorithm



Software Qual J 9

used is the In-Parameter-Order (IPO) (Lei and Tai, 1998), a procedure that can generate Mixed-Level
Covering Arrays1.

Let fi, 1 ≤ i ≤ m, be a set of factors, and lij , 1 ≤ j ≤ n, be the set of levels for each factor fi,
where n may vary depending on i. Hence, a factor combination number X (fc X ) of the generated
Mixed-Level Covering Array could be fc X= {l11, l23, . . . , lm1} which means the first level of factor 1,
the third level of factor 2, and so on until the first level of factor m. Based on fc X, the test designer
must search for requirements within the NL requirements deliverables that address each level of fc X
and thus characterize a scenario. In other words, a factor combination derived by the combinatorial
designs algorithm is interpreted by the test designer in order to define a scenario (the interaction
between the user and the IUT). In this paper when we refer to for example “scenario X”, where X
is given by the tool that has implemented the combinatorial designs algorithm, we mean that this is
the scenario defined by the test designer due to the interpretation of fc X. This perspective applies
only to the normal scenarios and unfolded scenarios (further explanation of these scenarios in
sequence) which are those generated with the aid of the combinatorial designs algorithm. In other
words, there is no fc X to interpret to define simple scenarios because these are not derived with the
help of the tool that has implemented the combinatorial designs algorithm.

As seen from lines 4 to 7 in Fig. 4, scenarios identified by the interpretation of the factor
combinations due to the first use of combinatorial designs are called normal scenarios. Besides,
note that strengtℎ = #factors − 1 with the objective of achieving the maximum number of factor
combinations without using an exhaustive (all to all) approach (#factors = total number of factors).

Notice that a scenario might have more that one test objective associated. However, these test
objectives should not be too disparate. This recommendation might lead the user to neglect one level
on interpreting the factor combination in order to identify a scenario. The explanation for this fact is
that the characteristics of the factors can be considerably different so that if the test designer defines
a scenario based on all levels of a factor combination, it is possible that such a scenario has several
unrelated test objectives which is not a good approach, resulting in a bad strategy in terms of test
objectives. For instance, in a web application, interpretation of a factor combination may generate a
scenario in which it is necessary to verify whether a web service is correctly implemented, and some
security requirements are satisfied, and information retrieval from a data base due to a specific type
of request is consistent. There are many different and unrelated test objectives in this case. Thus, it
is more interesting to disregard the interpretation of a level to decrease the amount of test objectives.
In such situations, we use “-” to mean “do not consider any level of this factor for this particular
scenario”.

A simplified choice of factors and levels for the SWPDC case study is shown in Table 1. The
explanation for the factors and levels follows:

1. Cmd. This factor relates to the commands defined in the PDC-OBDH Communication Protocol
Specification. These commands were grouped into levels considering processing activities
to acquire and transmit data (DtAcqTx), and handle hardware and software parameters
(HwSwHnd);

2. OpMode. This factor relates to PDC’s operation modes. In this simplified example, we considered
only the Nominal Operation Mode (Nom);

1 At present, SOLIMVA uses an open source tool, TConfig (University of Ottawa, 2008), which has implemented
the IPO procedure. The IPO procedure was originally conceived for 2-way (pairwise) testing. The TConfig tool can
generate from 2-way to 6-way Mixed-Level Covering Arrays. However, it is not clear if the tool has implemented the In-

Parameter-Order-General (IPOG) (Lei et al, 2007) algorithm which deals with general t-way testing or else if another
approach was adopted.



10 Software Qual J

3. Services. This factor relates to the services supported by SWPDC. In this example, we took into
account only the services related to acquisition, formatting, and transmission of Scientific Data
(Sci), and generation, formatting, and transmission of Housekeeping Data (Hk).

Table 1 Simplified choice of factors and levels for the SWPDC case study

Factors Levels

Cmd DtAcqTx HwSwHnd Inv
OpMode Nom Inv
Services Sci Hk Inv

Note that each factor has a level Inv, which stands for invalid value. The SOLIMVA methodology
strongly recommends that each factor defines such a level to address Robustness testing which is
particularly useful for embedded critical software where, for instance, it is possible to observe the
behavior of the IUT under non specified test input data. Running the combinatorial designs algorithm
with strengtℎ = #factors−1 = 2, nine factor combinations are generated. Table 2 shows the normal
scenarios based on the interpretation of each factor combination.

The first remark about the generated scenarios is that when a level is not present in a factor
combination, this does not necessarily imply that it will not be somehow related to the scenario
derived from the interpretation of such factor combination. It depends on the kind of factor. For
instance, in Table 2, normal scenario 1 has level DtAcqTx due to the command factor (Cmd). It
does not mean that the selection of NL requirements that characterize normal scenario 1 will be
such that no requirement shall be related to commands to handle hardware and software parameters
(HwSwHnd). Indeed, it is very likely that HwSwHnd commands should be sent to PDC in order
to drive the SWPDC to the appropriate state so that the test objective of normal scenario 1 can
be achieved. For example, in order to acquire, format, and transmit Scientific Data in the Nominal
Operation Mode, first EPP H1 and EPP H2 must both be turned on. But, the commands to switch
them on are HwSwHnd commands. Hence, they need to be sent to PDC prior to data acquisition.
However, for normal scenario 1, the main contribution of the command factor is related to data
acquisition and transmission (DtAcqTx).

Notice that in normal scenarios 2, 3 and 4, one level was not accounted for (“-”) when interpreting
the factor combinations. This level was precisely Inv which was addressed in other scenarios (5, 6, 7,
9) whose main goals were related to Robustness testing. This stresses the important recommendation
that the methodology provides to incorporate Robustness testing covering several different situations.
Scenarios where Robustness is the main test objective can be mapped to “unhappy cases” in use case
modeling.

The Inv level may be translated into many different test input data. This is a characteristic of
combinatorial designs testing where each factor combination may drive one or more test cases where
each test case consists of test input data and the expected result (Mathur, 2008). For instance, in
normal scenario 5, the test designer may select several different invalid commands by looking at the
PDC-OBDH Communication Protocol Specification and choosing “commands” that are not specified
to be sent to PDC. To do that, other traditional black box testing techniques like boundary-value
analysis might be applied to choose such invalid values. Hence, normal scenario 5 may have as many
as needed invalid commands the test designer wishes, addressing the robustness of SWPDC. Another



Software Qual J 11

Table 2 Normal scenarios due to the factors and levels of Table 1

Factor Combination Scenario Interpretation

{DtAcqTx, Nom, Sci} 1 Acquire, format, and transmit Scientific Data in the Nominal
Operation Mode

{DtAcqTx, -, Hk} 2 Generate, format, and transmit Housekeeping Data in the
Nominal Operation Mode

{HwSwHnd, Nom, -} 3 Verify the correct implementation of commands related to
hardware parameters manipulation in the Nominal Operation
Mode

{HwSwHnd, -, Sci} 4 Verify the correct implementation of commands related
to hardware parameters manipulation during acquisition,
formatting, and transmition of Scientific Data

{Inv, Nom, Hk} 5 Verify the behavior of SWPDC when receiving commands with
inconsistent values during transmission of Housekeeping Data in
the Nominal Operation Mode (Robustness testing)

{Inv, Inv, Inv} 6 Verify the behavior of SWPDC when receiving commands with
inconsistent values, when trying to change PDC’s operation mode
to an unspecified operation mode, and when asking SWPDC
to provide services not defined in the Software Requirements
Specification (Robustness testing)

{Inv, Nom, Sci} 7 Verify the behavior of SWPDC when receiving commands
with inconsistent values during acquisition, formatting, and
transmission of Scientific Data in the Nominal Operation Mode
(Robustness testing)

{HwSwHnd, Nom, Hk} 8 Verify the correct implementation of commands related to
software parameters manipulation, and generate, format, and
transmit Housekeeping Data in the Nominal Operation Mode

{DtAcqTx, Nom, Inv} 9 Verify the behavior of SWPDC when asking SWPDC to provide
services not defined in the Software Requirements Specification
during data acquisition, generation, and transmission (Scientific
or Housekeeping Data) in the Nominal Operation Mode
(Robustness testing)

approach if the Cmd factor is Inv within a factor combination is to address situations where a
command is not entirely received by PDC due to problems in the physical transmission medium.

The fact that the user can neglect one level on interpreting the factor combination to derive a
scenario does not mean that the entire test suite, considering all test cases derived according to all
Statecharts models, would be incomplete. Looking at Table 2, we observe that the set of derived
scenarios cover all aspects of factors/levels of Table 1. In other words, within the scenarios defined in
Table 2, it is possible to acquire, format, and transmit Scientific Data in the Nominal Operation Mode,
to generate, format, and transmit Housekeeping Data in the Nominal Operation Mode, to verify the
correct implementation of HwSwHnd commands, related to hardware and software parameters, and
of DtAcqTx commands too. What matters is the expertise of the test designer in the application
domain in order to interpret the factor combinations and to define scenarios that will generate, at
the end, a test suite that is sufficiently complete.

However, it is possible that some normal scenarios have to be unfolded so that more factor
combinations should be generated. The explanation for the need of such unfolding process lies in
the fact that some levels may implicitly have specific values of variables (e.g. initial and final values
of memory addresses) so that it is necessary to deal with situations which address the combination
of such values. Not all normal scenarios need to have this demand. For those that need, new factors



12 Software Qual J

and levels are defined, as well as a priority factor. The total number of unfolded scenarios due to
such process must be equal to the number of levels of the priority factor.

In case a normal scenario is unfolded, it is not necessary to accomplish that more than once because
multiple unfoldings will make the methodology complex without substantial benefit in practical terms.
Normal scenario 8 in Table 2 is the only one that needs to be unfolded into other scenarios. This
is because the software parameters that are updated via commands have a default value, but also
minimum and maximum values. Hence, it is interesting to replace normal scenario 8 with other more
specific scenarios addressing several situations regarding such values. Table 3 shows a simplified set
of factors and levels for unfolding normal scenario 8.

Table 3 Unfolding normal scenario 8: simplified choice of factors and levels

Factors Levels

HkTime Min Def Max Inv
IniPtr Min InRng Max Inv
SmpTime Min Def Max Inv

In Table 3, the priority factor is the parameter that defines the period (time interval) in
which Housekeeping Data are generated (HkTime). In the PDC-OBDH Communication Protocol
Specification, not only a default value (Def) is specified but also minimum (Min) and maximun
(Max) values of this parameter. The same levels of HkTime applies to the sampling time of the
analog input channels (SmpTime). The initial pointer (memory address) in which it is possible to
load new executable code on the fly (IniPtr) has also minimum (Min) and maximum (Max) values,
but it also allows initial addresses in range (InRng), i.e. between the minimum and maximum values.

Since the priority factor has 4 levels then four unfolded scenarios will be defined and will replace
normal scenario 8. For instance, unfolded scenario 8.2, i.e. the second scenario unfolded from normal
scenario 8, suggests the test designer to add requirements related to commands so that the following
situations are covered:

∙ HkTime = Def, IniPtr = Min, SmpTime = Def;
∙ HkTime = Def, IniPtr = InRng, SmpTime = Min;
∙ HkTime = Def, IniPtr = Max, SmpTime = Inv;
∙ HkTime = Def, IniPtr = Inv, SmpTime = Max.

Note that the time to generate Housekeeping Data remains fixed in the default value within
unfolded scenario 8.2. The other parameters must be udpated via commands with different values.
Besides, Robustness testing is still in order due to the invalid values. In these cases, SWPDC can
receive but it must not process any of the invalid commands.

After the previous steps, the user must select and input a set of NL requirements which
together characterize a single scenario (simple, normal, unfolded). Then, the user must search these
requirements in documents such as software requirements specifications. For example, in the SWPDC
case study, each interaction with the IUT requires that the PDC is energized and, after that,
the activities of initializing the computing system are performed by SWPDC. Thus the following
requirements, defined in the SWPDC’s Software Requirements Specification, relate to the beginning
of each scenario (SRSxxx is the requirement identification):



Software Qual J 13

SRS001 - The PDC shall be powered on by the Power Conditioning Unit.
SRS002 - The PDC shall be in the Initiation Operation Mode after being powered on. The
SWPDC shall then accomplish a POST. If PDC presents any irrecoverable problem, this
computer shall remain in the Initiation Operation Mode and such a problem shall not be
propagated to the OBDH.
SRS003 - If PDC does not present any irrecoverable problem, after the initiation process, the
PDC shall automatically enter into the Safety Operation Mode.

Section 5 addresses the SWPDC case study in more detail, showing sets of chosen NL requirements
that characterize scenarios.

The Dictionary does not necessarily have to be defined completely at once. The user can start
defining and inputting part of the Dictionary at the beggining and, after choosing the NL requirements
that characterize each scenario, the Dictionary can be updated according to new important words.
This is the reason behind the optional activity Update Dictionary. Hence, the creation of the
Dictionary is incremental and dependent on the selected set of NL requirements. This approach
prevents the user to completely define the Dictionary at an early stage when applying SOLIMVA.

After that, the generation of the Statecharts model follows. This activity will be discussed in detail
in Section 4. After generating the model, the test designer may decide to manually refine it. Hence,
he/she can accomplish this refinement in which the requirements of the scenario and the respective
created model must be cleared. The user can make such a refinement because he/she realized that
the generated model can be improved and/or there is some kind of incoherence in the model probably
due to mistakes when inserting the NL requirements (e.g. wrong sequence of requirements). Let us
illustrate the relevance of the manual refinement with requirements SRS001, SRS002, and SRS003
presented above. If the test designer mistakenly switch the order of NL requirements SRS002 and
SRS003, the resulting Statecharts model due to this wrong input sequence of requirements will be
naturally incorrect. Fig. 5 shows a piece of the correct Statecharts model while Fig. 6 shows a piece
of the incorrect Statecharts model due to the wrong order of NL requirements.

Fig. 5 Piece of the entire Statecharts model related to a scenario: correct model



14 Software Qual J

Fig. 6 Piece of the entire Statecharts model related to a scenario: incorrect model

After these steps, Abstract Test Cases are generated by using the GTSC environment (Santiago
et al, 2008b). GTSC allows test designers to model software behavior using Statecharts and/or FSMs
in order to automatically generate test cases based on some test criteria for FSM and some for
Statecharts. At present, GTSC has implemented Distinguishing Sequence (DS), Unique Input/Output
(UIO) (Sidhu and Leung, 1989) and H-switch cover (Souza, 2010) test criteria for FSM models, and
four test criteria from the Statechart Coverage Criteria Family (SCCF) (Souza, 2000), all-transitions,
all-simple-paths, all-paths-k-C0-configuration, and all-paths-k-configurations, targeting Statecharts
models. In other words, test criteria define the rules that drive test case generation in GTSC.

In order to use GTSC, a user translates the Statecharts behavioral model into the PerformCharts
Markup Language (PcML) (Santiago et al, 2006). In case of SOLIMVA, the idea is to automatically
translate the generated model into PcML. Based on a PcML document, a flat FSM is generated by
GTSC. A flat FSM is a model where all hierarchical and orthogonal features of a Statecharts model
were removed. PerformCharts tool (Vijaykumar et al, 2006), one of the components of the GTSC
environment, is responsible for that. This flat FSM is indeed the basis for test case generation.

The generated Statecharts model is an abstract representation of the behavior of the IUT according
to a specific scenario. Hence, the test cases derived from this model are a kind of functional tests on
the same level of abstraction as the model. As will be shown in Section 5, the generated “test input
data” and “expected results” of the test cases based on the Statecharts model are usually pieces of
NL sentences (particularly in the SWPDC case study, some commands/responses of Communication
Protocol Specifications may also be present). Hence, the test cases generated by GTSC are Abstract
Test Cases and thus they cannot be directly executed against the IUT due to the fact they are on
the incorrect level of abstraction. Therefore, the test designer shall accomplish the translation from
Abstract Test Cases into Executable Test Cases to enable the effective execution of test cases.

Having created the test cases (Executable Test Cases) for a single scenario, the test designer starts
again selecting and inserting the NL requirements for the next scenario. But before doing this, he/she
must clear the requirements and related model of the current scenario. This process must be repeated
until there is no more scenario.



Software Qual J 15

4 Model generation

The Generate Model activity in Fig. 3 is composed of two sub-activities. When the user selects
the options related to these sub-activities in SOLIMVA’s Graphical User Interfaces, algorithms are
executed to meet the goals. These sub-activities are described below.

4.1 Generation of tuples

The first task refers to the generation of Behavior-Subject-Action-Object (BSAO) 4-tuples. The BSAO
tuples are an extension of the concept of SAO triads used in the Java Requirement Analyzer (J-RAn)
tool (Fantechi and Spinicci, 2005).

In SOLIMVA, the first extension is the inclusion of Behavior features in the SAO triad
transforming into a BSAO 4-tuple. The reason behind this lies in the fact that words like if determine
a particular behavior in the created model. For instance, finding an if-then-else situation in one or in
several NL requirements (e.g. in a requirement: “If an echo is received ...”; in the same or in the next
requirement: “If an echo is not received ...”) may imply that the behavioral model will have a state
with two outgoing transitions each one representing the possible outcome of the if-then-else situation.
Hence, if we identify such a situation within the NL requirements that characterize a scenario, we
follow the same approach when building a Control Flow Graph from the source code and dealing
with a control structure if.

The second modification is related to Object identification. J-RAn presented a large number of
extractions that were not detected (Fantechi and Spinicci, 2005), and one explanation for this fact is
because J-RAn used a single link type (“O”) of the Link Grammar Parser (Sleator and Temperley,
1993) to identify Objects. However, it is possible that there is no explicit Object generated by Link
Grammar depending on the NL requirement. Consider the following requirement:

Users’ data shall be updated on the server every 12 hours.

When using Link Grammar, there is no Object because none of the link types with respect to
Object (“O”, “OT”, ...) appears in the parser output. We tried to overcome such situations in the tool
that supports SOLIMVA. We developed and implemented an algorithm to automatically identify the
BSAO tuples. The algorithm makes use of the Stanford Part Of Speech (POS) Tagger (Toutanova
et al, 2003) in order to identify the lexical categories (i.e. the parts of speech2) of each sentence of
the NL requirements. Actually, after the user has selected the NL requirements that characterize
a scenario, the SOLIMVA tool combines all such requirements into a file. This file is input to the
Stanford POS Tagger which assigns the POS tag of each word3.

Fig. 7 shows the algorithm to automatically generate the BSAO tuples based on the NL
requirements. Besides the Dictionary (dic), the algorithm takes as input all the words (allw set)
in the file that contains the set of NL requirements. In case of verbs and nouns, the algorithm obtains
the lemma4 and adds it in the allw set instead of adding the word itself. For simplification, from now
onwards when writing “word”, we may refer to the word itself or to its lemma.

2 Lexical category or part of speech is a linguistic category of words (or more precisely lexical items), which is generally
defined by the syntactic or morphological behavior of the lexical item in question. Common linguistic categories include
noun and verb, among others.

3 The Stanford POS Tagger adopts the Penn Treebank POS tagset (Marcus et al, 1993).
4 In linguistics, one definition of lemma is: the canonical form, dictionary form, or citation form of a set of words

(headword). For instance, in English, “run”, “runs”, and “ran” are forms of the same lexeme, with “run” as the lemma.



16 Software Qual J

With respect to the notation in Fig. 7, the allw set is in fact a set of ordered triples where each
ordered triple is composed of: a word (or lemma) (upper index lw), a POS tag (upper index tg)
obtained from the POS tagging algorithm implemented in the SOLIMVA tool, and a counter for the
exact identification of the word (upper index id). Hence, allw is a set with the following elements:

allw = {(wlw
1 , w

tg
1 , wid

1 ), (wlw
2 , w

tg
2 , wid

2 ), . . . , (wlw
ℎ , w

tg
ℎ , wid

ℎ )}.

Thus, wlw
1 means the word of the first ordered triple, wtg

4 means the POS tag of the fourth ordered
triple, and wid

7 represents the identification of the seventh ordered triple of the set. In the tuples (tup)
set, b, s, a, o represent Behavior, Subject, Action, and Object, respectively. The verbs for Word Sense
Disambiguation (WSD) set (vrbwsd) will be discussed in Subsection 4.2.2. Some additional sets were
predefined in order to help the process of BSAO tuples derivation. They are:

1. usefulWords. This set contains POS tags that aid in the process of creating a key for the
words within the requirements. The key is defined as “counter of Useful Words (cntUW ) -
word”. It also defines the lexical categories of the running/useful words for the WSD algorithm
(Subsection 4.2.2). The chosen lexical categories were: common nouns (singular and plural), verbs,
adjectives, and adverbs;

2. candSubObj. This set contains POS tags that define the candidate words to be Subjects and
Objects. The selected lexical categories were: common nouns (singular and plural), proper nouns
(singular and plural), adjectives, cardinal numbers, and coordinating conjunctions;

3. confirmSub. This set contains POS tags that confirm that a previous word identified as a Subject
is indeed a Subject. The selected lexical categories were: modal verbs and verbs. This set is
important because after a Subject usually there is a verb. If no verb is found, it is likely that a
word previously identified as a Subject is not in fact a Subject;

4. confirmAct. Set that contains POS tags that characterize an Action. The selected lexical
categories were: verbs, adverbs, and coordinating conjunctions;

5. endTuple. Set that contains POS tags which aid in the decision whether a BSAO tuple must be
created or not. The chosen lexical categories were: common nouns (singular and plural), proper
nouns (singular and plural), verbs, adjectives, adverbs, modal verbs, and cardinal numbers.

One of the first tasks accomplished within the algorithm is the probable identification of a Behavior
(b) feature. Thus, the algorithm first verifies if a word is a preposition or subordinating conjunction
(POS tag “IN”) and also if such a word is in STM .C (lines 7 to 9 in Fig. 7). If these conditions
are matched, then the b element of the tuple is assigned to such a word. If not, b is empty. Note
that the STM .C set has words like “if”, and, at first, the user does not need to alter it. This set is
independent of the application domain and it was derived aiming to add in the resulting Statecharts
model behaviors due to the semantics associated to some requirements.

After the determination of b, the Subject (s), Action (a), and Object (o) elements of the tuple
are identified (lines 10 to 48). Essentially, the algorithm verifies whether the POS tags of words
are equal to predefined POS tags that characterize a Subject (according to the sets candSubObj and
confirmSub), an Action (according to the set confirmAct), or an Object (based on set candSubObj).
If they match, the corresponding s, a, and o elements of the tuple are fulfilled.

However, a BSAO tuple is created if and only if a Subject and an Action and an Object were
identified, and some other conditions were satisfied (lines 50 to 53). If these conditions are not satisfied,
no BSAO tuple is created. This is to avoid situations which might occur in NL sentences, and might
produce ill-formed tuples. For instance, a piece of a sentence might derive an s, an a but not an o



Software Qual J 17

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
input : allWords allw = {wg

f
∣ g = lw, tg, id}, f = 1..ℎ

output: tuples tup = {tj
i
∣ j = b, s, a, o}, i = 1..k

output: verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r

1 initializeAuxiliaryVariables();
2 for f ← 1 to ℎ do

3 while wtg

f
∕= “.” do

4 if wtg

f
∈ usefulWords then

5 cntUW ← cntUW + 1;
6 end

7 if wtg

f
= “IN” ∧ wlw

f
∈ STM .C then

8 beℎavior ← beℎavior + wlw
f

;

9 end

10 if wtg

f
∈ candSubObj ∧ ¬subCreated then

11 if iLastSub = 1 ∨ iLastSub = f − 1 then

12 subject← subject+ wlw
f

;

13 iLastSub← f ;

14 else

15 if iLastSub ∕= f − 1 then

16 subject← empty;

17 subject← wlw
f

;

18 iLastSub← f ;

19 end

20 end

21 else

22 if wtg

f
∈ confirmSub ∧ subject ∕= empty then

23 subCreated← true;

24 if wtg

f
∈ confirmAct then

25 if iLastAct = 1 ∨ iLastAct = f − 1 then

26 action← action+ “cntUW” + “− ” + wlw
f

;

27 iLastAct← f ;
28 actCreated← true;

29 end

30 end

31 else

32 if wtg

f
∈ confirmAct ∧ subCreated then

33 if iLastAct = 1 ∨ iLastAct = f − 1 then

34 action← action+ “cntUW” + “− ” + wlw
f

;

35 iLastAct← f ;
36 actCreated← true;

37 end

38 else

39 if wtg

f
∈ candSubObj ∧ actCreated then

40 if iLastObj = 1 ∨ iLastObj = f − 1 then

41 object← object+ wlw
f

;

42 iLastObj ← f ;
43 objCreated← true;

44 end

45 end

46 end

47 end

48 end

49 f ← f + 1;

50 if subCreated ∧ actCreated ∧ objCreated ∧ wtg

f
= “.” ∨ wtg

f
= “, ” ∨ wtg

f
/∈ endTuple

then

51 (tb
i
, ts

i
, ta

i
, to

i
)← (beℎavior, subject, action, object);

52 initializeAuxiliaryVariables();

53 end

54 end

55 initializeAuxiliaryVariables();

56 end

57 vrbwsd← generateVerbsWSD(tup, dic);

Fig. 7 Main algorithm for generating BSAO tuples



18 Software Qual J

because the sentence ended. The algorithm picks the next ordered triple of the allw set (line 49) in
order to continue the assessment of words within a sentence (a sentence is delimited by a period).
However, the algorithm also checks whether not only if s, a and o were created but also if the POS
tag of the next ordered triple of the set is a period in order to decide about the creation of a BSAO
tuple.

Let us illustrate how a BSAO tuple is automatically generated. Consider the following requirement:

If the main software system does not start operating the air conditioning
system at midnight, maintenance personnel should be called.

Table 4 shows how a BSAO tuple is generated considering each word of this requirement. The
POS tag and consequently the lexical category of each word is provided by the Stanford POS Tagger.
The Behavior (B), Subject (S), Action (A), and Object (O) columns contain the value of each one of
these tuple’s elements after applying algorithm shown in Fig. 7.

The conditions that determine behavior (line 7) were satisfied and hence the Behavior element of
the tuple was fulfilled accordingly. Furthermore, note that the algorithm can handle compoud names
for Subjects. Line 12 of the algorithm shows that the auxiliary variable subject is updated so that
the Subject element of the tuple (tsi , line 51) can be filled with the correct composition of words.
Conditions must be satisfied for a word to be part of the Subject: POS tag of such a word must be in
candSubObj set; and, Subject must not have been yet created (variable subCreated; line 10). There
is also a mechanism to avoid the inclusion of words whose POS tags are in the candSubObj set but
do not really make part of the Subject (lines 11 to 13). These are the reasons why “main”, which is
an adjective, is also correctly included as part of the Subject element of the tuple. Similar remarks
are valid for compound names for Actions (lines 24 to 37, and line 51), and compound names for
Objects (lines 39 to 45, and line 51).

The content of Action was derived with the keys previously mentioned. In other words, “4-do” is
the key due to the verb “does”. The number (4) is the current “counter of Useful Words (cntUW )”
which uniquely identifies this word within the set of NL requirements. In this case, “do” is the
lemma of “does”. Notice that the same explanation applies to “6-start” due to the verb “start”, and
“7-operate” due to “operating”.

The NL requirement presented in Table 4 might generate another BSAO tuple with Behavior
empty, “maintenance personnel” as Subject, and “14-be 15-call” as Action. However, the sentence
ends and no Object has been detected. Therefore, a second BSAO tuple is not created because the
Object element is missing.

4.2 Translation from BSAO tuples into behavioral model

The Dictionary and the BSAO tuples form the basis for model generation. Fig. 8 shows the main
algorithm supporting this second sub-activity. The remarks about notation made in Subsection 4.1
apply to Fig. 8. One additional remark is about the notation related to functions. We consider a
function F a set of ordered pairs (x, y), where x is an element of the domain of F , and y is an element
of the codomain of F . With respect to the Reactiveness (R) function, the notation Rn(rie) means
this is the element of the domain of R (rie ∈ R.IE) of the ntℎ ordered pair of R. Similar observations
apply to the codomain of R (R.OE), and also to the STM .Y function.

The generated model (mod) is a set of ordered quadruples where each ordered quadruple represents
a transition in the model. Hence, each ordered quadruple is composed of: a source state (upper index



Software Qual J 19

Table 4 Generation of a BSAO tuple

Word Lexical

Category

Tag B S A O

If preposition or
subordinating
conjunction

IN if

the determiner DT if
main adjective JJ if main

software common
noun,
singular

NN if main software

system common
noun,
singular

NN if main software system

does verb,
present tense,
3rd person
singular

VBZ if main software system 4-do

not adverb RB if main software system 4-do 5-not
start verb, base

form
VB if main software system 4-do 5-not

6-start

operating verb,
gerund or
present
participle

VBG if main software system 4-do 5-not
6-start 7-operate

the determiner DT if main software system 4-do 5-not
6-start 7-operate

air common
noun,
singular

NN if main software system 4-do 5-not
6-start 7-operate

air

conditioning common
noun,
singular

NN if main software system 4-do 5-not
6-start 7-operate

air conditioning

system common
noun,
singular

NN if main software system 4-do 5-not
6-start 7-operate

air conditioning system

at preposition or
subordinating
conjunction

IN

midnight common
noun,
singular

NN

maintenance common
noun,
singular

NN

personnel common
noun,
plural

NNS

should modal verb MD
be verb, base

form
VB

called verb, past
participle

VBN



20 Software Qual J

src), an input event (upper index iev), an output event (upper index oev), and a destination state
(upper index des). The initial idea is to denote the states of the model with the Subject of the BSAO
tuple. This is clearly shown in lines 6, 14 and 31 in Fig. 8. However, the checkSubject algorithm
(lines 6 and 14) checks whether there is already a source state in the model with the same name of
the current BSAO Subject. The checkSubject algorithm returns a name for the state just adding an
underscore followed by an incrementing number after the Subject, if there is already a same state
name in the model; otherwise, it will return the same BSAO Subject to be assigned as the name of
the source state.

The Reactiveness (R) function of the Dictionary plays an important role in defining input and
output events within a transition. As shown from lines 22 to 28, if the Object of the BSAO 4-tuple
exists in the input event set (R.IE), then the input event (iev) will be assigned to the matched element
of the domain of R (R.IE), and the output event (oev) will have the value of the corresponding element
of the codomain of R (R.OE). However, if the tuple’s Object does not match any element of R.IE ,
the input event becomes a combination of Action Object of the BSAO tuple, and the output event
null. Another remark is that the if-then-else situation in NL sentences is addressed from lines 3 to
21. Hence, more than one transition may be leaving the same source state in the resulting model.

Let us consider the following two requirements from the SWPDC case study:

SRS001 - The PDC shall be powered on by the Power Conditioning Unit.
SRS002 - The PDC shall be in the Initiation Operation Mode after being powered on. The
SWPDC shall then accomplish a POST. If PDC presents any irrecoverable problem, this
computer shall remain in the Initiation Operation Mode and such a problem shall not be
propagated to the OBDH.

These requirements produce 6 BSAO tuples as shown in Table 5. Piece of the resulting model set
based on these tuples is shown in Table 6.

At this point, the number of transitions in the created model is equal to the number of BSAO
tuples. Note that the Subjects of the BSAO tuples define the name of the source states in Table 6.
However, the checkSubject algorithm creates different names for source states when finding “PDC”
repeatedly by adding “ ” followed by an incrementing counter. None of the Objects of BSAO tuples
are in R.IE . Hence, each input event is a concatenation of Action Object of the BSAO tuple, and the
output event is null. Besides, all destination states are also null.

Some ordered quadruples of the model may be removed. As shown from lines 36 to 38 of the main
algorithm (Fig. 8), there are three types of automated refinements which are applied to the original
model so that the final model may be enhanced with respect to the original one.

4.2.1 Refinement based on domain information

The first automated refinement is to eliminate unnecessary states and transitions of the model, to
rename certain states of the model, and to fulfill the destination states of the transitions. We call
it a refinement based on domain information (refineModelDomainInfo). It removes an ordered
quadruple (a transition) from the original model if the source state does not exist in N , and the
Object part of the input event does not exist in N , and the entire input event does not exist either in
R.IE . This is done because not all NL sentences contain relevant information to justify the creation
of a transition in the context of model-based test case generation.

If an ordered quadruple is not to be removed, the name of its source state may be changed if the
Object part of the input event exists in N and the entire input event does not exist in R.IE . This



Software Qual J 21

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }

input : tuples tup = {tj
i
∣ j = b, s, a, o}, i = 1..k

input : verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..z

1 cond← false;
2 for i← 1 to k do

3 if tb
i
∈ STM .C ∧ ¬cond then

4 existBeℎ← tb
i
;

5 existSub← ts
i
;

6 tmodsrc ← checkSubject(ts
i
);

7 lastState← tmodsrc;
8 cond← true;

9 else

10 if tb
i
= existBeℎ ∧ ts

i
= existSub then

11 tmodsrc ← lastState;
12 cond← false;

13 else

14 tmodsrc ← checkSubject(ts
i
);

15 if tb
i
∈ STM .C then

16 existBeℎ← tb
i
;

17 existSub← ts
i
;

18 lastState← tmodsrc;

19 end

20 end

21 end

22 if to
i
∈ R.IE then

// rie ∈ R.IE.

23 tmodiev ← Rn(rie);
// roe ∈ R.OE.

24 tmodoev ← Rn(roe);

25 else

26 tmodiev ← ta
i
+ “ ” + to

i
;

27 tmodoev ← null;

28 end

29 tmoddes ← null;
// add element to model mod.

30 x← i;
31 msrc

x ← tmodsrc;

32 miev
x ← tmodiev ;

33 moev
x ← tmodoev ;

34 mdes
x ← tmoddes;

35 end

// first automated refinement.

36 mod← refineModelDomainInfo(mod, dic);
// second automated refinement.

37 mod← refineModelWordSense(mod, dic, vrbwsd);
// third automated refinement.

38 mod← refineModelHierarchy(mod, dic);

Fig. 8 Main algorithm for the translation of BSAO tuples into models



22 Software Qual J

Table 5 BSAO tuples derived from requirements SRS001 and SRS002

B S A O

- PDC 1-be 2-power on Power Conditioning Unit
- PDC 3-be Initiation Operation Mode
- SWPDC 6-then 7-accomplish post
if PDC 9-present irrecoverable problem
- computer 13-remain Initiation Operation Mode
- problem 15-not 16-be 17-propagate OBDH

Table 6 Piece of the model set derived from the BSAO tuples in Table 5. Caption: #Tr = Transition number

#Tr Source State Input Event Output Event Destination State

1 PDC 1-be 2-power on Power Conditioning Unit null null
2 PDC 2 3-be Initiation Operation Mode null null
3 SWPDC 6-then 7-accomplish post null null
4 PDC 3 9-present irrecoverable problem null null
5 computer 13-remain Initiation Operation Mode null null
6 problem 15-not 16-be 17-propagate OBDH null null

is explained due to the fact that Subjects, which in turn first generated the name of states in the
model, in NL requirements are usually a few names like system, the name of a computer or a software
product. This implies that the name of the states would be basically limited to those names added
by a counter (recall the check Subject algorithm) such as system, system 1, system 2, and so on. In
order to improve this and to provide more meaningful names for states, the new name of the state is
changed to a word or words that are in N (Object part of the input event).

After the processing presented above, a last feature of the domain information refinement is setting
the destination states. This is simply done considering the source state of the next ordered quadruple
as the destination state of the current ordered quadruple. However, the destination state of the last
transition of the model is the first (initial) state. The FSM test criteria implemented in GTSC (DS,
UIO and H-switch cover) require that the flat FSM is strongly connected. In such a machine for
each pair of states (si, sj), there is a path5 connecting si to sj . This explains the logic of setting the
destination state of the last transition. Even though the Statecharts criteria implemented in GTSC
(all-transitions, all-simple-paths, all-paths-k-C0-configuration, all-paths-k-configurations) do not have
that restriction, this action makes the model translated from NL requirements more generic in the
sense that a test designer may choose any of the seven GTSC test criteria to generate the test suite.

Table 7 shows the piece of the model set after the refinement based on domain information
considering requirements SRS001 and SRS002. Assuming that N = {PDC, SWPDC, Initiation
Operation Mode, OBDH, ...}, no transition is eliminated. Note that computer and problem are not
in N but the Object part of the input event (after “ ”) of these transitions (in Table 6: Initiation
Operation Mode in transition 5, and OBDH in transition 6) are in N . Precisely because the Object
part of the input event is in N , the source states of transitions 2, 5 and 6 are changed according to
it. Finally, the destination states are set according to the processing presented earlier.

5 A path is a finite sequence of adjacent transitions.



Software Qual J 23

Table 7 Piece of the model set after the refinement based on domain information. Caption: #Tr = Transition number

#Tr Source State Input Event Output Event Destination State

1 PDC 1-be 2-power on Power Conditioning
Unit

null Initiation Operation
Mode

2 Initiation Operation
Mode

3-be null SWPDC

3 SWPDC 6-then 7-accomplish post null PDC 3
4 PDC 3 9-present irrecoverable problem null Initiation Operation

Mode

5 Initiation Operation
Mode

13-remain null OBDH

6 OBDH 15-not 16-be 17-propagate null PDC 3

4.2.2 Word sense disambiguation refinement

According to Navigli (2009), “Word Sense Disambiguation (WSD) is the ability to identify the
meaning of words in context in a computational manner”. In the field of Natural Language Processing,
WSD has been studied for a long time. The point is that a word can have different lexical categories,
e.g. “bank” can be a verb or a noun. It is the task of POS tagging to determine the correct one6.
However, even in the same category a word can have different meanings (senses). For instance, the
noun “bank” can be a depository financial institution, the building of the financial institution, or a
long pile just to name a few. Thus, WSD is used to identify the correct sense in a certain context.

WordNet is an electronic lexical database created and maintained at Princeton University (Miller,
1998). The basic building block of WordNet is a synset consisting of all the words that express a given
concept. Alternatively, we may say that WordNet encodes concepts in terms of sets of synonyms (the
synsets) (Navigli, 2009). Hence, WordNet ’s design resembles a thesaurus but in some aspects it also
resembles a traditional dictionary, providing definitions and sample sentences for its synsets.

A graph-based algorithm for WSD was proposed by Sinha and Mihalcea (2007). In their approach,
they constructed a sense (label) dependency graph based on measures of word semantic similarity like
the Leacock and Chodorow (Leacock and Chodorow, 1998), Jiang and Conrath (Jiang and Conrath,
1997), and Lesk (Lesk, 1986) measures. These measures work well in the WordNet hierarchy. A
weighted, undirected, not fully connected sense dependencies graph is derived by adding a vertex for
each admissible sense of the words in a text, and an edge for each pair of senses of distinct words for
which a dependency is identified. A window, wn, is defined so that no edges will be drawn between
senses corresponding to words that are more than wn words apart, counting all running words, i.e.
nouns, verbs, adjectives, and adverbs. The set usefulWords helps to define such running words
(Subsection 4.1). After the graph construction, the scores of senses are determined using some graph-
based centrality algorithms like indegree and an adaptation of the PageRank algorithm. Finally, the
most likely set of senses is determined by identifying the sense with the highest score for each word.

In the SOLIMVA tool, we implemented an adaptation of the above graph-based approach
taking into account only one similarity measure, Jiang and Conrath, and one graph-based centrality
algorithm, indegree. The goal of such adaptation was to automate the identification of the semantics

6 POS tagging is also known as word category disambiguation.



24 Software Qual J

related to the generated model. Specifically, the idea was to automatically identify self transitions in
the resulting Statecharts model.

Considering the BSAO tuples and the refinement based on domain information (Subsection 4.2.1),
the default behavior is: if the current state of the model is si, the next state is sj where i ∕= j. We
would like to identify in which situations and based on the set of NL requirements the next state is
si, i.e. when a self transition occurs within the model. To achieve this goal, we manually searched the
synsets related to verbs in WordNet to find verb’s senses which mean “remain in a same place”. Our
interpretation is that finding a verb with this particular sense implies that the model should exhibit
a self transition.

We found 11 verbs (continue, remain, stay, etc.) with a total of 21 senses which met the desired
feature. These 21 senses are precisely the elements of the STM .F set. The STM .F set is independent
of the application domain and thus the test designer does not need to change it. A sample of the
STM .F is as follows, where the number indicates the sense number as defined in WordNet :

STM .F = {remain#v#1, remain#v#2, stay#v#1, ..., rest#v#6, ...}.

In order to obtain Jiang and Conrath measures between pairs of verbs, we used the Java
WordNet::Similarity (University of Sussex, 2010), a Java version of the Perl WordNet::Similarity
package developed by the University of Minessota (Pedersen et al, 2004). Both packages use as corpus,
by default, SemCor (Miller et al, 1993) which is a manually sense-tagged subset of the Brown Corpus.
Besides, we are using version 2.1 of WordNet.

Among the four graph-based centrality algorithms used by Sinha and Mihalcea (2007), we chose
and implemented the indegree algorithm within the SOLIMVA tool. For an undirected weighted graph
G = (V,E) where V is the set of vertices and E is the the set of edges, the indegree is defined as:

indegree(Va) =
∑

Vb∈V

wgab

where wgab is the weight on the edge between Va and Vb. In other words, the indegree of a vertex
Va is obtained taking into account the weights on the edges, and adding them together into a score.
In our case, Va and Vb are senses of two distinct verbs, and wgab is the Jiang and Conrath measure
between these two verb’s senses. Furthermore, we selected wn = 4 which was the value that provided
the best results regarding the correct word sense assignment. In order to identify the sense of a verb,
the algorithm only figures out the sense with the highest score among all the senses of a verb.

We decided to use only the Jiang and Conrath similarity measure because our goal was to
disambiguate the senses of verbs. According to the results shown in Sinha and Mihalcea (2007),
the best measure in terms of true positives for verbs was the Leacock and Chodorow followed closely
by the Jiang and Conrath measure (the Jiang and Conrath measure was 4.55% worse than the
Leacock and Chodorow measure; other measures were more than 10% worse than the Leacock and
Chodorow measure). At first, we tried the Leacock and Chodorow measure in the SWPDC’s Software
Requirements Specification but the results were not very promising. Thus, we selected the Jiang and
Conrath measure which presented a better performance.

The reasoning behind the selection of the indegree graph-based centrality algorithm was also
because this was the best algorithm for verb sense disambiguation outperforming the other three
algorithms (Sinha and Mihalcea, 2007). The initial goal was to implement the four graph-based
centrality algorithms and combine them in a voting scheme as proposed by Sinha and Mihalcea
(2007). But, the results presented for verbs according to their approach were not very promising and
we decided to implement the algorithm with best performance, the indegree.



Software Qual J 25

The main WSD refinement algorithm is shown in Fig. 9. The verbs for WSD set (vrbwsd) contains
all verbs of the set of NL requirements that match the verbs defined in STM .F . Each ordered pair of
vrbwsd is composed of: the key (“counter of Useful Words (cntUW ) - word”) defined in Subsection 4.1
(upper index ivr), and one of two possible values (upper index inf), “self” and “no”. This set has
been previously generated (Fig. 7) which informs whether there are verbs within the NL requirements
that characterize a self transition in the resulting model (value “self”). Hence, our adaptation of the
approach proposed by Sinha and Mihalcea (2007) was in fact implemented as part of the BSAO tuples
generation algorithm. However, to make use of the results by adapting the Sinha and Mihalcea (2007)
approach to identify self transitions in the Statecharts model, we need additional steps as described in
Fig 9. Finally, the importance of the key is due to the fact that naturally the same verb (for instance,
stay) may occur several times within the NL requirements indicating or not indicating the presence
of several self transitions. Hence, we need to know which word (verb) we are precisely analyzing.

The algorithm in Fig. 9 takes the vrbwsd set as input, and first extracts the Action part (if any)
of the input event of a transition and realizes whether it matches a key of vrbwsd (lines 7 and 8).
Assuming this is true and also that the information related to the key matches the value “self” (line
10), the algorithm performs a backward search until it finds a previous source state which is the same
as the current source state where the verb (key) characterizes a self transition (lines 12 to 20). As long
as this does not occur, the input events of all transitions backward traversed are stored (tempIET ,
line 14) in order to compose the new input event of a transition in the model (line 24). The new
current destination state is exactly the current source state which is the behavior we expect in such
a situation (line 25). Intermediate and needless states and transitions are removed from the model
(line 26), and the new next source state is also set (line 27).

To sum up, there are four conditions to be satisfied so that a self transition is detected and added
in the model after the WSD refinement. First, the verb must match the verbs in STM .F . Second,
the information must be “self”. Third, a previous source state must match the current source state
in the backward search. This is important because if there is no match we will not be able to decide
which is the source state of the self transition. Finally, during the backward search, none of the input
events must match an element of R.IE . Again, this demonstrates the priority of reactiveness over
other behaviors in the resulting model.

Table 8 shows the piece of the model set after the WSD refinement based on requirements SRS001
and SRS002. Note that due to the input event 13-remain (Table 7), and the satisfaction of all
previously mentioned conditions, transition number 2 is a self transition. Also note that the input
event of transition 2 is the concatenation of previous input events as designed in the WSD refinement
algorithm.

4.2.3 Refinement for inclusion of hierarchy

The output model obtained after the WSD refinement is no more than an FSM as defined by Petrenko
and Yevtushenko (2005). In order to obtain a Statecharts model, we created a strategy to incorporate
hierarchy (depth) into the final model. This is the last automated refinement proposed within the
SOLIMVA tool.

The algorithm that we designed and implemented partitions the set of states of the model based
on information gathered from the STM .Y function. Such a function is a mapping among some names
of source states (src) and input events (iev) of transitions, which are elements of the input pattern
set (Y.IP ), and names that will define the COMPOSITE states of the Statecharts model, which are



26 Software Qual J

input : model mod = {my
x ∣ y = src, iev, oev, des}, x = 1..zi

input : dictionary dic = {N,R, STM .C, STM .F, STM .Y }
input : verbsWSD vrbwsd = {vqp ∣ q = ivr, inf}, p = 1..r
output: model mod = {my

x ∣ y = src, iev, oev, des}, x = 1..zo

1 inpAct, newIET, tempIET ← empty;
2 matIET,matSrc← false;
3 ib, it← 1;
4 for p← 1 to r do

5 x← 1;
6 while x ≤ zi ∧ ¬matIET do

7 inpAct← extractAction(mod);

8 if vivrp = inpAct then
9 matIET ← true;

10 if vinf
p = “self” then

11 ib← x;
12 while ib ≥ 1 ∧ ¬matSrc do

13 ib← ib− 1;

14 tempIETit ← miev
ib

;

15 it← it+ 1;

16 if msrc
x = msrc

ib
∧ miev

ib
/∈ R.IE then

17 newIET ← reversetempIETAndGeneratenewIET (tempIET );
18 matSrc← true;

19 end

20 end

21 tempIET ← empty;
22 it← 1;
23 if matSrc then

// new current Input Event Transisiton.

24 miev
ib
← newIET ;

// new current Destination State.

25 mdes
ib
← msrc

ib
;

// remove unnecessary states and transitions.

26 mod← removeStatesTransitions(mod, ib+ 1);
// new next Source State.

27 msrc
ib+1

← msrc
ib

;

28 matSrc← false;
29 newIET ← empty;

30 end

31 end

32 end

33 x← x+ 1;

34 end

35 matIET ← false;

36 end

Fig. 9 Main WSD refinement algorithm



Software Qual J 27

Table 8 Piece of the model set after the WSD refinement. Caption: #Tr = Transition number

#Tr Source State Input Event Output Event Destination State

1 PDC 1-be 2-power on Power Conditioning
Unit

null Initiation Operation
Mode

2 Initiation Operation
Mode

3-be#6-then 7-accomplish post#
9-present irrecoverable problem#

null Initiation Operation
Mode

3 Initiation Operation
Mode

15-not 16-be 17-propagate null PDC 3

elements of the output pattern set (Y.OP ). Note that the selected names of source states are certainly
in N as well as the names of input events are in R.IE .

One basic assumption is that no COMPOSITE state will be created if a self transition exists in
a certain state. Besides, the general idea is to detect whether the src and iev of transitions match
some element of Y.IP and, if so names of appropriate source and destination states are changed so
that depth can be incorporated in the model.

Some other requirements were considered when designing the algorithm for incorporating
hierarchy. First, we decided that the depth was limited to two levels, say the main level and a
second hierarchy level. Although depth is an important feature of Statecharts, from the point of view
of models for system and acceptance test case generation, too many hierarchy levels may make the
entire modeling difficult to read. Our experience is that two levels are enough for this purpose.

A COMPOSITE state is created right from a state msrc
x if the aforementioned match considering

Y.IP occurs, and also if at least in the next two transitions there is no match regarding src and iev,
i.e. if msrc

x+1,m
iev
x+1,m

src
x+2,m

iev
x+2 do not match elements in Y.IP . In doing this, we avoid creating an

excessive number of COMPOSITE states and/or COMPOSITE states embodying few states.
There is no priority among COMPOSITE states. In other words, at any time the behavior may be

“leave the COMPOSITE state msrc
x ” if the conditions previously described, related to the match, are

satisfied. Another feature is that the initial state of the main model is not allowed to make part of a
COMPOSITE state, and there is also a mechanism to include the In State conditions of Statecharts
into the final model.

Let us consider the SWPDC case study. Hence, Y.IP , Y.OP , and STM .Y can be composed of:

Y.IP = {Safety Operation Mode, CH-OP-MODE-NOMINAL, ... },
Y.OP = {Safety Operation Mode, Nominal Operation Mode, ... },
STM .Y = {(Safety Operation Mode, Safety Operation Mode), (CH-OP-MODE-NOMINAL,
Nominal Operation Mode), ... }.

5 Application of the SOLIMVA methodology

This section presents in detail the application of the SOLIMVA methodology/tool using as case
study the SWPDC software product (Santiago et al, 2007). The test designer starts by defining the
Dictionary. Then, he/she can create the Name (N) set and Reactiveness function (R) in accordance
with Table 9, and Table 10 shows a possibility for the Semantic Translation Model : Control (STM .C)
set, Self Transition (STM .F ) set, and Hierarchy (STM .Y ) function. In functions, the representation is
x → y where x is an element of the domain of the function and y is an element of the codomain of the



28 Software Qual J

function. Furthermore, the elements in CAPITAL letters of the domain (R.IE) and codomain (R.OE)
of R are simply abbreviations for commands and responses of the PDC-OBDH Communication
Protocol Specification. Thus, VER-OP-MODE is an abbreviation for the command VERIFY PDC’s
OPERATION MODE. As previously stated, STM .C and STM .F are already defined in configuration
files of the SOLIMVA tool and hence the user does not need to alter them. However, if necessary the
user has an option to change them.

Table 9 Sample of the Name set and the Reactiveness function for the SWPDC case study

Name Reactiveness

PDC VER-OP-MODE → INFO-OP-MODE
SWPDC PREP-HK → CMD-REC
Initiation Operation Mode TX-DATA-SCI-End → SCI-DATA or NO-DATA
Safety Operation Mode CH-OP-MODE-NOMINAL → CMD-REC
Nominal Operation Mode CH-OP-MODE-SAFETY → CMD-REC
EPP Hx Several TX-DATA-HK → Several HK-DATA or NO-DATA
OBDH ...
...

Table 10 Sample of the Semantic Translation Model for the SWPDC case study

Control Self Transition Hierarchy

if remain#v#1 Initiation Operation Mode → Initiation Operation Mode
... remain#v#2 Safety Operation Mode → Safety Operation Mode

stay#v#1 Nominal Operation Mode → Nominal Operation Mode
stay#v#2 CH-OP-MODE-NOMINAL → Nominal Operation Mode
stay#v#4 CH-OP-MODE-SAFETY → Safety Operation Mode
rest#v#1 ...
rest#v#6
continue#v#1
...

After this, scenarios are defined using the strategy described in Section 3. First, the core elements
in this case study are the 37 commands that the OBDH can send to PDC which are defined in
the PDC-OBDH Communication Protocol Specification. These 37 commands were grouped into 28
scenarios. These are very simple scenarios consisting essentially in switching the PDC on and send
these commands in order to realize whether PDC correctly receives and processes such commands.

For the normal scenarios, Table 11 shows a possible choice of factors and levels for the SWPDC
case study. The meanings of the factors Cmd, OpMode, and Services as well as the levels HwSwHnd,
DtAcqTx, Nom, Sci, and Hk have already been given in Section 3. The explanation for the remaining
factors and levels follows:

1. Levels of the Cmd factor: processing activities to manage PDC’s operation mode (OpMMgm),
load new program into PDC’s Data Memory on the fly (PrLoad);

2. Levels of the OpMode factor: Initiation/Initialization (Init), Safety (Safe), and Diagnosis (Diag)
are other PDC’s operation modes;



Software Qual J 29

3. Levels of the Services factor: Services related to acquisition, formatting, and transmission of Test
(Tst) and Diagnosis (Dg) Data, generation, formatting, and transmission of Dump Data (Dmp),
loading new program into PDC’s Data Memory on the fly (Load);

4. StartMode factor. This factor relates to the way PDC is started: Power On (PwrOn) or Reset
(Reset).

Table 11 Factors and levels for the SWPDC case study

Factors Levels

Cmd HwSwHnd OpMMgm DtAcqTx PrLoad Inv
OpMode Nom Init Safe Diag Inv
Services Sci Hk Dmp Load Dg Tst Inv
StartMode PwrOn Reset Inv

Since there are four factors and as explained in the Define Scenarios activity (Fig. 4), then
strengtℎ = 3. The combinatorial designs algorithm produced 175 factor combinations which shall be
interpreted to derive 175 normal scenarios. One example is the factor combination 71: {DtAcqTx,
Nom, Sci, Inv}. However, the test designer may neglect the level Inv assuming that robustness will
be covered by another factor combination. Hence, factor combination 71 becomes: {DtAcqTx, Nom,
Sci, -}. The interpretation of such factor combination defines scenario 71 to “acquire, format, and
transmit Scientific Data in the Nominal Operation Mode”.

We analyzed all normal scenarios to see if they needed to be unfolded. Normal scenarios 73
({DtAcqTx, Nom, Dmp, -}) whose interpretation is “generation, formatting, and transmission
of Dump Data in the Nominal Operation Mode”, and 94 ({DtAcqTx, Diag, Dmp, -}) whose
interpretation is “generation, formatting, and transmission of Dump Data in the Diagnosis Operation
Mode”, are two normal scenarios to be unfolded. The Dump Data (Dmp) service refers to get
data from pieces of PDC’s Program or Data Memory. Organization of PDC’s Program Memory is
simple with a 64-kByte program address space, from 0000h to FFFFh (h = hexadecimal). However,
organization of PDC’s Data Memory is more complicated as shown in Fig. 10. The size of the data
address space is also 64 kBytes, from 0000h to FFFFh. However, there is a paging mechanism which
enables PDC to access more than 64 kBytes of Data Memory. Each one of the 8 pages in Fig. 10 has
a size of 32 kBytes. Hence, in order to dump data from PDC’s memories the user must:

∙ select the memory from where to dump data. The options are Program and Data Memories. In
case the user selects the Data Memory, the page (0 to 7) must be selected too;
∙ provide the initial and final 16-bit memory addresses.

The selection is accomplished by means of a specific command defined in the PDC-OBDH
Communication Protocol Specification. Then, we can define dump from different pieces of memory
areas, and we may also emphasize robustness aspects of SWPDC; for instance, what is its behavior
when the initial address is greater than the final address, the initial or final address is less than the
minimum physical address allowed for a certain type of memory and so on. These facts explain the
need for unfolding.

Table 12 shows the configuration of factors and levels for unfolding normal scenarios 73 and 94.
The priority factor in this case is the type of Memory (Mem; Prg = Program Memory, DtP0 = Data
Memory - Page 0, ..., DtP7 = Data Memory - Page 7) from where the dump will take place, and



30 Software Qual J

Fig. 10 Organization of PDC’s Data Memory. Caption: Pg = Page

strengtℎ = 2. The initial memory address (IniAdd) and final memory address (FinalAdd) are the
other factors. Since the priority factor has 10 levels, then not only normal scenario 73 but also normal
scenario 94 will be replaced with 10 unfolded scenarios each (note that the only difference between
normal scenarios 73 and 94 is the PDC’s operation mode). These unfolded scenarios are identified as
73.1, 73.2, ..., 73.10, 94.1, 94.2, ..., 94.10.

Table 12 Unfolding normal scenarios 73 and 94

Factors Levels

Mem Prg DtP0 DtP1 DtP2 DtP3 DtP4 DtP5 DtP6 DtP7 Inv
IniAdd InRng Min Max LessMin GreatMax
FinalAdd InRng Min Max LessMin GreatMax

Running the combinatorial designs algorithm, the factor combinations that are interpreted for
deriving each unfolded scenario are shown in Table 13. As mentioned in Section 3, the test designer
adds NL requirements to characterize each unfolded scenario according to the directives provided by
the combinatorial designs algorithm.

It is interesting to stress the focus on Robustness testing related to this unfolding process. For
instance, unfolded scenarios 73.3 or 94.3 propose the following situations, where all cases relate to
Page 1 of PDC’s Data Memory (DtP1):

∙ IniAdd = Min, FinalAdd = LessMin;
∙ IniAdd = Max, FinalAdd = InRng;
∙ IniAdd = LessMin, FinalAdd = Min;
∙ IniAdd = GreatMax, FinalAdd = Min;
∙ IniAdd = Min, FinalAdd = GreatMax;
∙ IniAdd = InRng, FinalAdd = Max.

SWPDC must process only the last situation (IniAdd = InRng, FinalAdd = Max) because all the
others have innapropriate settings of initial and/or final memory addresses. The unfolding process



Software Qual J 31

Table 13 Factor combinations for deriving unfolded scenarios from normal scenarios 73 and 94. Caption: Min/Max =
Minimum/Maximum allowed memory address; LessMin/GreatMax = Less/Greater than Minimum/Maximum allowed
memory address; InRng = Address between Min and Max (In Range)

Unfolded Scenario Factor Combinations

73.1 and 94.1 {Prg, InRng, InRng}, {Prg, Min, Min}, {Prg, Max, Max}, {Prg, LessMin, LessMin}, {Prg,
GreatMax, GreatMax}

73.2 and 94.2 {DtP0, InRng, Min}, {DtP0, Min, InRng}, {DtP0, Max, LessMin}, {DtP0, LessMin, Max},
{DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}

73.3 and 94.3 {DtP1, InRng, Max}, {DtP1, Min, LessMin}, {DtP1, Max, InRng}, {DtP1, LessMin, Min},
{DtP1, GreatMax, Min}, {DtP1, Min, GreatMax}

73.4 and 94.4 {DtP2, InRng, LessMin}, {DtP2, Min, Max}, {DtP2, Max, Min}, {DtP2, LessMin, InRng},
{DtP2, GreatMax, Max}, {DtP2, Min, GreatMax}

73.5 and 94.5 {DtP3, InRng, GreatMax}, {DtP3, Min, InRng}, {DtP3, Max, Min}, {DtP3, LessMin,
Max}, {DtP3, GreatMax, LessMin}

73.6 and 94.6 {DtP4, InRng, InRng}, {DtP4, Min, GreatMax}, {DtP4, Max, Min}, {DtP4, LessMin,
Max}, {DtP4, GreatMax, LessMin}

73.7 and 94.7 {DtP5, InRng, InRng}, {DtP5, Min, Min}, {DtP5, Max, GreatMax}, {DtP5, LessMin,
Max}, {DtP5, GreatMax, LessMin}

73.8 and 94.8 {DtP6, InRng, InRng}, {DtP6, Min, Min}, {DtP6, Max, Max}, {DtP6, LessMin,
GreatMax}, {DtP6, GreatMax, LessMin}

73.9 and 94.9 {DtP7, InRng, InRng}, {DtP7, Min, Min}, {DtP7, Max, Max}, {DtP7, LessMin, LessMin},
{DtP7, GreatMax, GreatMax}

73.10 and 94.10 {Inv, InRng, InRng}, {Inv, Min, Min}, {Inv, Max, Max}, {Inv, LessMin, LessMin}, {Inv,
GreatMax, GreatMax}

generated 20 additional scenarios, 10 to replace normal scenario 73 and another 10 to replace normal
scenario 94.

Another four normal scenarios needed to be unfolded: normal scenario 109 ({PrLoad, Nom,
Load, -}; “loading new program into PDC’s Data Memory on the fly in the Nominal Operation
Mode”) which contributed with 6 additional scenarios; normal scenarios 2 ({HwSwHnd, Nom, Hk, -}),
16({HwSwHnd, Safe, Hk, -}), 23 ({HwSwHnd, Diag, Hk, -}) whose interpretations are “verification of
correct implementation of commands related to software parameters manipulation, and generation,
formatting, and transmission of Housekeeping Data in the Nominal (scenario 2), Safety (scenario
16) or Diagnosis (scenario 23) Operations Mode”, and that provided 7 additional scenarios each
one, adding 21 new scenarios. Hence, the total number of scenarios proposed by the SOLIMVA
methodology was 244.

For each scenario, a set of NL requirements is chosen. As a matter of illustration, we will show
the set of NL requirements in order to characterize normal scenario 71: {DtAcqTx, Nom, Sci, -}.
Table 14 shows the selected NL requirements.

After the selection of the requirements, the next step is to generate the Statecharts model. Fig. 11
shows the main model generated by the SOLIMVA tool for normal scenario 71. Note the self transition
in state Initiation Operation Mode. This behavior occurs precisely due to the verb “remain” in
requirement SRS002. The WSD refinement identified the sense of “remain” as one of the senses
in STM .F . There are three COMPOSITE states (symbol ∞) in the main Statecharts model: Nominal
Operation Mode (Fig. 12), Safety Operation Mode (Fig. 13), and Safety Operation Mode 2. When
omitted, the output event within a transition is null.

In the sequence, GTSC is run to generate the Abstract Test Cases. The Abstract Test Suites
based on all-transitions, all-simple-paths, and all-paths-k-C0-configuration test criteria are presented



32 Software Qual J

Table 14 Set of NL requirements that characterize normal scenario 71. Caption: Req = Requirement; Id =
Identification

Req Id Req Description

SRS001 The PDC shall be powered on by the Power Conditioning Unit.
SRS002 The PDC shall be in the Initiation Operation Mode after being powered on. The SWPDC shall

then accomplish a POST. If PDC presents any irrecoverable problem, this computer shall remain
in the Initiation Operation Mode and such a problem shall not be propagated to the OBDH.

SRS003 If PDC does not present any irrecoverable problem, after the initiation process, the PDC shall
automatically enter into the Safety Operation Mode.

POCP001 The PDC can only respond to requests (commands) from OBDH after the PDC has been
energized for at least 1 minute. If OBDH sends commands within less than 1 minute, the OBDH
shall not receive any response from PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.
RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off independently,

when the OBDH sends distinct commands to perform such actions.
PECP001 Each EPP Hx can only respond to requests (commands) from PDC after each EPP Hx has been

energized for at least 30 seconds. If PDC sends commands within less than 30 seconds to a certain
EPP Hx, the PDC shall not receive any response from this EPP Hx.

SRS004 The OBDH should wait 600 seconds before asking for a Housekeeping Data frame.
SRS005 Housekeeping data transmission shall start with PREP-HK. After that, the OBDH can send

several TX-DATA-HK to PDC. The transmission shall be ended with TX-DATA-SCI-End.
RB003 The OBDH shall send CH-OP-MODE-NOMINAL to PDC.
RB001 The OBDH shall send VER-OP-MODE to PDC.
POCP002 The OBDH should wait 10 seconds before asking for a Scientific Data frame.
SRS006 The SWPDC shall obtain and handle scientific data from each EPP Hx. The SWPDC shall also

accept scientific data transmission requests from OBDH.
RB004 The OBDH shall send CH-OP-MODE-SAFETY to PDC. After that, the PDC shall be in the

Safety Operation Mode.
RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off independently,

when the OBDH sends distinct commands to perform such actions.
RB005 After switching both EPPHxs off via PDC, the OBDH shall switch the PDC off via the Power

Conditioning Unit.

in Table 15. An Abstract Test Case is composed of a set of input / output pairs, and it is delimited
by left and right braces.

The Abstract Test Cases must be translated into the Executable Test Cases in order to stimulate
the IUT. Table 16 shows examples of such translations considering the second Abstract Test Case of
the all-transitions Abstract Test Suite. It is interesting to note that in some cases, there is no specific
test input data to stimulate the IUT but only actions shall be performed and certain behaviors shall
occur. Besides, the mapping is not one to one, i.e. not necessarily one input / output pair of the
Abstract Test Case will derive exactly one test input data / expected result of the Executable Test
Case.

Another remark is that most of the translations shown in Table 16 are applied not only to other
Abstract Test Suites derived from other test criteria for normal scenario 71 but also to other Abstract
Test Suites due to the all-transitions or other test criteria regarding another scenario. The point is that
it is not necessary to do all the mapping when considering other scenarios: most of the translations
are reusable.

The complete translation of the three Abstract Test Cases that compose the Abstract Test Suite
derived from the all-transitions test criterion for normal scenario 71 into the Executable Test Suite is
shown in Table 17. Action1, Action2, Action3, Action4, and Action5 are defined in Table 16. Action6



Software Qual J 33

Fig. 11 The main Statecharts model derived from NL requirements that characterize normal scenario 71

Fig. 12 Normal scenario 71: COMPOSITE state Nominal Operation Mode

is the translation of the test step be#then accomplish post#present irrecoverable problem#/null.



34 Software Qual J

Fig. 13 Normal scenario 71: COMPOSITE state Safety Operation Mode

Hence, Action6 directs the test designer to simulate an irrecoverable problem during the intitiation
(initialization) process of PDC and realize whether PDC remains in the Initiation Operation Mode,
as presented in Fig. 11. Action7 is to switch PDC off. The idea then is just to substitute one or more
input / output pairs of the Abstract Test Suite for the corresponding test input data / expected result
of the Executable Test Suite as shown in Table 16. Translations into other Executable Test Suites
due to other test criteria follow the same principles.

The concrete test input data / expected result of the Executable Test Cases are obtained just by
replacing the abbreviations of commands/responses with the values as specified in the PDC-OBDH
Communication Protocol Specification. For instance, the first VER-OP-MODE / INFO-OP-MODE
(Table 17) is substituted for (all values are in hexadecimal):



Software Qual J 35

Table 15 Abstract Test Suites for normal scenario 71

Test Criterion Abstract Test Cases

all-transitions {be power on Power Conditioning Unit/null, be#then accomplish post#present irrecoverable
problem#/null}, {be power on Power Conditioning Unit/null, not be propagate/null, do
not present irrecoverable problem/null, automatically enter/null, only respond request/null,
have be energize least 1 minute/null, send command/null, not receive response/null, VER-
OP-MODE/INFO-OP-MODE, switch Event Pre-Processor/null, send distinct command/null,
only respond request/null, have be energize least 30 seconds/null, send command/null,
not receive response/null, wait 600 seconds/null, PREP-HK/CMD-REC, Several TX-DATA-
HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-End/SCI-DATA or NO-DATA, CH-
OP-MODE-NOMINAL/CMD-REC, VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null,
obtain and handle scientific datum/null, also accept scientific datum tansmission request/null,
CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event Pre-Processor/null, send distinct
command/null}, {switch/null}

all-simple-paths {be power on Power Conditioning Unit/null, not be propagate/null, do not present irrecoverable
problem/null, automatically enter/null, only respond request/null, have be energize least
1 minute/null, send command/null, not receive response/null, VER-OP-MODE/INFO-
OP-MODE, switch Event Pre-Processor/null, send distinct command/null, only
respond request/null, have be energize least 30 seconds/null, send command/null, not
receive response/null, wait 600 seconds/null, PREP-HK/CMD-REC, Several TX-DATA-
HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-End/SCI-DATA or NO-DATA, CH-OP-
MODE-NOMINAL/CMD-REC, VER-OP-MODE/INFO-OP-MODE, wait 10 seconds/null,
obtain and handle scientific datum/null, also accept scientific datum tansmission request/null,
CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event Pre-Processor/null, send distinct
command/null}, {switch/null}

all-paths-k-C0 {be power on Power Conditioning Unit/null, be#then accomplish post#present irrecoverable
problem#/null, not be propagate/null, do not present irrecoverable problem/null, automatically
enter/null, only respond request/null, have be energize least 1 minute/null, send command/null,
not receive response/null, VER-OP-MODE/INFO-OP-MODE, switch Event Pre-Processor/null,
send distinct command/null, only respond request/null, have be energize least 30 seconds/null,
send command/null, not receive response/null, wait 600 seconds/null, PREP-HK/CMD-REC,
Several TX-DATA-HK/Several HK-DATA or NO-DATA, TX-DATA-SCI-End/SCI-DATA
or NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC, VER-OP-MODE/INFO-OP-MODE,
wait 10 seconds/null, obtain and handle scientific datum/null, also accept scientific datum
tansmission request/null, CH-OP-MODE-SAFETY/CMD-REC, be/null, switch Event Pre-
Processor/null, send distinct command/null}

VER-OP-MODE: EB 80 00 00 00 00 04 00 00 00 FE 91;
INFO-OP-MODE: EB 20 XX XX XX XX 83 00 00 01 01 XX XX.

In the expected result, XX represents values that are very difficult to predict in advance such
as the time stamp that indicates the exact value of the clock of the PDC computer when PDC is
assembling a response to be sent back to OBDH. In these cases, we do not need to worry about these
values.

5.1 Comparing SOLIMVA with an expert approach

This subsection compares the models and Executable Test Cases generated by the SOLIMVA
methodology/tool with others manually generated by a test designer who is an expert in the SWPDC
software product. The 20 models generated by the expert can be seen in Santiago Júnior et al (2010).



36 Software Qual J

Table 16 Examples of the translation from the Abstract Test Suite into the Executable Test Suite

Test Step Test Input Data Expected

Result

Action

be power on Power Conditioning
Unit/null

Action1 - Action1: Switch PDC on

not be propagate/null + do not
present irrecoverable problem/null
+ automatically enter/null

Action2 - Action2: Realize whether the
PDC is in the Safety Operation
Mode after the initiation process

only respond request/null + have
be energize least 1 minute/null +
send command/null + not
receive response/null

VER-OP-MODE
Action3

Timeout OBDH shall send any command
within less than 1 minute since
the PDC has been energized.
Action3: OBDH should wait 60
seconds to send a command

VER-OP-MODE/INFO-OP-
MODE

VER-OP-MODE INFO-OP-MODE OBDH shall send this command

only respond request/null + have
be energize least 30 seconds/null
+ send command/null + not
receive response/null

PREP-TST
Action4
TX-DATA-TST
TX-DATA-TST
TX-DATA-SCI

CMD-REC

NO-DATA
NO-DATA
NO-DATA

OBDH shall send/perform all
these commands/action within
less than 30 seconds since each
EPP Hx has been energized.
Hence, PDC will try to get Test
(TST) Data from each EPP Hx
but a timeout will occur in the
PDC side of the communication.
The result is that no Test Data
frame (NO-DATA) will be sent to
the OBDH. Action4: OBDH
should wait 10 seconds to send a
command

wait 600 seconds/null Action5 - Action5: OBDH should wait 600
seconds to send a command

TX-DATA-SCI-End/SCI-DATA
or NO-DATA

TX-DATA-SCI NO-DATA OBDH shall send this command

wait 10 seconds/null Action4 - Action4: OBDH should wait 10
seconds to send a command

obtain and handle scientific
datum/null + also
accept scientific datum
transmission request/null

TX-DATA-SCI SCI-DATA After waiting for 10 seconds, the
OBDH can send this command. In
case that many Scientific Data
frames shall be requested, this
process is repeated as many times
as needed (wait 10 s, send the
command)

The goal of such a comparison was two-fold: (i) we would like to know if the SOLIMVA methodology
is able to cover the test objectives of the set of scenarios manually developed by an expert with
respect to a certain IUT; (ii) we would like to verify whether the Executable Test Cases generated
according to the SOLIMVA methodology have the same characteristics of the test cases developed
according to the expert’s models.



Software Qual J 37

Table 17 Executable Test Suite translated from the all-transitions Abstract Test Suite

Test Criterion Executable Test Cases

all-transitions {Action1, Action6}, {Action1, Action2, VER-OP-MODE/Timeout, Action3, VER-OP-
MODE/INFO-OP-MODE, ACT-HW-EPPH1ON/CMD-REC, ACT-HW-EPPH2ON/CMD-
REC, PREP-TST/CMD-REC, Action4, TX-DATA-TST/NO-DATA, TX-DATA-TST/NO-
DATA, TX-DATA-SCI/NO-DATA, Action5, PREP-HK/CMD-REC, TX-DATA-HK/HK-DATA,
TX-DATA-SCI/NO-DATA, CH-OP-MODE-NOMINAL/CMD-REC, VER-OP-MODE/INFO-
OP-MODE, Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,
TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-
DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4,
TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-DATA, Action4, TX-DATA-SCI/SCI-
DATA, CH-OP-MODE-SAFETY/CMD-REC, VER-OP-MODE/INFO-OP-MODE, ACT-HW-
EPPH1OFF/CMD-REC, ACT-HW-EPPH2OFF/CMD-REC}, {Action7}

Table 18 shows the comparison. The leftmost column shows the Test Objectives associated to a
scenario, Expert shows the number of the manually generated scenario, and the SOLIMVA column
shows the corresponding factor combinations whose interpretations derive the scenarios which have
associated the same test objectives of the manual (expert) scenarios. The number of the scenario
in the SOLIMVA column refers to those generated only by the main execution of the combinatorial
designs algorithm, i.e. one that resulted in 175 normal scenarios.

The first goal of our comparison was achieved. All test objectives of the expert’s scenarios were
satisfactorily covered by SOLIMVA’s scenarios. Note that a single expert’s scenario can be addressed
by more than one corresponding SOLIMVA’s scenario. For instance, the test objective associated to
expert’s scenario 1 can be addressed by any of the following SOLIMVA’s scenarios: 43, 44, 45, 46, 47,
48, 49. Besides, a factor combination may be interpreted in different ways. In Table 18, three different
test objectives are related to factor combination 16: “Switching EPP Hxs on and off”, “Changing
software parameters in the Safety Operation Mode”, and “Process of Power On”. It is up to the test
designer to choose one of these test objectives for SOLIMVA’s scenario 16, and leave the others to
be addressed by interpreting other factor combinations.

Besides covering all the test objectives, the SOLIMVA philosophy also pointed out some problems
in the expert’s strategy. Expert’s scenario 4 could be broken into two different scenarios: one
addressing the process of power on and another related to the reset of PDC. As expert’s scenario
4 can be mapped to four distinct groups of scenarios in SOLIMVA, this demonstrates that the
test objectives of the expert were confused trying to deal with many different aspects into a single
scenario. Fig. 14 shows the main Statecharts model derived by the expert for scenario 4. Note that
this model is an AND state with three parallel substates: Initiation, Timing, and PowerState. Let
the sequence of transitions be (only the input events are shown): {switchPDCOn, POSTOk, tsinc,
VER OP MODE[In (Power)]}, where tsinc is an internal event. After such a sequence of transitions,
the COMPOSITE state SafeM PowerVer is entered and, within it, all behavior modeling activities
related to the process of switching PDC on (power on process) is considered.

After the verification of power on, this second sequence of transitions {ACT HW-Reset[In
(SafeM PowerOnOk)], start60s, POSTOk, tsinc, VER OP MODE[In (NoPower)]} allows the system
to enter into the COMPOSITE state SafeM ResetVer in order to verify whether the SWPDC
performed correctly the tasks related to the reset process. A better approach is to separate these
two test objectives into two distinct scenarios. SOLIMVA’s normal scenario 50 (Fig. 15 and Fig. 16)



38 Software Qual J

Table 18 A comparison between the expert and SOLIMVA approaches

Test Objectives Expert SOLIMVA

PDC initiation process 1 {OpMMgm, Init, -, -} = 43, 44, 45, 46, 47, 48, 49
Switching EPP Hxs on and off 2 {HwSwHnd, Safe, -, -} = 15, 16, 17, 18, 19, 20, 21
Changing software parameters in the Safety
Operation Mode

3 {HwSwHnd, Safe, Hk, -} = 16

Processes of Power On and Reset 4 {HwSwHnd, Safe, -, PwrOn} = 16
{HwSwHnd, Safe, -, Reset} = 17, 18
{OpMMgm, Safe, -, PwrOn} = 50, 53, 54, 55, 56
{OpMMgm, Safe, -, Reset} = 52

Scientific Data Acquisition and Transmission in
the Nominal Operation Mode

5 {DtAcqTx, Nom,Sci, -} = 71

Scientific Data Acquisition and Transmission
in the Nominal Operation Mode, Robustness
(command)

6 {DtAcqTx, Nom,Sci, -} = 71
{Inv, Nom,Sci, -} = 141

Houseekeeping Data Transmission in the
Nominal Operation Mode

7 {DtAcqTx, Nom, Hk, -} = 72

Houseekeeping Data Transmission in the
Nominal Operation Mode, Robustness
(reception), Load new programs

8 {DtAcqTx, Nom, Hk, -} = 72
{PrLoad, Nom, Load, -} = 109
{Inv, Nom, Hk, -} = 142

Dump Data of Program Memory in the
Nominal Operation Mode

9 {DtAcqTx, Nom, Dmp, -} = 73

Dump Data of Program Memory in the
Nominal Operation Mode, Robustness
(command and reception)

10 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Pages 0 - 3) in
the Nominal Operation Mode

11 bad strategy

Dump Data of Data Memory (Page 0) in
the Nominal Operation Mode, Robustness
(command and reception)

12 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 1) in
the Nominal Operation Mode, Robustness
(command and reception)

13 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 2) in
the Nominal Operation Mode, Robustness
(command and reception)

14 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 3) in
the Nominal Operation Mode, Robustness
(command and reception)

15 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Pages 4 - 7) in
the Nominal Operation Mode

16 bad strategy

Dump Data of Data Memory (Page 4) in
the Nominal Operation Mode, Robustness
(command and reception)

17 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 5) in
the Nominal Operation Mode, Robustness
(command and reception)

18 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 6) in
the Nominal Operation Mode, Robustness
(command and reception)

19 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143

Dump Data of Data Memory (Page 7) in
the Nominal Operation Mode, Robustness
(command and reception)

20 {DtAcqTx, Nom, Dmp, -} = 73
{Inv, Nom, Dmp, -} = 143



Software Qual J 39

Fig. 14 Expert’s scenario 4: main Statecharts model. Source: adapted from Santiago Júnior et al (2010)

addresses the power on process while SOLIMVA’s normal scenario 17 covers the reset process (Fig. 17,
Fig. 18, and Fig. 19).

The first difference among the models for expert’s scenario 4 and those for SOLIMVA’s scenarios 50
and 17 is the lack of parallelism in the models generated by SOLIMVA. Actually, all main Statecharts
models of all expert’s scenarios are AND states with parallel substates. We verified that presence of
parallel states is not very relevant in our case because we are addressing to automatically create models
for system and acceptance test case generation. In summary, we derive use case scenarios to stimulate
the IUT one command at a time. Parallelism is not relevant in this context. Note that this is entirely
different if we were to develop test cases based on models created by the development team in which
parallelism is very likely to occur, and important to be accounted for. With this characteristic, models



40 Software Qual J

Fig. 15 SOLIMVA’s normal scenario 50: main Statecharts model

Fig. 16 SOLIMVA’s normal scenario 50: Safety Operation Mode

generated by the SOLIMVA methodology are easier to read, and the translation from the Abstract
Test Suite into the Executable Test Suite is not complex either. Besides, the expert’s model missed



Software Qual J 41

Fig. 17 SOLIMVA’s normal scenario 17: main Statecharts model

one important transition that represents severe problems during the PDC initiation (initialization)
process (the self transition in the Initiation Operation Mode state in Fig. 15 and in Fig. 17).

The separation of test objectives into two different scenarios provides a clear benefit in terms
of strategy. Models generated for SOLIMVA’s normal scenario 50, which have associated the power
on verification, are very simple models. Checking whether the processes of power on and reset were
successful is by means of Housekeeping data where SWPDC adds information to form a log. Hence,
in the models for SOLIMVA’s normal scenario 50, the Safety Operation Mode COMPOSITE state
contains behavior to transmit Housekeeping data, i.e. the sequence of transitions {wait 600 seconds,
PREP-HK, Several TX-DATA-HK, TX-DATA-SCI-End} in Fig. 16. However, for reset process
addressed by SOLIMVA’s normal scenario 17, the Safety Operation Mode COMPOSITE state has
no such behavior because right after the initiation (initialization) process, the system shall be reset
(AC-HW-RESET[In(SOM.OBDH 4)] in Fig.17) returning to the Initiation Operation Mode state.
The behavior to transmit Housekeeping data appears in the Safety Operation Mode 2 COMPOSITE
state. Again, these differences favor simplicity. In order to contemplate these characteristics, the
expert’s models for scenario 4 were created with three hierarchy levels, say the main, the second and
the third levels, adding complexity to understand such models.



42 Software Qual J

Fig. 18 SOLIMVA’s normal scenario 17: Safety Operation Mode

Expert’s scenario 8 is another issue. In this case, the test objectives aimed at two completely and
unrelated goals such as Houseekeeping Data Transmission and loading new programs on the fly into
PDC’s Data Memory, and a third goal related to the robustness of SWPDC in situations where a
command is not entirely received by PDC (reception). Loading new programs on the fly is a complex
process in which the entire executable code is substituted for a new one during satellite operation.
Hence, SOLIMVA will certainly drive the test designer to separate these three test objectives leading
to a more coherent solution: normal scenario 72 “to transmit Housekeeping Data in the Nominal
Operation Mode” (also foreseen in expert’s scenario 7); normal scenario 142 “to address the problem
of incomplete reception of commands”; and normal scenario 109 “to load new program into PDC’s
Data Memory on the fly in the Nominal Operation Mode”. However, as mentioned earlier, normal
scenario 109 needs to be unfolded and contributes with 6 unfolded scenarios replacing this normal
scenario.

In Table 18, expert’s scenarios 11 and 16 are “marked” as bad strategy. Indeed, the test objective
related to expert’s scenario 11 is covered by expert’s scenarios 12 to 15. Similarly, the test objective
associated to expert’s scenario 16 is addressed by expert’s scenarios 17 to 20. In case of SOLIMVA,
the Dump Data service proposed in expert’s scenarios 9 to 20 is covered by unfolding normal scenario
73. In order to illustrate that, let us consider expert’s scenario 12 with the following test objectives:
“Dump Data of Data Memory (Page 0) in the Nominal Operation Mode”, “Robustness taking into
account problems (inconsistent values) within commands sent to PDC (command)”, and “Robustness
addressing problem of incomplete reception of commands (reception)”. The models related to expert’s
scenario 12 are shown in Fig. 20 and in Fig. 21.

In the COMPOSITE state NomM DmpPg0 (Fig. 21), the sequence of transitions {P DMP-
DataP0-7FFFH-BFFFH, TX DATA-Dmp} relates to the test objective “Robustness taking into
account problems (inconsistent values) within commands sent to PDC (command)”. P DMP-
DataP0-7FFFH-BFFFH is an abbreviation for the following command defined in the PDC-OBDH



Software Qual J 43

Fig. 19 SOLIMVA’s normal scenario 17: Safety Operation Mode 2

Communication Protocol Specification: PREPARE DUMP FROM PAGE 0 OF DATA MEMORY,
WITH INITIAL ADDRESS = 7FFFH AND FINAL ADDRESS = BFFFH. However, as shown in
Fig. 10, the minimum memory address allowed for all pages of the Data Memory is 8000h. Thus, this
command must not be processed by SWPDC due to the incorrect value of the initial address, i.e. lower
than the minimum memory address allowed, and the expected result is a timeout. If a TRANSMIT
DUMP DATA (TX DATA-Dmp) is then sent, SWPDC must respond NO DATA (NO DATA).

The sequence of transitions {P DMP-DataP0-8000H-BFFFH, TX DATA-Dmp 14-1, TX DATA-
Dmp 0, TX DATA-Sci} relates to the test objective “Dump Data of Data Memory (Page 0) in the
Nominal Operation Mode”. Now, the initial address has an acceptable value (8000h is equal to the
minimum memory address allowed) and data can be dumped normally from page 0. Then, SWPDC
responds with Dump Data (DMP DATA-RSC14-1 1111 and DMP DATA-RSC0 830 ).

The test objective “Robustness addressing problem of incomplete reception of commands
(reception)” is modeled by the following sequence of transitions: {P DMP-DataP0-8000H-BFFFH,
TX DATA-Dmp 14-1, TX DATA-Dmp 0, RET ANSW, TX DATA-Sci}. Note the expected result



44 Software Qual J

Fig. 20 Expert’s scenario 12: main Statecharts model. Source: adapted from Santiago Júnior et al (2010)

timeout due to the test input datum TRANSMIT LAST DUMP DATA (TX DATA-Dmp 0 ). The
test designer assumed that a problem, probably in the physical transmission medium, occurred
and only part of the command was received by SWPDC. The OBDH can then send a command
to RETRANSMIT THE LAST DATA RESPONSE (RET ANSW ). Note that the same three test
objectives apply to all other types of PDC’s memory, i.e. Program Memory (expert’s scenario 10) and
the remaining pages of the Data Memory (expert’s scenarios 13, 14, 15, 17, 18, 19, 20). The models
for these other expert’s scenarios are quite similar to the ones for expert’s scenario 12.

Let us see how the SOLIMVA methodology covers expert’s scenario 12. First, according to
Table 13, unfolded scenario 73.2 (note DtP0 in every factor combination) is the one that relates
to the Dump Data service from page 0 of the Data Memory. The set of factor combinations that
is interpreted for generating unfolded scenario 73.2 is: {DtP0, InRng, Min}, {DtP0, Min, InRng},



Software Qual J 45

Fig. 21 Expert’s scenario 12: NomM DmpPg0. Source: adapted from Santiago Júnior et al (2010)

{DtP0, Max, LessMin}, {DtP0, LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}.
All factor combinations except the second ({DtP0, InRng, Min}, {DtP0, Max, LessMin}, {DtP0,
LessMin, Max}, {DtP0, GreatMax, InRng}, {DtP0, Min, GreatMax}) drive the test designer to
add requirements in which inconsistent values of initial and/or final memory addresses are set. In
other words, {DtP0, InRng, Min} implies that the initial memory address is In Range (between
the Minimum and Maximum memory addresses allowed), and the final memory address is the
Minimum memory address allowed. Thus, the initial address is greater than the final address and
this is an incorrect setting. The conclusion is that these five factor combinations relate to the test
objective “Robustness taking into account problems (inconsistent values) within commands sent to
PDC (command)”.



46 Software Qual J

Nevertheless, the second factor combination ({DtP0, Min, InRng}) is consistent and it addresses
the test objective “Dump Data of Data Memory (Page 0) in the Nominal Operation Mode”. When
translating the Abstract Test Suite into the Executable Test Suite, the test designer can substitute
Min for 8000h (which is the only possible value for Min) and InRng for BFFFh, which is one of many
possible values for InRng. Then, the same initial and final memory addresses proposed in the model
for expert’s scenario 12 can be selected.

The set of NL requirements that characterize unfolded scenario 73.2 is shown in Table 19. The
combinatorial designs precisely direct the test designer to add requirements in accordance with the
factor combinations. NL requirement SRS022 has the command PREPARE DUMP FROM PAGE
0 OF DATA MEMORY, WITH INITIAL ADDRESS = INRNG AND FINAL ADDRESS = MIN
(PREP-DMP-DTP0-INRNG-MIN ). This requirement was added due to factor combination {DtP0,
InRng, Min}. NL requirements SRS023, SRS024, SRS025, SRS026, and SRS027 were added due to
factor combinations {DtP0, Min, InRng}, {DtP0, Max, LessMin}, {DtP0, LessMin, Max}, {DtP0,
GreatMax, InRng}, {DtP0, Min, GreatMax}, respectively.

Fig. 22 and Fig. 23 show the COMPOSITE state Nominal Operation Mode for SOLIMVA’s
unfolded scenario 73.2. The main Statecharts model is quite similar to the one generated for normal
scenario 71 (Fig. 11) as well as are similar the COMPOSITE states Safety Operation Mode and Safety
Operation Mode 2. The following sequences of transitions

∙ {PREP-DMP-DTP0-INRNG-MIN, not stop scientific datum acquisition, One TX-DATA-DMP,
TX-DATA-SCI-End},
∙ {PREP-DMP-DTP0-MAX-LESSMIN, not stop scientific datum acquisition, One
TX-DATA-DMP, TX-DATA-SCI-End},
∙ {PREP-DMP-DTP0-LESSMIN-MAX, not stop scientific datum acquisition, One
TX-DATA-DMP, TX-DATA-SCI-End},
∙ {PREP-DMP-DTP0-GREATMAX-INRNG, not stop scientific datum acquisition, One
TX-DATA-DMP, TX-DATA-SCI-End},
∙ {PREP-DMP-DTP0-MIN-GREATMAX, not stop scientific datum acquisition, One
TX-DATA-DMP, TX-DATA-SCI-End},

deal with situations where inconsistent values of initial and/or final memory addresses are accounted
for. They were created as a result of the addition of the requirements due to all factor combinations
except the second (Table 13). In these cases, all “expected results” related to commands PREPARE
DUMP FROM PAGE 0 OF DATA MEMORY (PREP-DMP-DTP0 ) are Timeout precisely because
of the wrong setting of addresses. These sequences of requirements address the test objective
“Robustness taking into account problems (inconsistent values) within commands sent to PDC
(command)”.

On the other hand, the sequence of transitions {PREP-DMP-DTP0-MIN-INRNG, stop scientific
datum acquisition, Several TX-DATA-DMP, TX-DATA-SCI-End} is consistent and it addresses the
test objective “Dump Data of Data Memory (Page 0) in the Nominal Operation Mode”. The second
factor combination was responsible for such sequence of transitions.

However, the test objective “Robustness addressing problem of incomplete reception of commands
(reception)” is not covered not only by unfolded scenario 73.2 but also by any other unfolded scenario
for other PDC’s memories (73.1, 73.3, 73.4, etc.). In order to solve this problem, factor combination
143 ({Inv, Nom, Dmp, -}) can be used. Its interpretation defines normal scenario 143 and it deals
with the incomplete reception of commands but considering all PDC’s memories, i.e. the Program
Memory and all pages of the Data Memory. This approach concentrates in a single scenario the



Software Qual J 47

Table 19 Set of NL requirements that characterize unfolded scenario 73.2. Caption: Req = Requirement; Id =
Identification

Req Id Req Description

SRS001 The PDC shall be powered on by the Power Conditioning Unit.
SRS002 The PDC shall be in the Initiation Operation Mode after being powered on. The SWPDC shall

then accomplish a POST. If PDC presents any irrecoverable problem, this computer shall remain
in the Initiation Operation Mode and such a problem shall not be propagated to the OBDH.

SRS003 If PDC does not present any irrecoverable problem, after the initiation process, the PDC shall
automatically enter into the Safety Operation Mode.

POCP001 The PDC can only respond to requests (commands) from OBDH after the PDC has been
energized for at least 1 minute. If OBDH sends commands within less than 1 minute, the OBDH
shall not receive any response from PDC.

RB001 The OBDH shall send VER-OP-MODE to PDC.
RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off independently,

when the OBDH sends distinct commands to perform such actions.
PECP001 Each EPP Hx can only respond to requests (commands) from PDC after each EPP Hx has been

energized for at least 30 seconds. If PDC sends commands within less than 30 seconds to a certain
EPP Hx, the PDC shall not receive any response from this EPP Hx.

RB003 The OBDH shall send CH-OP-MODE-NOMINAL to PDC.
RB001 The OBDH shall send VER-OP-MODE to PDC.
SRS022 Memory Dump data transmission shall start with PREP-DMP-DTP0-INRNG-MIN. In this case,

the SWPDC shall not stop scientific data acquisition from EPP Hxs. After that, the OBDH can
send One TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-SCI-End.

SRS023 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-INRNG. In this case,
the SWPDC shall stop scientific data acquisition from EPP Hxs. After that, the OBDH can send
Several TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-SCI-End.

SRS024 Memory Dump data transmission shall start with PREP-DMP-DTP0-MAX-LESSMIN. In this
case, the SWPDC shall not stop scientific data acquisition from EPP Hxs. After that, the OBDH
can send One TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-SCI-
End.

SRS025 Memory Dump data transmission shall start with PREP-DMP-DTP0-LESSMIN-MAX. In this
case, the SWPDC shall not stop scientific data acquisition from EPP Hxs. After that, the OBDH
can send One TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-SCI-
End.

SRS026 Memory Dump data transmission shall start with PREP-DMP-DTP0-GREATMAX-INRNG. In
this case, the SWPDC shall not stop scientific data acquisition from EPP Hxs. After that, the
OBDH can send One TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-
SCI-End.

SRS027 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-GREATMAX. In
this case, the SWPDC shall not stop scientific data acquisition from EPP Hxs. After that, the
OBDH can send One TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-
SCI-End.

RB004 The OBDH shall send CH-OP-MODE-SAFETY to PDC. After that, the PDC shall be in the
Safety Operation Mode.

RB002 The PDC shall switch each Event Pre-Processor (EPP Hx, x = 1 or 2) on or off independently,
when the OBDH sends distinct commands to perform such actions.

RB005 After switching both EPPHxs off via PDC, the OBDH shall switch the PDC off via the Power
Conditioning Unit.

aforementioned test objective instead of modeling in every scenario for each PDC’s memory as the
expert proposed. A sample of the set of NL requirements that characterize normal scenario 143 is
shown in Table 20.



48 Software Qual J

Fig. 22 SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 1)

In Table 20, NL requirements SRS017, POCP021, SRS013 relate to the incomplete reception of
commands when dumping data from the Program (PRG) Memory while SRS023, POCP021, SRS013



Software Qual J 49

Fig. 23 SOLIMVA’s unfolded scenario 73.2: Nominal Operation Mode (Part 2)

refer to page 0 of the Data Memory (DtP0). For the other pages of the Data Memory, it is enough
to change the first of the three requirements and repeat the other two. Fig. 24 shows a piece of
the COMPOSITE state Nominal Operation Mode for normal scenario 143 in which we can see the
transitions that cover the test objective “Robustness addressing problem of incomplete reception of
commands (reception)” when dealing with page 0 of the Data Memory (DtP0).

We have demonstrated how the SOLIMVA methodology adequately covered the test objectives
associated to the expert’s scenarios. As previously mentioned, the SOLIMVA methodology proposes a
better strategy with test objectives clearly separated according to the directives of the combinatorial
designs.



50 Software Qual J

Table 20 Sample of the set of NL requirements that characterize normal scenario 143. Caption: Req = Requirement;
Id = Identification

Req Id Req Description

... ...
SRS017 Memory Dump data transmission shall start with PREP-DMP-PRG-INRNG-INRNG. In this

case, the SWPDC shall stop scientific data acquisition from EPP Hxs. After that, the OBDH
can send Several TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-
SCI-End.

POCP021 The PDC may not receive a command sent in its entirety. After identifying the beginning
of a command frame, the PDC shall wait two times MAX-TRANSM-DELAY for the rest of
the command. If this stipulated time expires, a timeout shall occur, the PDC shall abort the
communication, the command shall be discarded, an event report shall be generated, and the
PDC shall wait for a new OBDH’s command.

SRS013 The SWPDC shall always maintain temporarily stored the last data response sent to the OBDH
because the OBDH can demand the retransmission of this last data response.

SRS023 Memory Dump data transmission shall start with PREP-DMP-DTP0-MIN-INRNG. In this case,
the SWPDC shall stop scientific data acquisition from EPP Hxs. After that, the OBDH can send
Several TX-DATA-DMP to PDC. The transmission shall be ended with TX-DATA-SCI-End.

POCP021 The PDC may not receive a command sent in its entirety. After identifying the beginning
of a command frame, the PDC shall wait two times MAX-TRANSM-DELAY for the rest of
the command. If this stipulated time expires, a timeout shall occur, the PDC shall abort the
communication, the command shall be discarded, an event report shall be generated, and the
PDC shall wait for a new OBDH’s command.

SRS013 The SWPDC shall always maintain temporarily stored the last data response sent to the OBDH
because the OBDH can demand the retransmission of this last data response.

... ...

Our second goal was also achieved. We examined the Executable Test Cases generated based on the
expert’s and SOLIMVA’s models. For instance, consider expert’s scenario 5 whose main Statecharts
model is shown in Fig. 25. As we have already discussed, this scenario is covered by SOLIMVA’s
normal scenario 71 whose models were previously shown (Fig. 11, Fig. 12, and Fig. 13). Choosing the
all-transitions test criterion, there is only one Executable Test Case that composes the Executable
Test Suite based on the expert’s model:

{switchPDCOn/start60s, POSTOk/null, endtime/null, VER OP MODE/INFO OP MODE,
ACT HW-EPP1On/CMD REC, ACT HW-EPP2On/CMD REC, start30s/null, endtime/null,
CH OP MODE-Nominal/CMD REC, VER OP MODE/INFO OP MODE, start10s/null,
endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA,
start10s/null, endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null,
TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA, start10s/null,
endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA,
start10s/null, endtime/null, TX DATA-Sci/SCI DATA, start10s/null, endtime/null,
TX DATA-Sci/SCI DATA, start10s/null, endtime/null, TX DATA-Sci/SCI DATA,
ACT HW-EPP2Off/CMD REC, ACT HW-EPP1Off/CMD REC, switchPDCOff/null}.

In order to compare the Executable Test Cases of both approaches, let us consider Table 21.
Columns Expert and SOLIMVA show the test steps of the Executable Test Cases based on the
expert’s and SOLIMVA’s strategies, respectively. Notice that all test steps of the single Executable
Test Case of the expert’s approach were satisfactorily covered by the three Executable Test Cases
by employing SOLIMVA. Besides, SOLIMVA provides several benefits over the expert’s approach.



Software Qual J 51

Fig. 24 SOLIMVA’s normal scenario 143: a piece of the COMPOSITE state Nominal Operation Mode

First, the test steps {start30s/null, endtime/null} of the expert’s approach were covered by a more
detailed set of test steps. These test steps were based on NL requirement PECP001 (Table 14):

Each EPP Hx can only respond to requests (commands) from PDC after each EPP Hx has
been energized for at least 30 seconds. If PDC sends commands within less than 30 seconds
to a certain EPP Hx, the PDC shall not receive any response from this EPP Hx.

In case of the expert’s approach, all the test designer should do is start a timer and wait 30
seconds. After this time interval, the PDC can begin to request data (Scientific, Test, Diagnosis)
from EPP Hxs under OBDH request. However, the Abstract Test Cases derived by SOLIMVA
contain the following test step from PECP001: {only respond request/null + have be energize least



52 Software Qual J

Fig. 25 Expert’s scenario 5: main Statecharts model. Source: adapted from Santiago Júnior et al (2010)

30 seconds/null + send command/null + not receive response/null} (Table 16). When looking at
these input / output pairs, the test designer realized that there are more relevant behaviors to be
considered in the Executable Test Case, say the fact that if an EPP Hx receives commands within
less than 30 seconds, the PDC shall not receive any response from this EPP Hx. Although this
requirement is more related to EPP Hxs, it is important to verify whether PDC (SWPDC) acts
adequately in such a situation. Then, instead of only waiting 30 seconds to start interacting with
EPP Hxs, the test designer translated the abstract input / output pairs into a set of executable test
input data / expected result aiming at the transmission of Test (TST) Data (one of the three types
of data generated by EPP Hxs) within less than 30 seconds after each EPP Hx has been powered on



Software Qual J 53

(ACT-HW-EPPH1ON, ACT-HW-EPPH2ON ). As shown in Table 21, when the OBDH asks PDC
to transmit Test Data (TX-DATA-TST ) the expected result is no data (NO-DATA) because EPP
Hxs are not yet available for communication. This improvement in the Executable Test Case due to
the SOLIMVA methodology shows that looking at the Abstract Test Cases is more interesting rather
than looking at a set of NL requirements in deliverables because the Abstract Test Cases provide a
concise notation and emphasize the most relevant NL sentences, and some command/responses of
Communication Protocol Specifications (in this particular case study) so that the test designer can
derive more suitable Executable Test Cases.

Table 21 A comparison between expert’s and SOLIMVA’s Executable Test Suites. Caption: #ETC-E/-S = number
of Executable Test Case within the Executable Test Suite derived by the expert (E) and SOLIMVA (S) approaches

#ETC-E Expert #ETC-S SOLIMVA

1 switchPDCOn/start60s 1, 2 Action1, Action3
1 POSTOk/null 2 Action2
1 endtime/null 2 Action3
1 VER OP MODE/INFO OP MODE 2 VER-OP-MODE/INFO-OP-MODE
1 ACT HW-EPP1On/CMD REC 2 ACT-HW-EPPH1ON/CMD-REC
1 ACT HW-EPP2On/CMD REC 2 ACT-HW-EPPH2ON/CMD-REC
1 start30s/null, endtime/null 2 PREP-TST/CMD-REC, Action4,

TX-DATA-TST/NO-DATA, TX-
DATA-TST/NO-DATA, TX-DATA-
SCI/NO-DATA, Action5

1 CH OP MODE-Nominal/CMD REC 2 CH-OP-MODE-NOMINAL/CMD-
REC

1 start10s/null, endtime/null, TX DATA-
Sci/SCI DATA

2 Action4, TX-DATA-SCI/SCI-DATA

1 ACT HW-EPP2Off/CMD REC 2 ACT-HW-EPPH2OFF/CMD-REC
1 ACT HW-EPP1Off/CMD REC 2 ACT-HW-EPPH1OFF/CMD-REC
1 switchPDCOff/null 3 Action7
- - 1 Action6
- - 2 VER-OP-MODE/Timeout
- - 2 Action5, PREP-HK/CMD-REC,

TX-DATA-HK/HK-DATA, TX-
DATA-SCI/NO-DATA

- - 2 CH-OP-MODE-SAFETY/CMD-
REC, VER-OP-MODE/INFO-OP-
MODE

Although all test steps of the expert’s Executable Test Case are addressed by SOLIMVA’s
Executable Test Suite, the opposite is not true. One very important test step missed in the expert’s
Executable Test Case is Action6 which deals with severe problems during the PDC initiation
(initialization) process. This test step relates to the translation of the self transition be#then
accomplish post#present irrecoverable problem#/null in the Initiation Operation Mode state (Fig. 11,
Fig. 15, and Fig. 17). As presented in Fig. 25, no self transition exists in the state that represents
the Initiation Operation Mode (IniM POST ) in the expert’s model. Then, we must not expect that
any expert’s Executable Test Case covers this behavior. The automated reading of NL requirements
and the translation from the Abstract Test Suite into the Executable Test Suite make SOLIMVA an



54 Software Qual J

interesting solution to minimize problems related to the incomplete creation of models for Model-
Based Testing.

Another situation that is not present in the expert’s Executable Test Suite is verifying the behavior
of PDC if a command is sent by the OBDH within less than 1 minute since PDC has been energized
(VER-OP-MODE/Timeout). This behavior relates to NL requirement POCP001 (Table 14).
Furthermore, it is interesting to check some Housekeeping Data ({Action5, PREP-HK/CMD-REC,
TX-DATA-HK/HK-DATA, TX-DATA-SCI/NO-DATA}) before entering into the Nominal Operation
Mode in order to request Scientific Data. Finally, the expert’s model did not consider the fact that in
order to switch PDC off, it is recommended (there are requirements related to this recommendation)
to put PDC in the Safety Operation Mode ({CH-OP-MODE-SAFETY/CMD-REC, VER-OP-
MODE/INFO-OP-MODE}). Hence, states SafeM EPP1OnEPP2OffSD and SafeM EPPsOffSD in
Fig. 25 are incorrectly named as being in the Safety Operation Mode (SafeM ). Although this last
issue might not be a huge problem for Statecharts model-based test case generation (more explanation
about this in Section 6), again we show that the SOLIMVA methodology presents advantages over
the expert’s (manual) approach.

The conclusion is that the Executable Test Cases derived in accordance with the SOLIMVA
methodology not only possessed similar characteristics with the expert’s Executable Test Cases but
also predicted behaviors that did not exist in the expert’s strategy. Then, the models automatically
created by the SOLIMVA methodology/tool are suitable for generating test cases. The suitability
of the models are relevant because the test criteria used for test case generation based on FSMs
and/or Statecharts are basically state-transition traversal rules. If the model is poorly developed, the
Executable Test Cases might dictate a sequence of stimuli that are incoherent and in many situations
impossible to be executed taking into account the real system.

6 Discussion

This section presents general remarks about the SOLIMVA methodology and its supporting tool.
Each activity of the SOLIMVA methodology requires some sort of manual intervention but most of
these activities have also a degree of automation. However, it is important to emphasize that in any
initiative related to Software Testing Automation, human aspect is still very relevant. Even though
there are lots of commercial and open source tools and frameworks available for this purpose, in
almost all cases human interventions are still necessary to analyze test cases created by a tool, to
evaluate coverage of test cases, to provide the expected result of the test cases, to verify whether a
verdict was correctly asserted by an automated oracle, to generate models in a model-based approach,
and so on. With respect to the activities of the SOLIMVA methodology (Fig. 3), the degree of manual
intervention and automation is as follows:

1. Define and Input Dictionary, Update Dictionary. As we have previously pointed out, the test
designer needs only to define and input, via SOLIMVA’s Graphical User Interface, the Name (N)
set, the Reactiveness (R) function, and the Hierarchy (STM .Y ) function. The other sets of the
Dictionary (Control, Self Transition) and any other auxiliary sets, for instance the sets that help
in the generation of the BSAO tuples (Subsection 4.1), do not need to be changed and do not
require manual intervention. Besides, the test designer does such a definition entirely in NL and
thus no formalism is imposed to him/her;



Software Qual J 55

2. Define Scenarios. The test designer must select factors and levels and interpret the factor
combinations to derive scenarios. However, the factor combinations are automatically generated
by an open source tool, TConfig;

3. Select and Input NL Requirements. This is done manually by the test designer. But, handling of
NL requirements is automatically accomplished by the SOLIMVA tool;

4. Generate Model, Clear Requirements and Model. These two activities are completely and
automatically performed by the SOLIMVA tool. The test designer needs only to start these
activities via SOLIMVA’s Graphical User Interface;

5. Generate Abstract Test Cases. This is automatically accomplished by the GTSC tool. The user
needs only to start this activity via GTSC’s Graphical User Interface;

6. Generate Executable Test Cases. This is done by the test designer.

SOLIMVA requires the test designer basically three types of efforts. First, it is the creation of
a Dictionary which defines the application domain. However, from the point of view of test case
generation addressing system and acceptance testing, in several situations the name of states in the
Statecharts models are not very relevant. What matters is the input event / output event within the
transitions in the Statecharts model that will be translated into test input data / expected result in
the Executable Test Suite. Hence, the cardinality of the Name set does not need to be high. Moreover,
as SOLIMVA uses the “divide and conquer” approach, i.e. splitting the interactions with the IUT
into smaller scenarios, it is not mandatory to define an extensive Hierarchy function (ordered pairs)
in order to predict different types of COMPOSITE states. Hence, cardinalities of the domain (Y.IP )
and codomain (Y.OP ) of STM .Y do not need to be high either.

The Reactiveness function might or might not be huge. It depends on the way the deliverables are
written. For instance, the SWPDC’s Software Requirements Specification has several NL requirements
where the commands defined in the PDC-OBDH Communication Protocol Specification are explicitly
mentioned. Commands such as PREPARE HOUSEKEEPING DATA which we, for simplicity,
abbreviated to PREP-HK, and TRANSMIT HOUSEKEEPING DATA abbreviated to TX-DATA-
HK. In such situations, the test designer may prefer to add the ordered pair (command, response)
in the Reactiveness function in order to make it easier the translation from the Abstract Test Suite
into the Executable Test Suite. The explanation for this fact is that, since the ordered pair is in the
Reactiveness function, it is very probable that they appear in the Statecharts (abstract) model and
thus they will be part of the Abstract Test Cases. Since commands are executable then the translation
from the abstract perspective into the executable one is simple.

However, if a requirements specification for space or other application domain has no explicit
mention to low level commands or name of methods (functions) then the Reactiveness function may
not have many ordered pairs. In this case, the input events of the transitions of the Statecharts
model are pieces of NL sentences such as only respond request, have be energize least 1 minute, and
the test designer shall translate them into executable test input data / expected results. Finally, the
Dictionary is important because the lack of domain knowledge limits the applicability of systems
based on unrestricted NL requirements (Ambriola and Gervasi, 2006).

The second type of effort is the need to translate Abstract Test Suites into Executable Test Suites.
However, it is more interesting for the test designer to analyze a set of input / output pairs within
the Abstract Test Cases and identify test input data / expected results of the Executable Test Suite
rather than trying to find out what are the elements of a Executable Test Case directly from NL
requirements documents. Besides, most of the translations accomplished for one scenario are reusable
for other scenarios.



56 Software Qual J

One may assert that the need to translate Abstract Test Suites into Executable Test Suites is a
disadvantage of the SOLIMVA methodology. The point is that if the model is precise enough, some
Model-Based Testing tools, including our GTSC tool, enable the generation of directly Executable
Test Cases. Then, there would be no need to make such a translation. However, if we consider NL
requirements deliverables like the ones in the SWPDC case study then it is important to realize
that if a model has enough information so that a Model-Based Testing tool can generate Executable
Test Cases it is because the test designer has translated from the NL requirements into the notation
accepted by the tool before using the tool itself. To the best of our knowledge, there is no Model-
Based Testing tool that can accept pure NL requirements documents and can, without any assistance
from the user, generate directly Executable Test Suites. In other words, the translation from the
abstract level into the executable level is manually done by the test designer before or after using
the Model-Based Testing tool. In our case, we decided to make such a translation after using GTSC
because we would like to use NL requirements as closely as possible in their original form due to the
fact that this is a more realistic approach.

The last type of effort is the definition of scenarios by using combinatorial designs. This is without
any doubt the most demanding effort. The test designer must not only define the factors and their
respective levels but also to interpret the factor combinations to create the scenarios. He/she must
decide whether a level must or must not be discarded in a certain factor combination and provide
a set of scenarios that can cover most of the relevant interactions with the IUT. However, this is
one of the main roles of a test designer within a Testing Team and such a professional must have a
significant knowledge of the application domain to perform scenarios identification. But, knowledge
of the application domain is mandatory: we can not envisage a test designer producing effective test
cases with no or little expertise in the application domain. In short, SOLIMVA essentially requires
the designer that he/she knows the application domain.

Another important observation refers to the strategy of separation of test objectives proposed
by the SOLIMVA methodology as we have shown in Subsection 5.1. The question is whether the
fact of disjoining behaviors, related to test objectives, as proposed by the methodology will not
result in sets of Executable Test Cases that do not take into account each individual behavior. This
particularly relates to Robustness testing. The approach of combinatorial designs coupled with the
expertise of the test designer in the application domain can avoid this kind of situation. For example,
recall that the three test objectives of the expert’s scenario 12, two of them related to Robustness
testing, were covered by SOLIMVA as follows: two of the test objectives were addressed by unfolded
scenario 73.2, and one by normal scenario 143. As a matter of fact, for instance, there are 35 factor
combinations derived by the combinatorial designs algorithm with Inv as the level for the command
(Cmd) factor. Therefore, there are 35 normal scenarios to address problems like inconsistent values
within the command frames, incomplete reception of commands or any other robustness feature the
test designer might wish. These 35 scenarios spread over different PDC’s operation modes (OpMode),
Services, ways of initializing PDC (StartMode).

Although the SOLIMVA methodology proposes differently, the test designer may not want to
separate test objectives and/or to neglect the interpretation of a level within a factor combination.
Considering the SWPDC case study, the factor combination 170 is: {Inv, Inv, Hk, Reset}. One
interpretation would generate normal scenario 170 as follows: “verification of behavior of SWPDC
when receiving commands with inconsistent values or receiving commands incompletely, changing
PDC’s operation mode to an unspecified operation mode, generation, formatting, and transmission of
Housekeeping Data, and verification of the reset process of PDC.” The many unrelated test objectives
denote a bad approach. But, the decision is up to the test designer.



Software Qual J 57

Regarding scalability, the number of normal and unfolded scenarios derived by the test designer
can be huge if too many factors and/or levels were selected. It is up to the test designer to choose
the adequate number of factors and levels so that too many scenarios are not created. For instance,
the level HwSwHnd is related to handling of hardware and software parameters. We could break this
level into two, one for hardware parameters and other for software parameters. We decided to join
these two features into one level precisely to decrease the number of scenarios.

Although the number of scenarios and consequently Statecharts models and Executable Test
Suites can be huge, it is nowadays very common the use of frameworks and/or tools to automate the
execution of test cases. We designed and implemented another tool to automate both system and
acceptance test case execution and test process documentation generation (Santiago et al, 2008a).
This tool has proven successful in shortening test case execution time in the context of Regression
testing.

In order to generate model-based test cases using the SOLIMVA methodology for a different
IUT in the space domain, other than the SWPDC software product, or even in other application
domain, the user shall then repeat the activities proposed by the methodology taking into account
the degree of manual intervention and automation as described earlier in this section. In other words,
he/she shall define a new Dictionary (the Name (N) set, the Reactiveness (R) function, and the
Hierarchy (STM .Y ) function), define new scenarios (by choosing factors and levels, running the tool
that has implemented the combinatorial designs algorithm, and interpreting the factor combinations
to generate the scenarios), select and input a set of NL requirements which together characterize a
single scenario, update the Dictionary (if needed), generate new Statecharts models (by using the
SOLIMVA tool), generate Abstract Test Cases (by using the GTSC tool), translate the Abstract Test
Cases into Executable Test Cases, and repeat this process, from the Select and Input NL Requirements
activity, for all remaining scenarios.

Particularly for a different application within space domain, the amount of rework to apply
SOLIMVA tends to be lower than in other application domains due to general similarities of the
software products. For instance, the concept of operation mode is common to both the Space Segment
and Ground Segment (ECSS, 2008) systems/subsystems. As we could see in the SWPDC case study,
PDC’s operation modes were elements of the Name (N) set, and they were also in the ordered pairs
of the Hierarchy (STM .Y ) function.

It is not in the scope of our work to conduct a study on cost and effectiveness of test suites
generated by Model-Based Testing approaches. Particularly, the effectiveness of model-based test
suites generated by Statecharts and FSMs is heavily dependent on two aspects. First, the model
must be suitable enough in order to derive the generation of coherent Executable Test Suites. In the
SWPDC case study, we showed that the models created by SOLIMVA were even superior in some
respects than the models manually developed by an expert. The second point is the choice of the test
criteria. This is an open issue in the academic community. Comparisons of fault detection effectiveness
of some FSM (Sidhu and Leung, 1989; Souza, 2010) and Statecharts (Antoniol et al, 2002; Briand
et al, 2004) test criteria have been published but there is no definite answer with respect to this issue.
SOLIMVA does not address this second point.

Threats to external validity (Basili et al, 1996) exist with respect to the SOLIMVA methodology.
Threats to external validity imply limitations to generalizing the results. We have applied the
methodology to only one case study which is not enough. Another point is the fact that the
methodology has been applied by only one of the authors of this paper, thus an expert in SOLIMVA.

The algorithm for automated detection of BSAO tuples (Fig. 7) is not general enough to work
out with all NL sentences. However, it is important to stress that there are guidelines to elaborate



58 Software Qual J

NL requirements in space application product development. For instance, the European Cooperation
for Space Standardization (ECSS) has a standard to write Technical Requirements Specifications
(ECSS, 2009). Among other features, this standard provides “recommendations for the wording of
requirements” stating how to write requirements, how modal verbs should be used, and terms to be
avoided within the NL requirements. Directives like this and our experience in the space application
domain drove the design and implementation of the BSAO tuples generation algorithm.

Our approach is limited by the external tools that we used. For instance, as any other POS tagger
tool, the Stanford POS tagger is not 100% free of failures. We rely on its output to identify the BSAO
tuples. Let us consider the following requirement:

The SWPDC shall format scientific data from each EPP Hx (x = 1 or 2).

The Stanford POS tagger recognizes “format” as a common noun, singular or mass (POS tag
“NN”) instead of a verb, base form (POS tag “VB”). This is a problem that we must not try to solve.
It is not in the scope of our work to develop a new POS tagging algorithm and tool to identify lexical
categories of words: there are many of them available, and our idea was to use a publicly available
POS tagger (Stanford) to help with our main goal which is to generate the Statecharts models from
NL aiming at system and acceptance model-based test case generation.

The following advantages should be emphasized if a test designer decides to apply the SOLIMVA
methodology and its supporting tool rather than relying on a completely manual ad hoc strategy like
the expert’s approach discussed in Subsection 5.1:

1. Compared to other formal methods, FSMs and Statecharts are relatively easy to understand.
The SOLIMVA methodology aims precisely to avoid that a test designer, who is not experienced
even with these simple modeling techniques, needs to develop the models from scratch. We have
observed that professionals from aerospace application domain and graduate students find it
difficult in translating pure NL Software Requirements Specifications into Statecharts or FSMs
models in order to address system and acceptance testing. SOLIMVA requires the user to define
the application domain, by means of a Dictionary, and scenarios. However, the methodology and
its supporting tool provide a “first” model so that the test designer can start working. If the
test designer does not feel comfortable with the model, he/she can try to improve it (manual
refinement);

2. We have previously stated that the translation from the abstract level into the executable level is
somehow manually accomplished by the test designer before or after using a Model-Based Testing
tool. SOLIMVA proposes to make such a translation after using the tool (GTSC) in order to
use NL requirements as closely as possible in their original form due to the fact that this is a
more realistic approach. In addition, verifying a set of input / output pairs within the Abstract
Test Cases rather than directly looking at NL requirements documents is a more feasible way to
perform the translation from the Abstract Test Suite into the Executable Test Suite. Moreover,
the Abstract Test Cases provide a concise notation and emphasize the most relevant NL sentences,
allowing the test designer to generate more suitable Executable Test Suites;

3. The SOLIMVA methodology and its supporting tool allow to automatically start reading NL
requirements. This fact added to the translation from the Abstract Test Suite into the Executable
Test Suite make our methodology an interesting solution to minimize problems related to the
incomplete/inconsistent creation of models for Model-Based Testing;

4. SOLIMVA suggests a precise, systematic and mathematical-based solution to identify scenarios
for system and acceptance test case generation by means of combinatorial designs;



Software Qual J 59

5. The separation of test objectives proposed by SOLIMVA results in a set of scenarios with goals
more closely related and therefore a better strategy is achieved.

7 Related work

This section will be divided into three subsections as follows.

7.1 Model-Based Testing

This subsection will provide an overview of works related to Model-Based Testing. We follow the
definition of Model-Based Testing given in Section 1.

Briand and Labiche (2002) presented the Testing Object-orienTed systEms with the unified
Modeling language (TOTEM) approach based on UML diagrams addressing functional system testing.
Test requirements are derived from use case diagrams, use case descriptions, interaction diagrams
(sequence or collaboration) associated with each use case, and class diagrams (composed of application
domain classes and their contracts).

FSMs (Lee and Yannakakis, 1996) and Statecharts (Harel, 1987; Harel et al, 1987) are a few
examples of modeling techniques commonly used for testing. Simplicity is one of the key advantages
in using FSM and this technique has been in use for modeling reactive systems and protocol
implementations for a long time. Once an IUT is modeled as a state-transition diagram representing
an FSM, several test criteria like Transition Tour (TT), DS, UIO (Sidhu and Leung, 1989), W
(Chow, 1978), switch cover (1-switch) (Pimont and Rault, 1976), and state counting (Petrenko and
Yevtushenko, 2005) can be used to generate test cases.

A Model-based approach to generate a set of conformance test cases for interactive systems was
proposed by Paradkar (2003). The approach presents extensions to both the Category-Partition
method (Ostrand and Balcer, 1988) and the Test Specification Language (TSL) (Balcer et al, 1989).
Test case generation is based on the extraction of a Finite State Automaton (FSA) from a specification
written in an extended version of TSL, known as Specification and Abstraction Language for Testing
(SALT).

An algorithm that generates a partition of the input domain from a Z specification was introduced
by Hierons (1997). This partition can be used both for test case generation and for the production of
an FSA. This FSA can then be used to control the testing process. This method generates a large FSA
making this approach difficult for test case generation addressing large software systems (Paradkar,
2003).

Conformance and Fault Injection (CoFI) is another model-based test case generation methodology
(Ambrósio et al, 2007). In CoFI, the system behavior is partially represented in state-transition
diagrams representing FSMs, and test cases are generated based on such FSMs. The methodology
requires the test designer first the identification of a set of scenarios (services) to stimulate the IUT,
and then the precise definition of the IUT’s interfaces. CoFI is basically a use case-based testing
approach (Frohlich and Link, 2000; Bertolino and Gnesi, 2003) with some emphasis in hardware fault
tolerance. One limitation of CoFI is not to provide precise guidelines for the test designer to identify
the usage scenarios (services): the test designer must do it on an ad hoc basis.

Several approaches have been proposed to generate test cases based on Statecharts. Binder (1999)
adapted the W test criterion to a UML context and named it round-trip path testing, in which



60 Software Qual J

flattening a Statecharts model is a prerequisite before using the criterion itself. Santiago et al (2006)
proposed a methodology to transform hierarchical and concurrent Statecharts into FSMs in order to
generate test cases, with the support of the PerformCharts tool (Vijaykumar et al, 2006).

The Statechart Coverage Criteria Family (SCCF) was proposed by Souza (2000). It is a family of
testing coverage criteria for Statecharts models. Test requirements established by the SCCF criteria
are obtained from the Statecharts reachability tree (Masiero et al, 1994). Antoniol et al (2002)
presented a study whose main goal was to analyze cost and efficiency of the Binder’s round-trip
path criterion. Briand et al (2004) showed a simulation and a procedure to analyze cost and efficiency
among three test criteria proposed by Offutt and Abdurazik (1999) and the very same round-trip
path.

A system testing approach to coverage of elementary transition paths was proposed by Sarma and
Mall (2009). The technique relies on the derivation of a System State Graph (SSG) based on UML
2.0 use case, sequence, and Statecharts models. The test criterion which their method aims to satisfy
is transition path coverage which states that each elementary transition path p of the SSG must be
covered at least once by a test suite T . Sarma-Mall’s work presents some limitations but the most
severe of all relates to the the fact that a loop is either not executed at all or it is executed only once.
Thus, the authors did not address one of the major problems in path testing: in general, a program
containing loops will have an infinite or undetermined number of paths (Howden, 1976).

As mentioned in Section 3, GTSC is an environment that allows test designers to model software
behavior using Statecharts and/or FSMs in order to automatically generate test cases based on some
test criteria for FSM and some for Statecharts (Santiago et al, 2008b). We have been developing and
using it in the context of research projects. Recently, we have been working in a proposal for combining
Statechart-based and Z-based testing (Cristiá et al, 2010). GTSC has been used in conjunction with
the Fastest tool (Cristiá and Monetti, 2009) in order to meet this goal.

Hierons et al (2009) published a survey which described formal methods, software testing, and a
number of ways in which a formal specification can be used in order to assist testing. They divided
formal specification languages into several categories, among others Model-Based Languages (e.g.
Z(Spivey, 1989)), Finite State-Based Languages (e.g. FSM7(Lee and Yannakakis, 1996), Statecharts
(Harel, 1987)), and Process Algebra State-Based Languages (e.g. Communicating Sequential Processes
(CSP) (Hoare, 1985)). They concluded that “software testing benefits from the presence of a formal
specification in a number of important ways. In particular, the presence of a formal specification aids
test automation and allows the tester to reason about test effectiveness”.

The SOLIMVA methodology relies on the GTSC environment in order to generate test cases.
However, an important feature of our methodology is to provide a formal manner, by means of
combinatorial designs, to identify scenarios for system and acceptance test case generation.

7.2 Software testing based on NL requirements

We found only one publication in the literature that proposed to generate test cases starting from
NL requirements: Text Analyzer (Sneed, 2007). It is a tool that supports black box testing and it
is intended to be used for system and acceptance testing. Text Analyzer needs heavy intervention
from the user to define the application domain. The tool first scans the text in order to identify
all nouns. These nouns are displayed to the test designer who decides which ones are considered

7 Traditionally, an FSM is seen as a computational model and not as a language (Hopcroft and Ullman, 1979).



Software Qual J 61

pertinent objects of the IUT. Such objects are in turn the elements the test cases relate to. This
task can be very time-consuming depending on the complexity of the requirements specification. The
user must also identify keywords used in the requirements text (e.g. INPT = this word indicates a
system input). This is another activity that seems to require considerable time and that can make the
approach less attractive, especially considering complex NL requirements documents. Moreover, Text
Analyzer does not make use of formal methods (languages, models) and their benefits with respect
to test case generation like the SOLIMVA methodology proposes.

7.3 Translation of requirements

This subsection presents some works related to the translation of requirements from one notation into
a different notation. In particular, approaches that translate NL requirements into formal methods
can be quite convenient because they relieve professionals of the cost of learning a formal method
but, at the same time, provide the requirements converted so that tools may be used aiming at
Model-Based Testing and Formal Verification.

CIRCE is an environment that supports modeling and analysis of requirements described in NL
(Ambriola and Gervasi, 2006, 1997). The tool parses and transforms NL requirements into a forest of
parse trees. To do that, CIRCE uses a domain-based parser called CICO. By defining requirements
in accordance with the formal model embedded in CIRCE, the tool can generate models like state-
transition diagrams allowing the user to analyze problems in requirements.

CIRCE seems to be a remarkable tool. However, the greatest issue related to CIRCE is the easiness
to express the domain. In other words, application domain must be expressed by a user by means of
designations and definitions which, in turn, must be written using a formal syntax. A Requirements
Engineer must declare designations using lots of tags and he/she must perform a deep analysis of
the NL requirements to accomplish that. The need to write Model, Action, Substitution (MAS) rules,
which are formal rules that drive the CICO’s parsing algorithm, can be a significant obstacle for
practitioners who are not specialized in the tool and wish to use it.

The Natural Language - Object Oriented Production System (NL-OOPS) is a tool that supports
analysis of unrestricted NL requirements by extracting the classes and their associations for use
in creating class models (Mich, 1996). The unrestricted NL analysis is obtained using as a core
the NL processing system Large-scale, Object-based, Linguistic Interactor, Translator, and Analyser
(LOLITA) (Morgan et al, 1995). However, the lack of domain knowledge is a limiting factor for
using systems based on unrestricted NL requirements taking into account real and complex projects
(Ambriola and Gervasi, 2006).

Kim and Sheldon (2004) presented a method that models and evaluates NL software requirements
specifications using the Z formal language and Statecharts. Their method transforms a NL
specification into a Z specification which in turn derives the Statecharts models (actually,
State/Activity charts). The goal was to analyze the integrity of a specification in terms of
completeness, consistency, and fault-tolerance. Their work presented some interesting results but
the transformations proposed were heavily dependent on human skill, and there is no evidence that
a tool was developed to automate the defects detection.

Gervasi and Zowghi (2005) proposed a formal framework for identifying, analyzing, and managing
inconsistency in NL requirements derived from multiple stakeholders. A prototype tool, CARL, was
developed and they focused on a particular kind of inconsistency, logical contradiction. The authors



62 Software Qual J

claim that the framework supports the detection of both explicit and hidden inconsistencies8. For
dealing formally with inconsistency, first requirements expressed in controlled NL are automatically
parsed and translated into propositional logic formulae. Once the specification is represented as
sets of propositional logic formulae, a theorem prover and a “model checker”9 are used aiming at
detecting inconsistencies. Despite these remarkable features, and as well as CIRCE (Ambriola and
Gervasi, 2006), CARL suffers from the same problem regarding the likely need to write new MAS
rules depending on the domain.

Attempto Controlled English (ACE) is a controlled NL specifically constructed to write
specifications (Fuchs et al, 1999, 2000). ACE is a subset of standard English, and its specifications
are computer-processable and can be translated into first order logic. Although it is claimed that
ACE combines NL with formal methods, and it is easier to learn and use than formal languages, the
language is very restricted. Very restricted versions of NL are often comparable to formal languages
with NL-like keywords (Ambriola and Gervasi, 2006). This fact may limit the applicability of ACE
in real projects.

Liang and Palmer (1994) discussed the correspondence between NL requirements sentence
structure patterns and events/transitions concepts in state-transition diagrams representing Extended
FSMs. The goal was how to extract events and transitions from conditional sentences. In order to
support such extraction, a pattern matching and clustering-based approach was proposed. There
was no tool to automate this approach. The identification of events/conditions/actions per se is
accomplished manually by the user by examining clusters.

Fraser et al (1991) proposed to bridge the gap between informal and formal requirements
specification languages. They used Structured Analysis (SA), by means of Data Flow Diagrams
(DFDs), and the Vienna Development Model (VDM) as surrogates for informal and formal languages,
respectively. This proposal did not start the translation directly from NL requirements.

Lu et al (2008) presented the Model-driven Object-oriented Requirement Editor (MOR Editor), a
tool that supports requirement document modeling and model-driven document editing. It is possible
to transform the informal (NL) requirements into Model-based OO Requirement Models (MOORMs),
templates from which software requirements can be instantiated. Their approach lacks mathematical
formalism and the translation from NL requirements into MOORMs is not straightforward.

Java Requirement Analyzer (J-RAn) is a tool that implements a Content Analysis technique to
support the analysis of inconsistency and incompleteness in NL requirements specifications (Fantechi
and Spinicci, 2005). Based on the NL document, this technique explores the extraction of the
interactions between the entities described in the specification as Subject-Action-Object (SAO) triads.
These SAO triads are obtained with the help of the Link Grammar Parser (Sleator and Temperley,
1993), a syntactic parser of English based on Link Grammar, a formal grammatical system. J-RAn
was applied in a very simplified case study and, even so, a significant number of SAO triads were
incorrectly extracted (21%) as a large number of extractions were not detected as well (16%).

Comparing the SOLIMVA methodology and its supporting tool with the works presented in this
and in previous subsections, we may stress the following advantages:

1. Easiness of use. As mentioned in Section 3, SOLIMVA does not require the user any knowledge
in formal methods and their respective notations to define the application domain, like CIRCE

8 In these cases, the inconsistency occurs due to the consequences of some requirements rather than the requirements
themselves.

9 Actually, CARL does not really apply model checking according to its most common definition (Clarke and Lerda,
2007; Baier and Katoen, 2008).



Software Qual J 63

(Ambriola and Gervasi, 2006) and CARL (Gervasi and Zowghi, 2005) do. Besides, the definition
of the application domain as proposed in SOLIMVA seems to be far more simpler than the one
presented in Text Analyzer (Sneed, 2007);

2. Writing of NL requirements. At first, the SOLIMVA tool does not impose any constraint in writing
NL requirements. However, we can not say that the tool follows the unrestricted NL approach, like
NL-OOPS (Mich, 1996), because it is necessary to define the application domain by means of a
Dictionary. Hence, the limitations of the unrestricted approach are not an issue with SOLIMVA.
On the other hand, we can not also say that the SOLIMVA tool is based on a controlled NL
approach like CIRCE, CARL, and the very restricted controlled NL ACE (Fuchs et al, 1999,
2000). This implies that the user has more freedom to use our tool;

3. Identification of scenarios. SOLIMVA proposes a formal manner, by means of combinatorial
designs, to identify scenarios for system and acceptance test case generation. Other methodologies,
like CoFI (Ambrósio et al, 2007), adopt an ad hoc approach in order to achieve such a purpose,
and this fact may limit the strength of such proposals;

4. Semantics. From the perspective of model generation based on NL sentences, some tools require
the user to manually provide explicit definitions for concepts. For instance, in CIRCE, the user
provides such explicit definitions by means of definitions, an element of the requirements document
model of the tool. In this case, we can say that the semantics of the model is somehow manually
provided by the user. A similar observation can be made with respect to Text Analyzer when the
user must identify keywords in the text. In SOLIMVA, we tried to automate the semantics related
to the generated model by adapting a word sense disambiguation algorithm in order to identify
self transitions in the resulting Statecharts model;

5. Automation. Although many publications presented above support the automated translation
from NL requirements into another notation, others do not have such a characteristic, for instance
Kim and Sheldon (2004) and Liang and Palmer (1994) proposals. This is another important feature
of the SOLIMVA tool;

6. Starting from NL requirements. Some publications, like the one of Fraser et al (1991), aim to
bridge the gap between informal and formal requirements specification languages. However, they
do not begin to approach directly from NL requirements as SOLIMVA does;

7. Mathematical formalism. In order to generate the test cases, the SOLIMVA methodology and its
supporting tool translate the NL requirements into a formal method, the Statecharts language.
The MOR Editor (Lu et al, 2008) lacks mathematical formalism.

8 Conclusions

The greatest motivation of this work is to bridge the gap between the state of the art (formal
methods, computational linguistics techniques, combinatorial designs) and the state of the practice
(NL requirements deliverables). We believe this is an important approach towards a wider use of the
theory proposed by the academic community in real projects in the industry, and in institutes of
research and development.

This paper presented the SOLIMVA methodology which aims to help test designers to generate
test cases based on behavioral models taking into account embedded reactive systems. The
methodology assumes that the deliverables (artifacts) constituting the basis for system and acceptance
test case generation, such as software requirements specifications, are mostly developed in NL. The
generation of test cases in an automated fashion directly from NL documents, as proposed in this



64 Software Qual J

work, is a challenge since NL presents serious shortcomings like ambiguity, poor understandability,
incompleteness, and inconsistency.

Summarizing what we have mentioned earlier, the SOLIMVA methodology has some benefits over
other research such as: (i) it provides a formal manner, by means of combinatorial designs, to identify
scenarios for model-based system and acceptance test case generation; (ii) it is supported by a formal
method but it does not require the user any skills related to formal notations; (iii) it does not present
some problems of other unrestricted NL approaches, such as limitation of applicability, or controlled
NL approaches, such as the necessity of strict compliance with predefined standards of writing; (iv) it
has a solution to automate the identification of self transitions in the resulting Statecharts model by
adapting a word sense disambiguation algorithm; (v) it begins to generate the models and hence the
Executable Test Suites directly from NL requirements. All these points show that our methodology
can give an important contribution to the software Verification and Validation process.

However, the research presented in this work should evolve so that the SOLIMVA methodology can
be applied on a broader scale. We need to investigate the feasibility of the SOLIMVA methodology in
other case studies not only in the space application domain but also in other embedded reactive system
domains. Besides, we intend to elaborate an empirical study with other professionals and analyze the
impact of the introduction of SOLIMVA in other settings. The algorithm for identification of BSAO
tuples should be improved, and we will develop a mechanism to automatically translate Abstract Test
Cases into Executable Test Cases. Furthermore, we will implement a combinatorial designs algorithm,
such as IPOG (Lei et al, 2007), within the SOLIMVA tool to eliminate the need to use an external
tool (TConfig) for generating Mixed-Level Covering Arrays.

Despite the explanations given in Section 6, scalability is still a major issue. The SOLIMVA
methodology is appropriate up to medium sized space application software products. Our approach
needs to be improved in order to deal with large software systems. One way towards this improvement
is to optimize (reduce) the number of generated scenarios by using techniques to merge scenarios or
even to discard some of them.

Other important future work is the detection of defects such as incompleteness and inconsistency
within NL requirements deliverables. In the SWPDC case study, in some situations the test designer
had to insert new “extra” requirements in order to generate coherent Executable Test Cases. These
requirements had not been explicited in any of the NL deliverables developed in the scope of the
QSEE project, and consulted for generation of the models. We intend to address this problem by
means of model checking (Baier and Katoen, 2008).

Acknowledgements We would like to thank and dedicate this research to Prof. José Demı́sio Simões da Silva (in
memoriam) for his relevant contributions to the better development of our research.

References

Abrial JR (2006) Formal methods in industry: achievements, problems, future. In: Proceedings of the
28th International Conference on Software Engineering (ICSE), ACM, New York, NY, USA, pp
761–768

Ambriola V, Gervasi V (1997) Processing natural language requirements. In: Proceedings of the 12th
International Conference on Automated Software Engineering (ASE), IEEE Computer Society,
Washington, DC, USA, pp 36–45



Software Qual J 65

Ambriola V, Gervasi V (2006) On the systematic analysis of natural language requirements with
CIRCE. Automated Software Engineering 13(1):107–167

Ambrósio AM, Mattiello-Francisco F, Santiago VA, Silva WP, Martins E (2007) Designing fault
injection experiments using state-based model to test a space software. In: Dependable computing,
LNCS, vol 4746, Springer Berlin/Heidelberg, Berlin/Heidelberg, Germany, pp 170–178

Antoniol G, Briand LC, Di Penta M, Labiche Y (2002) A case study using the round-trip strategy for
state-based class testing. In: Proceedings of the 13th IEEE International Symposium on Software
Reliability Engineering (ISSRE), IEEE Computer Society, Washington, DC, USA, pp 269–279

Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, Cambridge, MA, USA, 975
p.

Balcer M, Hasling W, Ostrand T (1989) Automatic generation of test scripts from formal test
specifications. ACM SIGSOFT Software Engeneering Notes 14(8):210–218

Basili VR, Green S, Laitenberger O, Lanubile F, Shull F, Sørumg̊ard S, Zelkowitz MV (1996) The
empirical investigation of Perspective-Based Reading. Empirical Software Engineering Journal
1(2):133–164

Bertolino A, Gnesi S (2003) Use case-based testing of product lines. ACM SIGSOFT Software
Engineering Notes 28(5):355–358

Binder RV (1999) Testing object-oriented systems. Addison-Wesley Professional, USA, 1248 p.
Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-oriented

software development methodology. Autonomous Agents and Multi-Agent Systems 8(3):203–236
Briand LC, Labiche Y (2002) A UML-based approach to system testing. Journal of Software and
Systems Modeling 1(1):10–42

Briand LC, Labiche Y, Wang Y (2004) Using simulation to empirically investigate test coverage
criteria based on Statechart. In: Proceedings of the 26th International Conference on Software
Engineering (ICSE), IEEE Computer Society, Washington, DC, USA, pp 86–95

Chow TS (1978) Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering SE-4(3):178–187

Clarke EM, Lerda F (2007) Model checking: software and beyond. Journal of Universal Computer
Science 13(5):639–649

Cristiá M, Monetti P (2009) Implementing and applying the Stocks-Carrington framework for model-
based testing. In: Breitman K, Cavalcanti A (eds) Formal Methods and Software Engineering,
LNCS, vol 5885, Springer Berlin/Heidelberg, Berlin/Heidelberg, Germany, pp 167–185

Cristiá M, Santiago V, Vijaykumar NL (2010) On comparing and complementing two MBT
approaches. In: Proceedings of the 11th Latin-American Test Workshop (LATW), IEEE Computer
Society, Washington, DC, USA, pp 1–6

ECSS (2008) ECSS-S-ST-00C: ECSS system - Description, implementation and general requirements.
European Cooperation for Space Standardization (ECSS), Noordwijk, The Netherlands, 34 p.

ECSS (2009) ECSS-E-ST-10-06C: ECSS Space engineering - Technical requirements specification.
European Cooperation for Space Standardization (ECSS), Noordwijk, The Netherlands, 31 p.

El-Far IK, Whittaker JA (2001) Model-based software testing. In: Marciniak JJ (ed) Encyclopedia
of software engineering, Wiley, USA

Fantechi A, Spinicci E (2005) A content analysis technique for inconsistency detection in software
requirements documents. In: Proceedings of the VIII Workshop on Requirements Engineering
(WER), pp 245–256

Fantechi A, Gnesi S, Lami G, Maccari A (2003) Applications of linguistic techniques for use case
analysis. Requirements Engineering 8(3):161–170



66 Software Qual J

Fraser MD, Kumar K, Vaishnavi VK (1991) Informal and formal requirements specification languages:
bridging the gap. IEEE Transactions on Software Engineering 17(5):454–466

Frohlich P, Link J (2000) Automated test case generation from dynamic models. In: ECOOP 2000:
object-oriented programming, LNCS, vol 1850, Springer Berlin/Heidelberg, Berlin/Heidelberg,
Germany, pp 472–491

Fuchs NE, Schwertel U, Schwitter R (1999) Attempto Controlled English - not just another logic
specification language. In: Logic-based program synthesis and transformation, LNCS, vol 1559,
Springer Berlin/Heidelberg, Berlin/Heidelberg, Germany, pp 1–20

Fuchs NE, Schwertel U, Torge S (2000) A natural language front-end to model generation. Journal
of Language and Computation 1(2):199–214

Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in natural language requirements. ACM
Transactions on Software Engineering and Methodology 14(3):277–330

Harel D (1987) Statecharts: a visual formalism for complex systems. Science of Computer
Programming 8:231–274

Harel D, Pnueli A, Schmidt JP, Sherman R (1987) On the formal semantics of Statecharts (extended
abstract). In: Proceedings of the 2nd IEEE Symposium on Logic in Computer Science (LICS),
IEEE Computer Society, Washington, DC, USA, pp 54–64

Hierons RM (1997) Testing from a Z specification. The Journal of Software Testing, Verification and
Reliability 7(1):19–33

Hierons RM, Bogdanov K, Bowen JP, Cleaveland R, Derrick J, Dick J, Gheorghe M, Harman M,
Kapoor K, Krause P, Lüttgen G, Simons AJH, Vilkomir S, Woodward MR, Zedan H (2009) Using
formal specifications to support testing. ACM Computing Surveys 41(2):1–76

Hoare CAR (1985) Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ, USA,
238 p.

Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation.
Addison Wesley, Reading, MA, USA, 418 p.

Howden WE (1976) Reliability of the path analysis testing strategy. IEEE Transactions on Software
Engineering SE-2(3):208–215

IEEE (1990) IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology.
The Institute of Electrical and Electronics Engineers (IEEE), New York, NY, USA, 83 p.

Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy.
In: Proceedings of the 10th International Conference Research on Computational Linguistics
(ROCLING), pp 19–33

Kim HY, Sheldon FT (2004) Testing software requirements with Z and Statecharts applied to an
embedded control system. Software Quality Journal 12(3):231–264

Leacock C, Chodorow M (1998) Combining local context and WordNet similarity for word sense
identification. In: Fellbaum C (ed) WordNet: an electronic lexical database, The MIT Press,
Cambridge, MA, USA, chap 11, pp 265–283

Lee D, Yannakakis M (1996) Principles and methods of testing finite state machines: a survey.
Proceedings of the IEEE 84(8):1090–1123

Lei Y, Tai KC (1998) In-Parameter-Order: A test generation strategy for pairwise testing. In:
Proceedings of the 3rd IEEE International Symposium on High-Assurance Systems Engineering
(HASE), IEEE Computer Society, Washington, DC, USA, pp 254–261

Lei Y, Kacker R, Kuhn DR, Okun V, Lawrence J (2007) IPOG: A general strategy for t-way software
testing. In: Proceedings of the 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS), IEEE Computer Society, Washington, DC, USA,



Software Qual J 67

pp 549–556
Lesk M (1986) Automatic sense disambiguation using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In: Proceedings of the 5th International Conference on Systems
Documentation (SIGDOC), ACM, New York, NY, USA, pp 24–26

Liang J, Palmer JD (1994) A pattern matching and clustering based approach for supporting
requirements transformation. In: Proceedings of the 1st IEEE International Conference on
Requirements Engineering (ICRE), IEEE Computer Society, Washington, DC, USA, pp 180–183

Lu CW, Chang CH, Chu WC, Cheng YW, Chang HC (2008) A requirement tool to support model-
based Requirement Engineering. In: Proceedings of the 32nd Annual IEEE International Computer
Software and Applications Conference (COMPSAC), IEEE Computer Society, Washington, DC,
USA, pp 712–717

Marcus MP, Marcinkiewicz MA, Santorini B (1993) Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics 19(2):313–330

Masiero PC, Maldonado JC, Boaventura IG (1994) A reachability tree for Statecharts and analysis
of some properties. Information and Software Technology 36(10):615–624

Mathur AP (2008) Foundations of software testing. Dorling Kindersley (India), Pearson Education
in South Asia, Delhi, India, 689 p.

Mich L (1996) NL-OOPS: from natural language to object oriented requirements using the natural
language processing system LOLITA. Natural Language Engineering 2(2):161–187

Mich L, Franch M, Inverardi P (2004) Market research for requirements analysis using linguistic tools.
Requirements Engineering Journal 9(1):40–56

Miller GA (1998) Nouns in WordNet. In: Fellbaum C (ed) WordNet: an electronic lexical database,
The MIT Press, Cambridge, MA, USA, chap 1, pp 23–46

Miller GA, Leacock C, Tengi R, Bunker RT (1993) A semantic concordance. In: Proceedings of the
Workshop on Human Language Technology (HLT), Association for Computational Linguistics,
Morristown, NJ, USA, pp 303–308

Morgan R, Garigliano R, Callaghan P, Poria S, Smith M, Urbanowicz A, Collingham R, Costantino
M, Cooper C, LOLITA Group (1995) University of Durham: description of the LOLITA system as
used in MUC-6. In: Proceedings of the 6th Message Understanding Conference (MUC-6), pp 71–85

Navigli R (2009) Word sense disambiguation: A survey. ACM Computing Surveys 41(2):1–69
Offutt J, Abdurazik A (1999) Generating tests from UML specifications. In: UML’99: the Unified

Modeling Language, LNCS, vol 1723, Springer Berlin/Heidelberg, Berlin/Heidelberg, Germany, pp
416–429

OMG (2007) OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2. The Object
Management Group (OMG), Needham, MA, USA, 722 p.

Ostrand TJ, Balcer MJ (1988) The category-partition method for specifying and generating functional
tests. Communications of the ACM 31(6):676–686

Paradkar A (2003) Towards model-based generation of self-priming and self-checking conformance
tests for interactive systems. In: Proceedings of the 18th ACM Symposium on Applied Computing
(SAC), ACM, New York, NY, USA, pp 1110–1117

Pedersen T, Patwardhan S, Michelizzi J (2004) WordNet::Similarity: measuring the relatedness of
concepts. In: Proceedings of the 5th Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), Association for Computational Linguistics,
Morristown, NJ, USA, pp 38–41

Petrenko A, Yevtushenko N (2005) Testing from partial deterministic FSM specifications. IEEE
Transactions on Computers 54(9):1154–1165



68 Software Qual J

Pimont S, Rault JC (1976) A software reliability assessment based on a structural and behavioral
analysis of programs. In: Proceedings of the 2nd International Conference on Software Engineering
(ICSE), ACM, New York, NY, USA, pp 486–491

Pressman RS (2001) Software Engineering: a practitioner’s approach, 5th edn. McGraw-Hill, New
York, NY, USA, 860 p.

Santiago V, Amaral ASM, Vijaykumar NL, Mattiello-Francisco MF, Martins E, Lopes OC (2006) A
practical approach for automated test case generation using Statecharts. In: Proceedings of the 30th
Annual International Computer Software & Applications Conference (COMPSAC) - International
Workshop on Testing and Quality Assurance for Component-Based Systems (TQACBS), IEEE
Computer Society, Los Alamitos, CA, USA, pp 183–188

Santiago V, Mattiello-Francisco F, Costa R, Silva WP, Ambrosio AM (2007) QSEE project: an
experience in outsourcing software development for space applications. In: Proceedings of the 19th
International Conference on Software Engineering & Knowledge Engineering (SEKE), Knowledge
Systems Institute Graduate School, Skokie, IL, USA, pp 51–56

Santiago V, Silva WP, Vijaykumar NL (2008a) Shortening test case execution time for embedded
software. In: Proceedings of the 2nd IEEE International Conference on Secure System Integration
and Reliability Improvement (SSIRI), IEEE Computer Society, Washington, DC, USA, pp 81–88

Santiago V, Vijaykumar NL, Guimaraes D, Amaral AS, Ferreira E (2008b) An environment for
automated test case generation from Statechart-based and Finite State Machine-based behavioral
models. In: Proceedings of the 1st International Conference on Software Testing, Verification and
Validation (ICST) - Workshop on Advances in Model Based Testing (A-MOST), IEEE Computer
Society, Washington, DC, USA, pp 63–72

Santiago Júnior VA, Cristiá M, Vijaykumar NL (2010) Model-based test case generation using
Statecharts and Z: a comparison and a combined approach. INPE, São José dos Campos, URL
http://urlib.net/sid.inpe.br/mtc-m19@80/2010/02.26.14.05, (INPE-16677-RPQ/850)

Sarma M, Mall R (2009) Automatic generation of test specifications for coverage of system state
transitions. Information and Software Technology 51(2):418–432

Sidhu DP, Leung TK (1989) Formal methods for protocol testing: a detailed study. IEEE Transactions
on Software Engineering 15(4):413–426

Sinha R, Mihalcea R (2007) Unsupervised graph-based word sense disambiguation using measures of
word semantic similarity. In: Proceedings of the International Conference on Semantic Computing
(ICSC), IEEE Computer Society, Washington, DC, USA, pp 363–369

Sleator DD, Temperley D (1993) Parsing English with a link grammar. In: Proceedings of the 3rd
International Workshop on Parsing Technologies, pp 277–292

Sneed HM (2007) Testing against natural language requirements. In: Proceedings of the 7th
International Conference on Quality Software (QSIC), IEEE Computer Society, Washington, DC,
USA, pp 380–387

Souza ÉF (2010) Geração de casos de teste para sistemas da área espacial usando critérios de teste
para máquinas de estados finitos. Instituto Nacional de Pesquisas Espaciais, São José dos Campos,
SP, Brazil, Master Dissertation, 133 p.

Souza SRS (2000) Validação de especificações de sistemas reativos: definição e análise de critérios de
teste. Universidade de São Paulo, São Carlos, SP, Brazil, PhD Thesis, 264 p.

Spivey JM (1989) The Z notation: a reference manual. Prentice-Hall, Upper Saddle River, NJ, USA
Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging with a

cyclic dependency network. In: Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics on Human Language Technology, pp 173–180



Software Qual J 69

University of Ottawa (2008) Alan Williams’ page. Available from:
http://www.site.uottawa.ca/˜awilliam/, access in: July 22, 2010

University of Sussex (2010) David Hope’s page. Available from:
http://www.cogs.susx.ac.uk/users/drh21/, access in: July 22, 2010

Vijaykumar NL, Carvalho SV, Francês CRL, Abdurahiman V, Amaral ASM (2006) Performance
evaluation from Statecharts representation of complex systems: Markov approach. In: Anais do
XXVI Congresso da Sociedade Brasileira de Computação (CSBC) - Workshop em Desempenho de
Sistemas Computacionais e de Comunicação, Sociedade Brasileira de Computação, Porto Alegre,
RS, Brazil, pp 183–202


